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Abstract

Non-autoregressive encoder-decoder models
greatly improve decoding speed over autore-
gressive models, at the expense of genera-
tion quality. To mitigate this, iterative decod-
ing models repeatedly infill or refine the pro-
posal of a non-autoregressive model. How-
ever, editing at the level of output sequences
limits model flexibility. We instead pro-
pose iterative realignment, which by refin-
ing latent alignments allows more flexible
edits in fewer steps. Our model, Align-
Refine, is an end-to-end Transformer which it-
eratively realigns connectionist temporal clas-
sification (CTC) alignments. On the WSJ
dataset, Align-Refine matches an autoregres-
sive baseline with a 14× decoding speedup;
on LibriSpeech, we reach an LM-free test-
other WER of 9.0% (19% relative improve-
ment on comparable work) in three iterations.
We release our code at https://github.com/

amazon-research/align-refine.

1 Introduction

Transformer encoder-decoder models (Vaswani
et al., 2017) have achieved high performance in
sequence-to-sequence tasks like neural machine
translation (NMT; Edunov et al., 2018) and end-
to-end automatic speech recognition (ASR; Karita
et al., 2019). However, like their recurrent predeces-
sors, these models are autoregressive at inference:
tokens are generated sequentially, with each token
conditioned on all previous tokens. This makes
decoding time linear in output sequence length,
which is slow for long sequences. By contrast, non-
autoregressive (NAR) models decode all output
tokens independently and in parallel. When com-
bined with self-attention, one gets fast, constant-
time inference in NMT (Gu et al., 2018) and end-
to-end ASR (Salazar et al., 2019). However, these
models underperform their autoregressive counter-

∗Work done during an internship at Amazon AWS AI.

Figure 1: In Align-Refine, a Transformer encoder la-
bels each input frame to give a latent alignment. The re-
finer, a non-causal Transformer decoder, improves the
alignment conditioned on the encoder. After a bounded
# of iterations, the result is collapsed into the output.

parts, as the conditional independence between out-
put tokens results in globally inconsistent outputs.1

To mitigate these issues, infilling methods like
Mask-Predict (Ghazvininejad et al., 2019) refine
an initial non-autoregressive proposal, repeatedly
predicting a masked subset of low-confidence pro-
posal tokens in a fixed number of decoding passes.
In ASR, most iterative non-autoregressive methods
use infilling, like A-FMLM (Chen et al., 2020), Im-
puter (Chan et al., 2020), and Mask-CTC (Higuchi
et al., 2020). However, during training, infilling
requires partial proposals to be simulated by syn-
thetically masking ground truths or samples from
an expert. The resulting train-test mismatch leads
to poor-quality generation. An alternative proposed
in NMT is iterative refinement (Lee et al., 2018);
here, full proposals are predicted and trained on
at each iteration, with no masking required. This

1Gu et al. call this the multimodality problem, as it is
induced by the highly multimodal distribution of target trans-
lations (or in the case of ASR, frame-level alignments).

https://github.com/amazon-research/align-refine
https://github.com/amazon-research/align-refine


1921

reduces mismatch but still lacks flexibility: among
other problems, working at the output sequence
level constrains every iteration to the initial length
L predicted by the model, making it difficult to
correct insertions or deletions.

In this work, we propose iterative realignment,
a variation on iterative refinement where latent
alignments are edited instead. By working at the
alignment level, we avoid length prediction and
enable more powerful edits, while preserving the
flexibility and reduced train-test mismatch of itera-
tive refinement. Our model, Align-Refine, demon-
strates this on ASR: after a Transformer encoder
first produces a noisy non-autoregressive proposal,
the refiner (a non-causal Transformer decoder) re-
peatedly conditions on both the previous proposal
and the initial encoder representation to produce a
better proposal. Both the encoder and refiner are su-
pervised with CTC (Graves et al., 2006), a loss de-
fined between sequences and their latent monotonic
alignments. Unlike past methods, Align-Refine re-
quires no token masking or expert policies.

We validate our approach on two English ASR
benchmarks, improving on state-of-the-art infilling
methods—Mask-CTC and Imputer—in word error
rate (WER) and/or inference time (as measured by
real-time factor2, or RTF). On WSJ, we close the
WER gap with an autoregressive baseline at 1/14th
the RTF, outperforming Mask-CTC after a single it-
eration. On LibriSpeech, we improve on published
(LM-free) NAR results by 2.1% WER absolute on
test-other at <1/4th the effective layers (and thus
estimated RTF) of Imputer. Our work suggests that
iterative realignment is a promising direction for
other sequence-to-sequence tasks, such as NMT.

2 Background

2.1 Connectionist Temporal Classification

CTC (Graves et al., 2006) is a strategy for defin-
ing latent monotonic alignments from an input se-
quence x to a shorter output sequence y. Let ‘_’,
termed a blank, be an additional possible output
token; then a CTC alignment is reduced to an out-
put sequence by collapsing repeated labels then
removing blanks, e.g., AB__BB_A 7→ ABBA. Since
this is a many-to-one process, to calculate p(y|x),
we marginalize over all alignments ψ(y) mapping
to an output y. Assuming alignment labels are

2The decoding time divided by the length of audio.

conditionally independent:

p(y|x) =
∑

a∈ψ(y)

pθ(a|x) =
∑

a∈ψ(y)

|x|∏
t=1

pθ(at|x),

making JCTC = − log p(y|x) differentiable and
efficiently computable via dynamic programming.

2.2 Existing Approaches

Iterative refinement methods non-autoregressively
refine an initial proposal y0 of length L, with full
re-predicted proposals yk conditioned on previous
proposals yk−1 and the input sequence x:

p(yk|x) =
∏
i

p(yki |x,yk−1).

By contrast, infilling methods such as Mask-Predict
(Ghazvininejad et al., 2019) mask part of the pre-
vious proposal every iteration. Only masked posi-
tions are re-predicted, conditioned on all unmasked
tokens and the inputs x:

p(ykmask|x) =
∏
i

p(yki |x,yk−1 \ yk−1mask).

Typically, at each iteration a decreasing proportion
of high-confidence tokens are unmasked3 such that
the full budget of K iterations is always required.
Furthermore, state-of-the-art methods for English
ASR—Mask-CTC (Higuchi et al., 2020, Figure 2)
and Imputer (Chan et al., 2020)—enforce an added
constraint that no decisions may be reversed at all:
p(yki |x) = 1[yki = yk−1i ] when yk−1i 6= <MASK>.

3 Methods

We propose Align-Refine, a variation of iterative re-
finement which, like its predecessor, always keeps
the proposal fully formed; this permits flexibility in
decoding (as iteration can be stopped at any time)
and potential speedups (errors seen and fixed in
parallel; easy utterances refined in fewer steps).

However, unlike Lee et al. (2018), our proposals
are latent CTC alignments ak1:|x|, not outputs yk1:L.
In previous work, working at the output sequence
level is another source of irreversibility: the length
Lmust be predicted even before the initial proposal
penc(y

0|L,x) is generated, either explicitly (sam-
pling from a modelled length distribution p(L|x);
Lee et al., 2018) or implicitly (collapsing CTC out-
puts before infilling; Higuchi et al., 2020). Either
way, the decoder cannot fix insertions/deletions.

3In Mask-CTC, this is done by the decoder. In Imputer,
full encoder passes are required, as there is no decoder.
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Mask-CTC, 5 iterations Align-Refine (char.), ≤5 iterations

Enc •••F••• ••S•••RE•••LY••EL•••• TO••••L• H• SAID __SSA__FFFO_OD H’S DIRRECTLLY RRELATTED TOO HEALT HHE SAAIDD_

k=1 •••F••• H•S•D•RE••HLY••EL•••D TO•H••L• H• SAID __SSA__ FFO_OD HIS DIRRECTLLY RELATTED TO HEALT HE SAAID__

k=2 •••F••• HAS•DIRE••HLY•RELA••D TO•H•AL• H• SAID __SSA__ FFO_OD HIS DIRRECTLLY RELATTED TO HEALTH HE SAAID__

k=3 S••F••• HAS DIRE•THLY•RELAT•D TO•H•ALT H• SAID __SSAI_ FFO_OD HIS DIRRECTLLY RELATTED TO HEALTH HE SAAID__

k=4 S••FO•• HAS DIRE•THLY RELATED TO H•ALT HE SAID (identical, so collapse early)
k=5 SE FOET HAS DIRECTHLY RELATED TO HEALT HE SAID ↓
End SE FOET HAS DIRECTHLY RELATED TO HEALT HE SAID SAI FOOD HIS DIRECTLY RELATED TO HEALTH HE SAID

Reference: SEAFOOD IS DIRECTLY RELATED TO HEALTH HE SAID

Figure 2: WSJ dev93 utterance as decoded by our models. Mask-CTC’s masks are denoted with ‘•’. Mask-CTC
gives HEALT as it has no space for H from the very beginning, and outputs DIRECTHLY as it cannot undo HLY’s
emission at iteration k = 1. Meanwhile, Align-Refine makes the mistake HEALT immediately, but corrects it over
two steps: at k = 1 it deletes HHE 7→HE, and at k = 2 it sees the new space and inserts HEALT7→HEALTH.

By contrast, since CTC alignments are by nature
fixed-length, Align-Refine easily handles insertion-
s/deletions by placing/replacing blanks and spaces
(Figure 2). At a given iteration k, we have:

p(y|x) = Eak−1

 ∑
ak∈ψ(y)

pref(a
k|ak−1,x)

 .
This expectation over previous alignments is in-
tractable, so like Lee et al. (2018) we take a
deterministic lower bound: sampling the mode
âk−1. After we marginalize over all ak, the loss
is JCTC(â

k−1,y; θref, θenc). Since we don’t know
a priori which k is final, we apply the loss at k =
1, . . . ,K with weightsw1, . . . , wK for some hyper-
parameter K. For k = 0 we get JCTC(x,y; θenc).

In summary, we take the greedy alignment at
each iteration and apply the CTC loss, as shown
in Figure 1 for K = 2. In practice, we upweight
the encoder and first iteration terms with weights
λ and w1, then sum to give the total loss. For this
and other training details, consult Appendix B, C.

Data. We evaluate on two English ASR bench-
marks: WSJ (81 hours; Paul and Baker, 1992) and
LibriSpeech (960 hours; Panayotov et al., 2015).
For WSJ, we run at the character level, matching
Mask-CTC; for LibriSpeech, we build a 400-token
BPE vocabulary, matching Imputer. We use 80-dim.
filter banks and SpecAugment (Park et al., 2019).

Model. For WSJ we use a 12-layer encoder and
6-layer decoder, as in Higuchi et al. (2020); each
layer has 4 heads over 256 units. For LibriSpeech,
we use 8 heads over 512 units. With CNN frontends
these are 27M and 71M parameters. Unless stated
otherwise, we do K = 4 training iterations.

Decoding. We evaluate with decoding iterations
k from {0, 1, 3, 5, 10}, exiting early on conver-
gence (consecutive iterations are identical). The

final CTC alignment is collapsed to give the result.
To match previous non-autoregressive ASR work,
we do not use a language model (LM).

4 Results

WSJ results (Table 1). Since Mask-CTC and
Align-Refine share an identical architecture, the
difference lies solely in training and evaluation.
For both models, joint training with the refinement
objective improves the encoder’s performance as a
standalone CTC model (k = 0) to a similar degree.
However, from k = 1 onwards, Align-Refine out-
performs Mask-CTC, improving the initial encoder
proposal by 1.9% absolute in just one iteration:

# passes WER
Model Enc Dec dev93 eval92 RTF

Autoregressive baseline (Higuchi et al., 2020)
CTC+ATTENTION 1 L 14.4 11.3 0.97*

+ beam search 1 >L 13.5 10.9 4.62*

Previous work (Higuchi et al., 2020; Chan et al., 2020)
CTC 1 – 22.2 17.9 0.03*
MASK-CTC 1 0 16.3 12.9 0.03*

1 1 15.7 12.5 0.04*
1 5 15.5 12.2 0.05*
1 #mask 15.4 12.1 0.13*

IMPUTER (8-LYR) † 8 – – 12.7 –

Our work
CTC 1 – 18.6 15.0 0.036
MASK-CTC 1 5 15.3 12.8 0.072
ALIGN-REFINE 1 0 16.2 13.5 0.037

1 1 14.1 11.6 0.048
1 3 13.9 11.5 0.066
1 5 13.7 11.4 0.068
1 10 13.7 11.4 0.068

Table 1: Non-autoregressive ASR on WSJ. No LMs are
used. For CERs, see Table 4 (Appendix A). *: RTFs
from Higuchi et al., which are lower than ours for cor-
responding models. †: No SpecAugment.

By k = 5, Align-Refine closes the performance gap
with a comparable autoregressive model at 1/14th
the RTF. As for the 8-layer Imputer, it seems un-
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Align-Refine (subword), up to 5 iterations

Enc [WHEN___[DI[DI_CKI__[CAME_____[DOWN________[HIS____[A__UNUNTT___[S__IGHT_LY__[S[SLA__PP_ T _[HIM

k=1 [WHEN___[DI[DI_CKIEE[CAME_____[DOWN________[HIS____[A__ _ UNTT___[SL_IGHT_LY__ _ [SLA__PP_ED_[HIM

k=2 [WHEN___[DI[DI_CKI_E[CAME_____[DOWN________[HIS____[A__ _ UN_T___[SL_IGHT_LY__ _ [SLA__PP_ED_[HIM

k=3 (identical, so collapse early)
... ↓
End [WHEN [DICKIE [CAME [DOWN [HIS [AUNT [SLIGHTLY [SLAPPED [HIM

Figure 3: LibriSpeech test-other utterance; reference matches the prediction. At k = 1 three separate corrections are
made, two of which (DICKI 7→DICKIE; SLAPPT7→SLAPPED) cannot be done from the audio. In k = 2 the multimodal
prediction E E is resolved into _ E, though the repetition-collapsed transcript would be correct regardless.

likely that re-introducing SpecAugment would out-
perform this augmented 12+6-layer autoregressive
baseline; even if performances did match, RTFs
would be higher than Align-Refine’s (Section 5).

LibriSpeech results (Table 2). Align-Refine
gives 9.0% WER on test-other with no LM, out-
performing published non-autoregressive models
by 2.1% WER absolute. This is 5.1 points better
than training the encoder with CTC only, even af-
ter SpecAugment is used (compare with 1.9 points
from 16-layer CTC to Imputer). In Figure 3 we
see the refiner make output-conditional edits that
would be difficult for greedy CTC inference; we
attribute our outsized gain on test-other to this
LM-like behavior. Future work could start from
stronger CTC encoders like QuartzNet (Kriman
et al., 2020) to achieve even better results.

# passes WER (test)
Model Enc Dec clean other

Autoregressive models (Han et al., 2020)
LAS (360M) 1 L 2.6 6.0
RNN-T (CONTEXTNET-L) 1 L 2.1 4.6

Previous work (Chan et al., 2020; Kriman et al., 2020)
CTC (16-LYR) † 1 – 4.6 13.0
IMPUTER (16-LYR) † 8 – 4.0 11.1
CTC (JASPER DR 10X5) 1 – 4.3 11.8
CTC (QUARTZNET 15X5) 1 – 3.9 11.2

Our work
CTC 1 – 5.1 14.1
ALIGN-REFINE 1 0 4.6 11.5

1 1 3.8 9.5
1 3 3.6 9.0
1 5 3.6 9.0

Table 2: Non-autoregressive ASR on LibriSpeech. No
LMs are used. †: No SpecAugment.

5 Analysis

In all, we have seen that Align-Refine improves per-
formance over infilling methods like Imputer and
Mask-CTC across tokenizations and dataset sizes
(Tables 1 and 2). We saw improvements qualita-
tively as parallel and multi-stage insertion/deletion
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Figure 4: Proportion of utterances in each LibriSpeech
test set whose alignments become fixed at iteration k.
∞ denotes utterances which cycle between alignments
indefinitely.

edits (Figures 2 and 3). We conclude by discussing
some properties, tradeoffs, and limitations:

Number of iterations. In Figure 4 we graph how
many utterances became fixed at each iteration k
(i.e., where âk+1 = âk 6= âk−1). First, we see
that the CTC alignment is always revised by the
refiner, evidence that CTC’s non-autoregressive
greedy mode is fundamentally different from the
conditionally dependent mode annealed to by the
refiner. We see that upweighting w1 and training
with K = 4 largely confined the “fixed point” iter-
ation index k to 4 or less.

One interesting phenomenon is the small frac-
tion of utterances which never reach a fixed point
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Figure 5: Bar plot of iterations at which each alignment
became fixed, as a function of alignment length (4×
downsampled from regular audio frames), over both
test-clean and test-other. For comparability we
normalize each bucket to 1.0; the total number of utter-
ances in each bucket is above the chart.

(labeled∞); rather, they cycle through two or more
alignments repeatedly. In these cases, the transcript
is finalized except on a local set of tokens where
the model flips back and forth, e.g., -OUS versus
-US. One could mitigate this by stopping after an
edit distance of 1 between alignments is reached
(similar to Lee et al., 2018), or by comparing with
proposals e.g., two iterations prior.

Length independence. In Figure 5, we empir-
ically validate the length independence of our
method by plotting the “fixed point” iteration k
versus the alignment length. The medians increase
from k = 1 to k = 2 by lengths >300, but
no further (for the lengths in LibriSpeech). One
observation is that as an utterance gets longer,
the chance that “multimodal” corrections like
[DI_CKI__ 7→[DI_CKIEE (Figure 3) are made in-
creases, which a further iteration then resolves
([DI_CKIEE 7→[DI_CKI_E) independent of whether
it affects the collapsed transcript. Interestingly, a
few short alignments (e.g., lengths <100) use from
3 all the way up to 8 iterations, perhaps due to
lack of linguistic context the refiner can use for
disambiguation.

Speed and decoder depth. By factoring out re-
finement from feature processing, we can effec-
tively adapt to variable inference budgets by ad-
justing the number of decoding iterations. While
Imputer requires a separate run of the entire model

for every iteration, for Align-Refine, only the de-
coder must be rerun. Another advantage is that
since we have a full proposal at every iteration, in
the vast majority of cases we exited early once the
proposals stabilized.

Kasai et al. (2021) critiqued this factorization
in non-autoregressive models by showing autore-
gressive models could shift layers from decoder to
encoder to reduce the speed gap; however, we show
that Align-Refine benefits from a similar realloca-
tion (Table 3):

WER (test-other) for each k
Model-(# enc)-(# dec) 0 1 2 3 5

ALIGN-REFINE-12-6 12.5 10.0 9.4 9.3 9.3
ALIGN-REFINE-15-3 10.5 9.5 9.4 9.3 9.3
ALIGN-REFINE-17-1 10.4 10.0 10.0 10.0 10.0

Table 3: Results with various encoder-decoder splits on
LibriSpeech. We take K = 2 to speed up training.

The refiner needs some depth for best performance:
17-1 underperforms on test-other (though within
0.1 points on test-clean). However, 15-3 performs
as well as 12-6 at k = 1 onwards, despite passing
through half the number of decoder layers. At
k = 3, our LibriSpeech model’s RTF was 0.171,
while 15-3’s RTF is 0.136. In this configuration,
we pass through 15 encoder and at most 3 × 3 =
9 decoder layers. By contrast, Imputer inference
passes through 8 × 16 = 128 encoder layers with
the same alignment-length inputs and layer size.

Limitations. The refiner sometimes makes edits
which do not affect post-collapse outputs (Figure 3,
k = 2); variants that use repetition tokens (ASG;
Collobert et al., 2016) or prohibit repetition col-
lapse (Chan et al., 2020) may mitigate this behavior.
The initial downsampling also restricts what edits
can be done in one step (Figure 2, k = 1, 2).

We found that Align-Refine performed worse
when there were more alignment labels per word
(Appendix A). In general, word-level errors like
SAI FOOD HIS (Figure 2) may require more coordi-
nated mechanisms to fix. Future work could inte-
grate non-autoregressive LMs like BERT (Devlin
et al., 2019) via alignment synthesis, fusion, or
otherwise (e.g., Salazar et al., 2020). Some con-
current works (Inaguma et al., 2021; Tian et al.,
2021) also propose reranking NAR candidates with
a jointly-trained autoregressive decoder.
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Autoregressive baseline (Higuchi et al., 2020)
CTC+ATTENTION ‡ 1/L 5.5 14.4 4.0 11.3

+ beam search 1/>L – 13.5 – 10.9

Previous work (Higuchi et al., 2020; Chan et al., 2020)
CTC 1/– – 22.2 – 17.9
MASK-CTC 1/0 – 16.3 – 12.9

1/1 – 15.7 – 12.5
1/5 – 15.5 – 12.2

1/#msk. – 15.4 – 12.1
IMPUTER (8-LYR) † 8/– – – 4.9† 12.7

Our work
CTC 1/– 5.24 18.6 4.16 15.0
MASK-CTC 1/5 4.73 15.3 3.88 12.8
ALIGN-REFINE 1/0 4.75 16.2 3.92 13.5

1/1 4.38 14.1 3.61 11.6
1/3 4.34 13.9 3.61 11.5
1/5 4.33 13.7 3.60 11.4

1/10 4.33 13.7 3.60 11.4

Table 4: Non-autoregressive ASR on WSJ.
No LMs are used. †: No SpecAugment,
uses 400 BPE vocabulary. ‡: CERs retrieved
from https://github.com/espnet/espnet/blob/

ffcf39c27f9aa0cf15c7ae7a06a8a9d35871602e/egs/

wsj/asr1/RESULTS.md#cer-4.

In Align-Refine, we see that an absolute re-
duction in CER per realignment leads to a 5x to
20x absolute reduction in WER, suggesting the
corrected errors are largely character-level mis-
spellings. Align-Refine also has smaller CERs for
the comparable WER to the CTC+attention autore-
gressive model, e.g., Align-Refine has a CER of

4.4 for a WER of 14.1 while CTC+Attention has a
CER of 5.5 for a WER of 14.4. This exhibits one
difference in failure modes: when an autoregressive
model predicts the wrong word, it is more likely
to get the entire word wrong due to compounding
error.

Speaking rate sensitivity. For some insight into
how Align-Refine performance varies with approx-
imate rate of speech, we split LibriSpeech test by
the ratio of reference words to alignment length (4
× downsampled from regular audio frames). Our
results are in Table 5:

words / align. lbl. test-clean test-other
words/utt. WER words/utt. WER

[0.02, 0.09) 13.4 5.66% 10.1 14.10%
[0.09, 0.11) 21.2 3.60% 18.3 10.15%
[0.11, 0.13) 23.1 3.21% 20.9 7.58%
[0.13, 0.21) 20.0 2.99% 21.3 6.53%

Table 5: WER bucketed by approximate “speed” (as
measured by words vs. alignment lengths) of both the
test-clean and test-other evaluation sets. Each (bucket,
set) pair contains 487 to 917 utterances.

Surprisingly, we find “slower” segments do
worse (though this is partly confounded by low-
word utterances having more silences). One possi-
ble explanation is that correcting a word requires
coordinated change across multiple alignment la-
bels, which is easier when there are fewer align-
ment labels per word. However, such “coordina-
tion” is hard as each position’s edit is conditionally
independent from other edits at any given iteration.

B Training Details

Our setup extends the Mask-CTC recipe (https:
//github.com/espnet/espnet/pull/2223/) in ESPnet
(Watanabe et al., 2018). We release our Align-
Refine recipe and ESPnet code changes at https:

//github.com/amazon-research/align-refine.

Architecture. Following Mask-CTC, the 12-
layer encoder has a convolutional frontend that
downsamples input lengths and features by 4×,
using two layers of 2D convolutions of filter size
3×3 and stride 2 (Dong et al., 2018). The 6-layer
decoder has no causal attention masks. Pre-norm
residual paths are used (Nguyen and Salazar, 2019).

Training. The encoder and decoder could be
trained separately (e.g. a refinement model that
improves a pre-trained CTC model). In practice,

https://github.com/espnet/espnet/blob/ffcf39c27f9aa0cf15c7ae7a06a8a9d35871602e/egs/wsj/asr1/RESULTS.md#cer-4
https://github.com/espnet/espnet/blob/ffcf39c27f9aa0cf15c7ae7a06a8a9d35871602e/egs/wsj/asr1/RESULTS.md#cer-4
https://github.com/espnet/espnet/blob/ffcf39c27f9aa0cf15c7ae7a06a8a9d35871602e/egs/wsj/asr1/RESULTS.md#cer-4
https://github.com/espnet/espnet/pull/2223/
https://github.com/espnet/espnet/pull/2223/
https://github.com/amazon-research/align-refine
https://github.com/amazon-research/align-refine
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we found that joint training was essential for the de-
coder to learn non-identity behavior (as it is trained
on the initial encoder hypothesis and its own itera-
tions, with no further noising). We apply dropout
with p = 0.1 on WSJ and p = 0.2 on LibriSpeech.
The initial CTC is weighted with λ = 0.3; remain-
ing weights are spread over the K iterations, with
w1 three times larger than the rest. For WSJ, we
used a batch size of 32 sequences. For LibriSpeech,
we used a batch size of 25000 tokens. Gradients
are accumulated in both cases. LibriSpeech mod-
els are trained over four V100 GPUs (p3.8xlarge
instances on AWS). We trained to convergence on
WSJ, and for 125K steps on LibriSpeech. Follow-
ing Mask-CTC, we use label smoothing of 0.1 and
the standard Transformer inverse square-root learn-
ing rate schedule with a linear warmup of 25000
steps. We double their transformer-lr factor to
10.0.

Decoding. At decode time, we average model
weights over 30 training checkpoints. All RTFs
are measured on a single CPU thread (--nj 1,
ngpu=0). We take real-time duration (time) and
divide by the total utterance duration in ESPnet’s
utt2dur file on eval92 for WSJ and test-other
for LibriSpeech.

Tuning. Hyperparameters were set by manual
tuning, with hyperparameters chosen based on per-
formance on the validation set.

C Dataset Details

We validate our method on two standard bench-
marks in speech recognition:

WSJ (Paul and Baker, 1992) is a dataset of
spoken English text derived from articles in
the Wall Street Journal from 1987-1989. The
training set, SI-284, consists of 81 hours of
data; we validated on the dev93 split (1.1
h) and evaluated on the eval92 split (0.7 h).
The dataset is downloadable at the following
links: https://catalog.ldc.upenn.edu/LDC93S6A and
https://catalog.ldc.upenn.edu/LDC94S13A.

LibriSpeech (Panayotov et al., 2015) is a dataset of
spoken English text derived from audiobooks from
the LibriVox project. The training set consists of
1000 hours of data. The validation and test sets are
split by speaker into clean and other splits based
on the performance of an acoustic model trained on

WSJ. We validated on dev-clean (5.4 h) and eval-
uated on the test-clean (5.4 h) and test-other
(5.1 h) splits. The dataset is downloadable at the
following link: http://www.openslr.org/12/.

https://catalog.ldc.upenn.edu/LDC93S6A
https://catalog.ldc.upenn.edu/LDC94S13A
http://www.openslr.org/12/

