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Abstract

Fine-grained opinion mining (OM) has
achieved increasing attraction in the natural
language processing (NLP) community, which
aims to find the opinion structures of “Who
expressed what opinions towards what” in one
sentence. In this work, motivated by its span-
based representations of opinion expressions
and roles, we propose a unified span-based
approach for the end-to-end OM setting. Fur-
thermore, inspired by the unified span-based
formalism of OM and constituent parsing,
we explore two different methods (multi-task
learning and graph convolutional neural
network) to integrate syntactic constituents
into the proposed model to help OM. We
conduct experiments on the commonly used
MPQA 2.0 dataset. The experimental results
show that our proposed unified span-based
approach achieves significant improvements
over previous works in the exact F1 score
and reduces the number of wrongly-predicted
opinion expressions and roles, showing the
effectiveness of our method. In addition,
incorporating the syntactic constituents
achieves promising improvements over the
strong baseline enhanced by contextualized
word representations.

1 Introduction

Opinion mining (OM), which aims to find the opin-
ion structures of “Who expressed what opinions
towards what.” in one sentence, has achieved much
attention in recent years (Katiyar and Cardie, 2016;
Marasović and Frank, 2018; Zhang et al., 2019b,
2020). The opinion analysis has many NLP appli-
cations, such as social media monitoring (Bollen
et al., 2011) and e-commerce applications (Cui
et al., 2017). The commonly used benchmark
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John is happy because he loves being Enderly Park .

Holder Target

Holder Target

Figure 1: An example of OM, where the blue, yellow,
and green blocks denote the opinion expressions, hold-
ers, and targets, respectively.

MPQA (Wiebe et al., 2005) uses span-based anno-
tations to represent opinion expressions and roles.
Figure 1 gives an example of its opinion structures
with two opinion expressions and related roles.

Previous OM works (Yang and Cardie, 2013;
Katiyar and Cardie, 2016; Quan et al., 2019; Zhang
et al., 2020) mainly treat it as a BMESO-style tag-
ging problem, which converts opinion expressions
and opinion roles (holder/target) into BMESO-
based labels and uses a linking module to connect
the predicted expressions and roles. The B, M, and
E represent the beginning, middle, and ending word
of a role, S denotes a single-word role, and O de-
notes other words. However, this kind of method is
not perfect for the end-to-end OM setting, because
one word can only belong to one opinion role (one
word has only one label), while there exist overlap-
ping opinion structures between different expres-
sions in one sentence. Figure 1 gives an example,
in which some overlapped opinion relations have
been discarded by previous works (Katiyar and
Cardie, 2016), such as [happy, he loves being En-
derly Park, Target] and [loves, he, Holder]. There
are also other works which focus only on predicting
opinions roles based on the gold-standard expres-
sions, which also follow the BMESO-based method
(Marasović and Frank, 2018; Zhang et al., 2020).
However, they also suffer from some weaknesses:
1) the expressions are usually fed into the model in-
put as indicator embeddings (1 if the current word
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belongs to an expression, 0 otherwise), thus one
sample is expanded n times if one sentence has n
expressions, which is inefficient (Marasović and
Frank, 2018; Zhang et al., 2020). 2) The BMESO-
based method is weak to capture long-range depen-
dencies and prefers to predict shorter opinion role
spans (Zhang et al., 2020).

Motivated by the span-based representations of
opinion expressions and roles, we propose a unified
span-based opinion mining model (SPANOM) that
can solve or alleviate the aforementioned weak-
nesses. First, we treat the identification of opinion
expressions and roles as two unified binary span
classification problems, i.e., judging whether the
word span is an expression (or role) or not. Then,
we allocate the opinion relations on the predicted
expression-role pairs. This strategy converts the
overlapped opinion role identification of different
expressions into classifying different expression-
role pairs. For example, predicting [happy, he loves
being Enderly Park, Target] and [loves, he, Holder]
is infeasible in BMESO-based method, while it is
feasible in our span-based method. Benefit from
the model architecture, the proposed model only
needs to train once for one sample in one epoch,
which is very efficient for training. Besides, the
unified model can be easily adapted to the given-
expression setting by using gold-standard expres-
sions. Furthermore, inspired by the same span-
based formalism between the syntactic constituents
and opinion roles, we explore two types of meth-
ods to encode the syntactic knowledge to improve
the role spans recognition for two motivations, i.e.,
multi-task learning (MTL) for enhancing the model
representative ability and graph convolutional net-
works (GCN) (Kipf and Welling, 2016; Guo et al.,
2019) for encoding the constituent structures.

We conduct extensive experiments on the com-
monly used MPQA2.0 dataset and demonstrate
that our proposed unified model achieves superior
performance compared with previously proposed
BMESO-based works. Our contributions are: (i)
we propose a unified span-based model for opinion
mining in the end-to-end fashion that also supports
the given-expression setting, (ii) we successfully
integrate syntactic constituents knowledge into our
model with MTL and GCN, achieving promising
improvements, (iii) detailed analyses demonstrate
the effectiveness of our unified model and the use-
fulness of integrating constituent syntactic knowl-
edge on the long-distance opinion roles.

2 Related Work

There are several task settings for opinion mining
in the community: 1) Breck et al. (2007); Yang and
Cardie (2014) focus on labeling the expressions. 2)
Katiyar and Cardie (2016); Zhang et al. (2019b);
Quan et al. (2019) discover the opinion structures
in the end-to-end setting, i.e, based on the system-
atic expressions. 3) Marasović and Frank (2018);
Zhang et al. (2019a, 2020) identify the opinion
roles based on the given expressions. Our work
follows the end-to-end setting and also supports
the given-expression setting.

Most of the previous opinion mining works treat
it as a BMESO-tagging problem, which can be
handled by the typical sequence labeling model,
such as bi-directional long-short term memory net-
work conditional random field (BiLSTM-CRF).
Yang and Cardie (2013) propose to use traditional
feature-based CRF model to predict the BMESO-
based opinion role labels. Katiyar and Cardie
(2016) propose a BiLSTM-CRF model to first pre-
dict the word-wise opinion role label and then de-
termine the relationship with the expression by the
role label and distance to the expressions. Zhang
et al. (2019b) propose a transition-based model
for opinion mining, which identifies opinion ex-
pressions and roles by the human-designed tran-
sition actions. Quan et al. (2019) integrate BERT
representations into a BiLSTM-CRF model, but
they do not distinguish different expressions in one
sentence. As aforementioned, it is trivial for the
sequence labeling style models to handle the over-
lapped opinion roles belonging to different expres-
sions in one sentence.

Due to the issue of data scarcity, several kinds
of external knowledge have been investigated to
improve OM performance. Marasović and Frank
(2018) propose several MTL frameworks with se-
mantic role labeling (SRL) to utilize semantic
knowledge. Zhang et al. (2019a) extract the seman-
tic representations from a pre-trained SRL model
and feed them into the opinion mining model,
achieving substantial improvements. Zhang et al.
(2020) incorporate the powerful contextual repre-
sentations of bi-directional encoder representations
from Transformers (BERT) (Devlin et al., 2019)
and external dependency syntactic knowledge.

To solve or alleviate the weaknesses of the pre-
viously proposed BMESO-based models, we pro-
pose a new method to unifiedly model the opin-
ion expressions and roles, which treats the expres-



1797

sion identification, role identification, and opinion
relation classification as an MTL problem. Be-
sides, to boost the opinion mining performance
and motivated by the span-based task formalism,
we explore to incorporate syntactic constituents
into our model. Utilizing span-based representa-
tions have been investigated for many other NLP
tasks, such as named entity recognition (NER)
(Tan et al., 2020), constituency parsing (Kitaev
and Klein, 2018), and semantic role labeling (SRL)
(He et al., 2018). Generally, NER is a single span
classification problem, constituency parsing is a
span-based structure prediction problem, and SRL
is a word-span classification problem. Different
from them, in our methodology, OM is a span-span
classification problem.

3 The SPANOM Model

3.1 Task Definition.

Given an input sentence s = w1, w2, ..., wn, our
model aims to predict the gold-standard opin-
ion structures Y ⊆ E × O × R, where E =
{wi, ..., wj |1 ≤ i ≤ j ≤ n} is the set of
expressions, O = {wi, ..., wj |1 ≤ i ≤ j ≤ n}
is the set of opinion roles , andR is the set of opin-
ion relations (holder and target) with a dummy
relation ψ that represents no relation.

Accordingly, we treat the opinion expression and
role recognition as the unified span classification
problem and determine the opinion relation based
on the predicted expressions and roles. We jointly
model the three sub-tasks in an MTL fashion to
enhance the modules’ interplay. The left part of
Figure 2 shows the model architecture of our model
and we will detailedly describe the components in
the following sections.

3.2 Input Layer.

For each word wi in sentence s, we employ word
embedding, char representation, and contextual
word representation to compose the model input,
denoted as:

xi = embwordwi
⊕ repcharwi

⊕ repcontextwi|s , (1)

where ⊕ means the concatenate operation. We use
the convolutional neural networks (CNN) (Kalch-
brenner et al., 2014) to generate the character rep-
resentations over the characters of words.

3.3 Encoder Layer.

Over the input layer, we employ BiLSTM to encode
the model input. We treat the concatenation of the
outputs of the left-to-right LSTM and right-to-left
LSTM as the output:

−→
h i =

−−−−→
LSTM(xi,hi−1),

←−
h i =

←−−−−
LSTM(xi,hi+1),

hi =
−→
h i ⊕

←−
h i.

(2)

3.4 Span Representation and Identification
Layer.

To better distinguish opinion expression and role
representations, we first employ two multi-layer
perceptions (MLP) to re-encode the output of BiL-
STM encoder, denoted as:

hexpi =MLP exp(hi),h
rol
i =MLP rol(hi).

(3)
For a word span that begins at b-th word and ends
at e-th word, we define it as spanb,e. So the rep-
resentations of expression and role are defined as:

spanexpb,e = (hexpb + hexpe )⊕ (hexpb − hexpe ),

spanrolb,e = (hrolb + hrole )⊕ (hrolb − hrole ).

(4)

Given the representations of expressions and
roles, we employ another two MLPs to classify
whether the span is the gold expression/role or not.
Furthermore, we also incorporate the span bound-
ary information to help the determination of spans.
Specifically, we employ another four MLPs on the
span boundary positions to determine whether the
word is a boundary position or not1. Thus, the
score formulation of the span is as:

sexp =MLP exp(spanexpb,e )

+MLP exp
b (hb) +MLP exp

e (he),

srol =MLP rol(spanrolb,e )

+MLP rol
b (hb) +MLP rol

e (he).

(5)

We can observe that for a sentence with n words,
the numbers of candidate spans for expressions
and roles are both n∗(n+1)

2 , while the number of
gold expressions and roles are much fewer. To
alleviate the unbalanced number of gold samples

1We omit the process of span boundary module in Figure 2 for clarity.
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Figure 2: The model architecture of our unified span-based opinion mining model (left) and syntactic constituent
integration methods (right).

and negative samples, we adapt the focal loss that
is widely used in computer vision (Lin et al., 2017)
into our model. Formally, for every span i in a
sentence, the sentence focal loss is defined as:

Loss = −
∑
i

∑
c

(1− pi,c)γyi,clog(pi,c), (6)

where pi,c is the softmax value of the sexpc (or
sopic ) for class c of span i, γ is a pre-defined hyper-
parameter and yi,c is an indicator value that equals
to 1 if c is the ground-truth class 0 otherwise. Com-
pared with the typical cross-entropy loss, the differ-
ence appears in the first item, which can intuitively
make the model focus more on the hard-to-classify
samples. We denote the loss of the opinion expres-
sions and roles as Lexp and Lrol, respectively.

3.5 Relation Classification Layer.
Given the predicted opinion expressions and roles,
the next step is to determine the opinion relation
(holder, target, or no relation) for each expression-
role pair. We employ another MLP classifier to
compute the score for each relation of the focused
expression spanexp and role spanrol:

srel =MLP (spanexp ⊕ spanrol). (7)

Focal loss is also employed to estimate this module,
which is denoted as Lrel.

3.6 Training and Inference.
We sum the three losses from the three modules as
the final model loss:

LOM = Lexp + Lrol + Lrel. (8)

For the end-to-end OM setting, the model predicts
the relation of the predicted expressions and roles.
As for the given-expression mode, we directly feed
the gold expressions into the model, with other

parts the same as the end-to-end mode. During the
inference process, we employ dynamic program-
ming to predict opinion expressions and roles.

4 Syntactic Constituents

Since the data scale is relatively small, previous
works usually try to integrate external knowledge
to enhance the basic OM model and improve its
performance (Marasović and Frank, 2018; Zhang
et al., 2019a). Previous sequence tagging models
usually incorporate word-wise external informa-
tion, such as dependency parsing (Zhang et al.,
2020). We try to investigate the integration of con-
stituent knowledge, which is motivated by their
unified span-based formalism. Two different meth-
ods are explored in our work, i.e., MTL and GCN.

4.1 The MTL Method.

MTL is an effective method to utilize external
knowledge, which is usually by sharing the model
parameters of the main task and auxiliary task
(Ruder, 2017). Considering the efficiency of full
constituent parsing, we use partial constituent pars-
ing in our model, i.e., training partial constituent
trees (constituent spans), not the entire constituent
tree. In detail, we first extract all the constituent
spans2 from the OntoNotes corpus. See 5.1 for the
detailed settings. Then, we add a span classification
module over the BiLSTM encoder, which is simi-
lar to the unified opinion classifier, to predict the
span belonging to which kind of constituent labels.
Third, with the addition of the constituent span
classification module, we can easily allocate auto-
matic constituent labels to enhance the predicted
opinion expressions and roles. Thus, we create ran-
domly initialized constituent label embeddings for
representing the syntactic labels, which are then

2We remove constituent spans with label “Top” and “S”.
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concatenated with the expression and role represen-
tations:

spanexp
′

b,e = spanexpb,e ⊕ emblabelexp ,

spanrol
′

b,e = spanexpb,e ⊕ emblabelrol .
(9)

The syntax-enhanced span representations are then
passed to participate in the later computation pro-
cess. Finally, the focal loss is used to estimate the
partial constituent tree prediction module and the
partial constituent loss (Lcons) is used to update
the shared input layer, encoder layer, and the partial
constituent parsing classification layer. So the loss
of our constituents-enhanced OM model becomes:

L = LOM + αLcons. (10)

It is worth noting that the data size of OM and con-
stituent trees is different, so we employ a corpus-
weighting parameter α to balance it. In general, the
MTL method brings two benefits: 1) enhancing the
model encoder and 2) adding constituency label
information to expressions and roles.

4.2 The GCN Method.
The MTL method enhances our OM model from
the aspect of model representative ability by jointly
modeling opinion mining and partial constituency
parsing. We argue that modeling the syntactic con-
stituent structure is also beneficial for OM because
it provides valuable syntactic information for a sen-
tence. Therefore, we try to employ the recently
popular GCN (Kipf and Welling, 2016) to encode
the constituent structure. However, the conven-
tional GCN is not suitable for constituency trees,
because it usually works on the dependency trees
(Zhang et al., 2018, 2020) where the nodes are the
surface words in a sentence. While, in constituent
trees, there exists a certain number of non-terminal
nodes3, such as “NP”, “VP”, “SBAR” and so on.
So it is hard to directly apply conventional GCN
on the constituent trees. In the following, we first
introduce the definition and workflow of typical
GCN and then describe our modification.

Formally, we denote an undirected graph as G =
(V, E), where V and E are the set of nodes and
edges, respectively. The GCN computation flow of
node v ∈ V at l-th layer is defined as:

hlv = ρ

( ∑
u∈N (v)

Wlhl−1u + bl

)
, (11)

3Terminal nodes are the surface words in the sentence.

where Wl ∈ Rm×m is the weight matrix, bl ∈ Rm

is the bias term, N (v) is the set of all one-hop
neighbour nodes of v, and ρ is an activation func-
tion (relu activation function in our work). Espe-
cially, h0

u ∈ Rm is the initial input representation,
and m is the representation dimension.

Since there are some non-terminal nodes in the
constituent tree, the GCN input can not directly
get from the surface words. We create a randomly
initialized non-terminal embedding matrix EN×D

and a dynamic mask for composing the GCN input
and extracting the GCN output, where N is the
number of non-terminal nodes and D is the dimen-
sion of the terminal node inputs. There are two
main ways to add the GCN modules in the neural
network models, i.e., concatenating with the input
layer and stacking over the encoder layer. Accord-
ing to our preliminary experiments, we choose the
former method. In detail, we treat the composition
of non-terminal node representations and terminal
node representations as the GCN input, and then
concatenate the terminal node GCN outputs xGCNi

with the basic model input as the final model input.
The top right part of Figure 2 shows the overall
workflow.

The final constituent-enhanced unified span-
based opinion mining model combines the two
methods, which we denoted as “MTL+GCN” in
the later sections. The workflow is shown by the
right bottom part of Figure 2.

5 Experiments

5.1 Settings.

We conduct experiments on the commonly used En-
glish MPQA2.0 dataset (Wiebe et al., 2005). Fol-
lowing the data split of previous works (Zhang
et al., 2019a, 2020), the development data contains
132 documents and the test data contains 350 doc-
uments, using five-fold cross-validation to evalu-
ate the test data. For constituent data, we use the
OntoNotes 5.0 dataset (Pradhan et al., 2013) in our
MTL method. We use the constituent parser of
Kitaev and Klein (2018)4 to obtain the automatic
constituent trees. BERT (Devlin et al., 2019) is em-
ployed as the external contextual representations.
We implement our model with Pytorch5 and the
basic model has 20.46M parameters6.

4The parser achieves 93.55 F1 score on the PTB development data.
5https://pytorch.org/
6We release the code, configurations, and models at https://github.

com/KiroSummer/opinion_mining_with_syn_cons.

https://github.com/KiroSummer/opinion_mining_with_syn_cons
https://github.com/KiroSummer/opinion_mining_with_syn_cons
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Models
Exact F1 Binary F1 Proportional F1

Holder Target Overall Holder Target Overall Holder Target Overall
Katiyar and Cardie (2016) - - - 58.22 54.98 - - - -
Zhang et al. (2019b) 47.02 31.45 - 60.93 56.44 - - - -
Quan et al. (2019)+BERT - - - 55.52 50.39 - 46.62 34.29 -
SPANOM 52.90 32.42 43.12 56.47 45.09 51.04 55.62 41.65 48.90
SPANOM+BERT 58.24 41.10 49.89 62.04 53.27 57.76 61.20 49.88 55.68

Table 1: Experimental results of our span-based opinion mining model and comparison with previous works on
the MPQA2.0 dataset in the end-to-end setting. “-” means results are not reported in their paper.

Models
Exact

P R F1
Zhang et al. (2019b) 60.21 48.52 53.04
SPANOM 64.85 52.60 58.06
SPANOM+BERT 67.15 60.63 63.71

Table 2: Results and comparison of the expression pre-
diction on the exact metric in the end-to-end setting.

5.2 Hyper-parameters.
We employ the 300-dimension GloVe vector (Pen-
nington et al., 2014) as our pre-trained word em-
beddings. The character embeddings are randomly
initialized and a CNN with kernel sizes of 3, 4,
5 is used to capture the character representations.
For the contextual representations, we extract the
representations from the base BERT by making a
weighted summation over the last four layer out-
puts. The hidden size of the BiLSTM layer is set to
300 and we employ 2-layer BiLSTMs to encode the
input representations. The dimension of opinion
expression and role representations is 300 and the
hidden size of expression, role, and relation classi-
fiers is 150. We use 3-layer GCNs with hidden size
300. The dropout rate of the input layer, encoder
layer, and other components are 0.5, 0.4, and 0.3,
respectively. The hyper-parameter γ is 3.0.

5.3 Training Criterion.
We employ Adam optimizer with an L2 weight
decay of 1e-6 to optimize our model. The batch
size is 32. The initial learning rate is set to 0.001
and decays 0.99 for every 50 steps. Our model
trains for at most 320k steps and early stops if
no performance gains happen in 100 epochs on the
development data. We pick the model that performs
best on the development data for evaluation. It
costs about 4 minutes to run one epoch training and
1 minute for evaluation.

5.4 Evaluation Metrics.

Following previous works (Marasović and Frank,
2018; Zhang et al., 2020), we use the Precision,
Recall, and F1 score to measure the experimen-
tal results regarding to Exact match setting, and
two other auxiliary metrics of Binary and Propor-
tional match. The average value of the five-fold
cross-validation results is reported in our work.
The binary and proportional metrics are also called
overlap metric, which includes the opinion roles
that exactly match the gold opinions and inexactly
match but overlap with gold roles. In detail, the
binary match means an opinion overlaps with a
gold-standard opinion and the proportional match
computes the maximum ratio value of an role with
the overlapped gold role.

5.5 Results of SPANOM.

Results in the end-to-end setting. Table 1 lists
the results of previous works and our model
(SPANOM) in the end-to-end setting. First, our
model achieves superior performance than previ-
ous works in terms of exact F1 score, reaching
better results of 52.90 and 32.42 exact F1 scores
on the holder and target roles. The overall exact
F1 score of the two roles is 43.12. Second, integrat-
ing BERT representations into the model input can
bring substantial improvements, achieving 49.89
exact F1 score. We can see that in the auxiliary
metrics of binary and proportional, previous works
perform better than ours, which we think because
our model more focuses on the entire word spans
and we will detailedly discuss it in the analysis sec-
tion. Finally, the results of expression prediction
are shown in Table 2. We can see that our model
outperforms Zhang et al. (2019b) by +5.02 exact
F1 score.

Results in the given-expression setting. Table
3 shows the experimental results and comparison
with previous works in the given-expression set-
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Models
Exact F1 Binary F1 Proportional F1

Holder Target Overall Holder Target Overall Holder Target Overall
Zhang et al. (2019a) 73.07 42.70 58.30 81.57 68.34 75.15 79.35 61.22 70.55
Zhang et al. (2020) 73.05 44.21 58.79 81.21 69.50 75.43 79.33 62.53 71.03
Zhang et al. (2020)+BERT 76.74 52.61 64.73 85.45 75.74 80.62 83.58 69.31 76.48
SPANOM 72.40 45.83 59.62 78.10 64.51 71.56 76.74 58.74 68.08
SPANOM+BERT 76.47 54.95 65.95 82.69 72.93 77.93 81.53 67.42 74.64

Table 3: Experimental results of our span-based opinion mining model and comparison with previous works on
the MPQA2.0 dataset in the given-expression setting.

Models Exact F1
Holder Target Overall

end-to-end setting
SPANOM+BERT 58.24 41.10 49.89
SPANOM+BERT+SYNCONS 58.46 41.82 50.46
given-expression setting
Marasović and Frank (2018)+SRL 75.58 46.40 61.51
Zhang et al. (2019a)+SRL 76.95 50.50 63.74
Zhang et al. (2020)+BERT 76.74 52.61 64.73
Zhang et al. (2020)+BERT+SYNDEP 79.51 56.61 68.08
SPANOM+BERT 76.47 54.95 65.95
SPANOM+BERT+SYNCONS 78.34 56.96 68.02

Table 4: Experimental results of our model with exter-
nal syntactic knowledge and comparison with previous
works. “SYNCONS” means “MTL+GCN”.

ting. First, we can see that our proposed span-based
model outperforms previously proposed BMESO-
based models in the exact F1 score metric, achiev-
ing 59.62 exact F1 score. Second, when using con-
textual word representations of BERT, our model
consistently outperforms the previous best result,
resulting in a new state-of-the-art result of 65.95
exact F1 score, showing superior performance com-
pared with the BMESO-based methods.

5.6 Results of Integrating Syntactic
Constituents.

Table 4 shows the results of our model integrating
syntactic constituents and compare with previous
works with SRL or dependency syntax knowledge.
In the end-to-end setting, incorporating constituent
knowledge brings an improvement of +0.57 ex-
act F1 score. In the given-expression setting, we
can see that integrating constituent syntactic knowl-
edge into our model brings a +2.07 exact F1 score
improvement, achieving comparable results with
previous best results of Zhang et al. (2020). Even
though our basic OM model outperforms Zhang
et al. (2020), the improvements from syntactic con-
stituents lag behind the dependency syntax. We
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Figure 3: Percentage comparison of the “matched”,
“overlapped”, and “error” predicted opinion roles of the
outputs from the SPANOM model and BMESO-based
model on the entire test data.

think this is partly because of the relatively low per-
formance of constituent parsing (93.55 F1 score)
compared with dependency parsing (95.7 F1 score).
Apart from syntactic knowledge, Marasović and
Frank (2018); Zhang et al. (2019a) both try to en-
code semantic knowledge, but their models don’t
use BERT representations.

6 Analysis

In this section, we conduct detailed analyses to gain
more insights into our unified OM model and the
effectiveness of integrating syntactic constituents.

6.1 Span-based Model vs. BMESO-based
Model

As the experimental results shown, our span-based
model performs better in the exact matching metric
than the BMESO-based models, while the BMESO-
based models have better results in the auxiliary
overlap metric. To understand the performance dif-
ference, we list the detailed percentage of opinion
statistics of the system outputs of our span-based
model and the BMESO-based model of Zhang et al.
(2019a) in Figure 3, both using the BERT represen-
tations. The “Matched”, “Overlapped” and “Error”
mean the predicted opinion role matches the gold
role, not matches but overlaps part of the gold role
and totally mismatches the gold role, respectively.
We can see that: 1) our model achieves better per-
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Tendai Biti , the MDC ’s foreign affairs spokesman , said Mugable was trying ...

Tendai Biti , the MDC ’s foreign affairs spokesman , said Mugable was trying ...

Gold/SPANOM+BERT

AGENT

Zhang et al. (2019)+BERT

AGENT

..., the Buddha said on his deathbed : “ All composite things arise and decline .

..., the Buddha said on his deathbed : “ All composite things arise and decline .

Gold/SPANOM+BERT+SYNCONS

AGENT TARGET

SPANOM+BERT

AGENT

Figure 4: Examples of case study, where the upper example shows the comparison of our span-based model with
the previous BMESO-based model of Zhang et al. (2019a) and the bottom example shows the comparison of our
BERT-based model with/without syntactic constituents.

formance on the exact match setting through all the
span length scenarios, especially on the spans that
contain more than 10 words, 2) the BMESO-based
model outputs more overlapped opinion roles than
our span-based model, thus the BMESO models
have better results in the auxiliary metric of binary
and proportional settings. This demonstrates that
our SPANOM more focuses on the full opinion role
spans while the BMESO-based method may weak
to give high exact predictions.

Case study. The upper part of Figure 4 shows
an example of the output of our span-based model
and previous BMESO-based model of Zhang et al.
(2019a). We can find that the span-based model suc-
cessfully predicts the full agent while the BMESO-
based model only predicts part of the agent span.
This confirms the intuition that our span-based
model is more good at predicting the long-range
arguments, while the BMESO-based model is weak
at long-range spans, which is consistent with the
findings of Zhang et al. (2020).

6.2 Effect of Syntactic Constituents
Which source of constituent knowledge is bet-
ter? There are two main constituent syntax corpus
in the community, i.e., Penn Treebank (PTB) (Mar-
cus et al., 1993) and OntoNotes5.0 (Weischedel
et al., 2013). The PTB corpus contains about 39k
training data and mainly focuses on news data,
while the OntoNotes5.0 corpus contains about 75k
training data and focuses on multi-domain data
(news, web, telephone conversation, and etc.).

It is a worthy question to explore which is bet-
ter for our span-based OM model, or what kind
of combination is better. We compare them with
various combinations on the BERT-based model,
whose results are shown in Table 5. First, the sec-
ond major row shows the results of our model with

Models Dev (F1)
Exact Binary Prop

SPANOM+BERT 66.64 77.27 74.41

+MTL
OntoNotes 67.72 78.30 75.74
PTB 68.02 77.68 75.61
OntoNotes+PTB 67.24 77.70 75.61

+GCN
OntoNotes 66.77 76.73 74.30
PTB 67.66 77.48 75.24
OntoNotes+PTB 67.65 78.08 75.76

+MTL&GCN PTB&OntoNotes 67.21 77.96 75.23
OntoNotes&PTB 68.55 77.61 75.62

Table 5: The performance of different kinds of
constituents knowledge on the first folder data of
MPQA2.0 in the given-expression setting. “Prop”
means proportional. “A+B” means combining the two
corpus and “A&B” means using corpus A for the MTL
method and automatic trees from ParserB for the
GCN method.

the MTL method, where MTL with PTB achieves
the best exact F1 score of 68.02. Second, the re-
sults of our model with the GCN method are listed
in the third major row, where “OntoNotes” and
“PTB” means the automatic constituent trees are
generated by parser trained on OntoNotes7 and
PTB, respectively. We can see that using the auto-
matic constituent trees from ParserPTB achieves
the best exact F1 score of 67.66. Finally, we try
to combine the two kinds of methods and the re-
sults are shown in the last major row. It is clear
that combining the MTL method with OntoNotes
and the GCN method with ParserPTB achieves
better results than the reversed one. Therefore, our
constituent-enhanced opinion mining model fol-
lows this combination. Besides, we can also see
the relative lower results of “OntoNotes+PTB” in
“+MTL” and “+GCN” settings, which is strange

7We use the code of Kitaev and Klein (2018) to train the OntoNotes con-
stituent parser, which achieves 92.20 F1 score on the development data.
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Figure 5: Exact F1 score of our model with/without
syntactic knowledge regarding to different role length
and the distance from expression to roles.

that combining more information leads to lower
performance. We think this is mainly caused by
the different domains of the data in OntoNotes. As
is well known, learning uniform knowledge from
different domains data is a challenging problem.
So, in the MTL method, adding OntoNotes into
PTB can enhance such domain problems, and vice
versa. In the GCN method, the two GCN outputs
are concatenated, so the potential conflicts of dif-
ferent arcs are alleviated. Thus, the performance
didn’t drop too much.

We also try to utilize dependency syntax. How-
ever, it brings less improvement compared with
constituent syntax, which is understandable that
word-based information is not very appropriate for
the span-based model. It is also consistent with our
intuition that span-based syntactic constituents are
more suitable for the span-based model.

Why and where do syntactic constituents
help? OM aims to discover the structure of “Who
expressed what” in a sentence and constituent
syntax provides valid information like the “NP”
and “VP” phrases in a sentence. Intuitively, the
“agent/target and expression” may be covered by
“NP and VP” phrases. We make statistics on the
overlapping of constituent spans and opinions. We
find that about 88% opinion roles can be covered by
the predicted constituent spans from the MTL mod-
ule, where the most four are “NP”, “VP”, “SBAR”
and “PP”. Since the constituent knowledge can in-
tuitively help the determination of roles, we list the
result of the different span lengths in Figure 5a. We
can find that constituent knowledge helps most on
those opinion roles with longer length. We also re-
port the results regarding the distance between the
expressions and roles in Figure 5b, which shows a
similar conclusion.

Case study. The bottom part of Figure 4 gives
a case study that shows the difference between

syntax-enhanced and syntax-agnostic models. We
can see that the target argument “All composite
things” is hard to be identified by our baseline
model. When integrating constituent knowledge,
the model correctly discovers this opinion role and
give the “target” relation. We think it is because
the constituent tree gives a “NP” label to the word
span, which helps our model to identify it. We
also observe that there are some peculiarities of the
MPQAs annotation scheme. For example, in the
sentence “The criteria set by Rice are the follow-
ing: the three countries in question are repressive
...”, “set by” is the expression, “Rice” is the holder,
and “the three countries in question” is the target.
However, “set by” is not a constituent phrase at all.
In fact, “by” and “Rice” compose a prepositional
phrase in the constituent tree. So, it is hard for our
model to recognize “set by” as an opinion expres-
sion. Besides, “the three countries in question” is
also not a dependent of the opinion expression “set
by”, in which the constituent tree can not provide
valuable structural information for the two phrases.
Such phenomena is hard to handle by our model
and raise challenges to the future work.

7 Conclusion

In this paper, we propose a unified span-based
opinion mining model that can handle the over-
lapped opinion roles, providing a new methodol-
ogy. Our proposed model outperforms previously
proposed BMESO-based models in terms of exact
match metric on both the end-to-end and given-
expression settings. Furthermore, integrating syn-
tactic constituents knowledge with MTL and GCN
brings substantial improvements over our BERT-
enhanced baseline model. Detailed analyses show
the difference between the span-based model and
the BMESO-based model and the effectiveness of
incorporating syntactic constituents on the determi-
nation of opinion role spans.
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