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Abstract

Word representations empowered with addi-
tional linguistic information have been widely
studied and proved to outperform traditional
embeddings. Current methods mainly focus
on learning embeddings for words while em-
beddings of linguistic information (referred to
as grain embeddings) are discarded after the
learning. This work proposes a framework
field embedding to jointly learn both word
and grain embeddings by incorporating mor-
phological, phonetic, and syntactical linguis-
tic fields. The framework leverages an inno-
vative fine-grained pipeline which integrates
multiple linguistic fields and produces high-
quality grain sequences for learning supreme
word representations. A novel algorithm is
also designed to learn embeddings for words
and grains by capturing information that is
contained within each field and that is shared
across them. Experimental results of lexical
tasks and downstream natural language pro-
cessing tasks illustrate that our framework can
learn better word embeddings and grain embed-
dings. Qualitative evaluations show grain em-
beddings effectively capture the semantic in-
formation.

1 Introduction

Distributed word representation, also named as
word embedding, represents each word as a vector
in a continuous vector space. Due to its strong abil-
ity of encoding semantic information, word em-
bedding is useful in many downstream NLP tasks,
such as text classification (Wieting et al., 2016;
Yin et al., 2016), named entity recognition (NER)
(Collobert et al., 2011; Sun et al., 2015), etc. Clas-
sic approaches mainly treated words as atomic to-
kens, such as WordVec (Mikolov et al., 2013b,a)
and GloVe (Pennington et al., 2014). Recently,
many researchers introduced subword information
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to learn advanced word embeddings for different
languages, including English (Bojanowski et al.,
2017) and Chinese (Yu et al., 2017; Cao et al.,
2018). In this paper, we refer to subword types
as linguistic fields and symbols representing sub-
words as grains. For example, the field letter grain
sequence of word wisdom is [w, 1, s, d, o, m]. El-
ements in the sequence are /etfer grains which are
from the /etter vocabulary, i.e., the alphabet table.
Fig. 1 shows more examples of linguistic fields
and grains.

However, though huge progress has been
achieved, there are many challenges or limitations
for fully exploiting linguistic fields’ potential on
learning advanced embeddings. The first chal-
lenge is producing semantically meaningful repre-
sentations for input words. Such representations
rely on (a) broad linguistic fields and (b) high-
quality grain sequences. For fields, only morpho-
logical fields were studied, such as /letter in En-
glish (Bojanowski et al., 2017), and component
in Chinese (Yu et al., 2017). However, linguis-
tics studies revealed that phonetic and syntactical
fields contain rich semantic information (Beaver
et al., 2007), whose utility was not fully studied
before. For grain sequences, current methods only
produced coarse grain sequences, whose grains sel-
dom carry information associated with the original
word. For example, grains from [w, i, s, d, 0, m],
the letter grain sequence of word wisdom, are sim-
ple and less meaningful letters.

Second, a customized algorithm is required to
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model both the uniqueness of each field and the
relationship among fields, given the increasingly
available linguistic fields as the new information.
Besides their uniqueness, fields have strong cor-
relations with each other. We can find many
morpheme-syntax pairs, such as -tion:Noun and -
ious:Adj and morpheme-phoneme pairs: sounds
of 15 (mother) and fi (code), which are derived
from the pair & (horse):ma. However, past meth-
ods might fail to capture holistic information car-
ried across fields (Chen et al., 2015b; Cao et al.,
2018). They simply put all fields together and im-
migrated classical word2vec algorithms, which ig-
nored such inter-field information.

Furthermore, the value of grain embeddings on
NLP tasks has not been comprehensively evalu-
ated. Similar to word embeddings, we introduce
grain embeddings which represent each grain with
a semantic vector. Past work focused on word em-
beddings but paid little attention to learning and
evaluating grain embeddings for linguistic fields.
Whether grain embeddings can convey semantics
and benefit NLP tasks is still not systematically
studied.

To solve the above challenges, we propose a
field embedding framework to jointly learn word
and grain embeddings simultaneously. It can flex-
ibly integrate any combination of linguistic fields.
Our contributions are follows:

(1) A fine-grained pipeline (a) takes any combi-
nation of various linguistic fields, including mor-
pheme, phoneme, and syntax, as the input, and
(b) includes n-gram and grain dropping to gener-
ate high-quality grain sequences as semantically
meaningful and complete representations for input
words.

(2) A novel algorithm is proposed with the mo-
tivation of ubiquitous linguistic phenomena. Its
loss function generates two kinds of gradients to
model information contained within each field and
that shared across multiple fields separately. This
brings holistic information to improve the embed-
ding quality.

(3) Extensive experimental results illustrate that
our framework yields supreme word and grain em-
beddings in various NLP tasks. Our framework
learns better word embeddings than previous meth-
ods in both lexical tasks and downstream tasks.
Moreover, our learned grain embeddings outper-
form word embeddings in downstream tasks, such
as text classification and NER. Furthermore, quali-

tative evaluations show that grain embeddings can
effectively capture semantic information.

It is the first toolkit that can measure the effec-
tiveness of various fields and their combinations
in learning word and grain embeddings. Its sim-
plicity and compatibility spare the laborious and
time-consuming developments and evaluations of
new multi-field models. The code and data will be
released on Github.

2 Background and Related Works

Field and Grain A sentence is a list of words.
A field describes one linguistic aspect of words.
For example, in Chinese, component and stroke
are morphological fields which describe the word
shape, pinyin, a phonetic field, describes pronun-
ciations. These are subfields, which are deter-
mined exclusively by the word. In contrast, hy-
perfields refer to the linguistic fields determined
by both the word and its context, such as part-of-
speech (POS), a syntactical field. A simple and
efficient way to represent field information is us-
ing sequences of symbols. Symbols are referred to
as grains and sequences as grain sequences, such
as wisdom’s word root grain sequence is [Wis-, -
dom].

Static Embeddings Static embeddings present
each word (or grain) with a semantic vector inde-
pendent of its contexts. This work focuses on ex-
ploiting linguistic potential for learning static word
and grain embeddings. Past works achieved huge
progress in introducing linguistic fields for ad-
vanced static word embeddings. For English, one
typical linguistic field is letter, which has been ex-
ploited to improve word embeddings (Bojanowski
et al., 2017). For Chinese, subword fields, includ-
ing character, component, and stroke, convey fruit-
ful semantic information (Wieting et al., 2015; Liu
etal., 2017) and have been studied by CWE (Chen
et al., 2015a), JWE (Yu et al., 2017), and cw2vec
(Cao et al., 2018) separately. The above methods
adopted shallow but efficient structures. In con-
trast, many methods introduced deep neural net-
works in learning static embeddings (Kim et al.,
2018; Cao and Lu, 2017). However, they cost
huge computational resources and yielded limited
improvements. To keep the framework straight-
forward and efficient, this work adopts a shallow
structure.

Dynamic Embeddings Dynamic embeddings
are trained as deep language models and represent
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Figure 2: Field embedding cbow structure.

a whole sentence with contextual information. The
dynamic embeddings, such as ELMo (Peters et al.,
2018), and BERT (Devlin et al., 2018), achieved
state-of-the-art performances in many NLP tasks.
This work compares our grain embeddings with
them on downstream tasks. However, we did not
evaluate them with lexical tasks, as they cannot
produce word vector without contexts directly.

3 Model Description

We use C' to denote the training corpus, V the
word vocabulary, and F’ the set of selected linguis-
tic fields. For a field f € F, we generate its n-
gram grain vocabulary V; by scanning the words
in the whole corpus. Gf(w) = [g1,92,---,0n]
is the grain sequence of word w in field f. Data
points fed into embedding models are pairs of a tar-
get word wy and its context word set S(wy), or S
for simplicity. Take the sentence The fox runs after
cats as an example and suppose runs is the target
word. By applying chow, the data points (.S, w;)
will be ([The, fox, after, cats], runs). By applying
skip-gram, there are four (.S, wy)s: ([ctx], runs) for
ctx in [The, fox, after, cats].

The chow structure is shown in Fig. 2. It con-
tains three layers: the input, projection, and pre-
diction layer. For a data point (S, w;), multi-field
inputs of S in the input layer are fed to the pro-
jection layer and become projection vectors: Py to
P r|. Each projection enters the prediction layer
to predict w; and get a prediction loss. The sum-
mation of these losses is the total loss. Model’s
parameters include several grain embedding matri-
ces in the projection layer and a word embedding
matrix in the prediction layer. We represent word
embeddings as Eyy of size |V| x d, where d is the

%, . TR NememL) (R E A e

p(%)

Lookup Grain Ve

en ectors ¢ : ,
" __in Grain Embeddings | %, H, %08 |

Averag A—
Grain Vectors (E ¢

(a) Fine-grain pipeline for the Chinese word.

(b) Fine-grain pipeline for the Englis

Figure 3: Fine-grained pipeline for extracting high-
quality grain sequences and projections.

embedding size. For each field f, its grain embed-
dings Eé is of size |Vy| x d. Word embeddings
Eyy vectorize the target word w; while grain em-
beddings Eé only vectorize grains from context
words in S(wy).

3.1 Fine-Grained Pipeline

In the projection layer, we design a fine-grained
pipeline that consists of n-gram and grain dropping
to produce high-quality grain sequences. Fig. 3
shows its mechanism.

N-Gram Compared to the word vocabulary V,
sizes of V; and Eé are small, which may lead to
the underfitting problem. For each field f, we gen-
erate n-gram grains to enlarge its grain vocabulary
Vr. By increasing the grain vocabulary size, it
enlarges each word’s grain sequence for a higher
capacity of carrying linguistic knowledge. As an
instance, the word %/ (wisdom) contains compo-
nent K (arrow), I1 (mouth), and H (day). These
components are not relevant to the semantics of
A (wisdom). Without n-gram grains, G¢(w) is
a short sequence which hardly catches enough in-
formation, whereas n-gram grains introduce more
relevant grains which carry rich semantic informa-
tion. For example, after including 2-gram grains,
we have 2|1 and 1 H. The new grain % [ can
be regarded as %1 (knowledge), whose semantics
is similar to % (wisdom).

Grain Dropping While n-gram introduces
meaningful grains, it generates many low-
frequency and meaningless grains. For example,
M H in % carries almost no information and
seldom appears in the corpus. We filter out
such noise by dropping extremely low-frequency
grains. This can improve the quality of training
data, reduce model parameters, and thus accelerate
the training process. Moreover, motivated by
dropout (Srivastava et al., 2014) and subsampling
(Mikolov et al., 2013b), during the training phase,
we randomly drop some high-frequency grains.
At the same time, this accelerates the training
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process.

As shown in Fig. 3, after the pipeline process,
the word %4’s coarse component grain sequence
[, 1, H] is updated to [%<, H, % 1], which
carries semantically meaningful new grains for the
word %. The case of English word wisdom is
also the same. In short, n-gram and grain drop-
ping help generate a better grain sequence G ¢(w),
which will be proved to be crucial to enhance
the quality of embeddings. Afterwards, we can
get projection vectors. For field f, we can repre-
sent a word w by averaging all of its grain vec-
tors to get its word projection vector: pr(w) =

|Gf I deGf(w ( ), where Eé(g) indicates

the vector of g from Eé Then, we calculate the
context projection vector Pf(S )

18] 4 Z !Gf w)]

3.2 Loss Function

> El().

g€G s (w)

In the prediction layer, our proposed customized
algorithm contains a novel loss function which
is motivated by the following linguistic phenom-
ena. First, one field represents a linguistic at-
tribute, such as morpheme describing shape while
phoneme indicating sound. Therefore, each field
contains its corresponding unique linguistic infor-
mation. Moreover, fields have strong connec-
tions with each other. We can easily find many
morpheme-syntax pairs, such as -tion:Noun and -
ious:Adj. The morpheme-phoneme pairs are also
ubiquitous: sounds of fH! (sketch) and #fi (sir) are
from the pair H (apply):shen. To better model the
above phenomena, we design a novel loss function
to learn linguistic information contained within
each field and shared across multiple fields. Next,
we will show the loss function design and how it
learns the information.

After calculating field projections Py (.S) for all
f € F, we obtain the content projection of .S that
defined as: Py(S) = |F| ZfeF P¢(S). The ob-
jective of this problem is to minimize the negative
log-likelihoods of the conditional predictive prob-
ability for a target word w; with its context word
set S(wy):

Lye(wi) = ¢p(we| Po(S

)+ dlw| Pr(S)) (1)

fer

The negative log-likelihood of conditional proba-
bility is defined by the negative logarithm of soft-

max function.
exp(PTEW (wy))
Vv
S exp(PT Ew (w;)

where P represents the corresponding context pro-
jection. In practice, we adopt an optimization
method based on the negative sampling and the
standard gradient descend. Negative sampling is
to replace the expensive denominator in Eq. (2)
with a set of negative sampled words based on a
frequency distribution.

¢(we|P) = —log ()

¢(wi|P) = —[log o (PT Ey (wy))+

3)
AE,,,,~p log o(—PT By (wyg)]

where o is a sigmoid function, A is the number
of negative samples, E,,, ~p|-] represents expec-
tation, and the negative sampled word w,,, belongs
to word frequency distribution D. Given a spe-
cific corpus C, the objective likelihood is L(C) =
S wec Le(wn).

Our loss function Ly, in Eq. (1) contains two
terms. For the first term, the gradient of Py, grady,
is back propagated to every grain across whole
fields. This gradient grady can be interpreted as
updated linguistic information sharing by all the
fields. For the second term, the gradient of field
projection Py, grady, only updates the grain vec-
tors within the specific field f. This gradient
grady can be interpreted as the unique linguistic in-
formation of field f. In this case, the gradient that
updates each grain in field f is grad; + ﬁ gradp,
which contains both unique and shared linguistic
information. Existing methods mainly used only
(a) the first term, such as the usage of L9, =
f(w¢|Py) in word2vec, or (b) the second term,
Ljwe = >_ e f(wi|Pr) in IWE. These methods
chose either shared or field-specific information,
which might be not complete enough for learning
embeddings.

4 Training and Evaluations

4.1 Training Setups

Training Corpus We adopt the benchmark corpus,
both Chinese and English Wikipedia data, to train
embeddings with our framework. For Chinese, the
segmentation tool is jieba, which was widely used
in Chinese NLP works (Li et al., 2019). We set the
minimal word frequency as 10, obtaining 390,106
unique words. We set the n-grams of character and
POS as 1 and others as 4. The first 10,000 grains
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ordered by frequency are kept. For English corpus,
we set the minimal word frequency as 30, which
yields 649,068 unique words. We extend /etter and
phoneme to 3-gram, and set POS to 1-gram. First
20,000 common grains are kept.

Baselines To assess the effectiveness of our
framework, we compare it with several state-of-
the-art algorithms. Word2vec only uses the word
itself as a field, and is an effective and efficient
toolkit for learning word embedding. It adopts the
L2, to train the embeddings. CWE combines
both word and character as fields and trains em-
beddings in a chow structure. It also adopts the
Ly2y. JWE incorporates word, character, and
component with the chow structure and adopts the
Lje. €w2vec uses n-gram stroke to train embed-
dings in a skip-gram method and adopts the L2,

Hyperparameters For a fair comparison, each
word and grain embedding is of 200 dimensions
for all algorithms. We set the window size and it-
eration to 5, the initial learning rate to 0.025, and
the negative samples to 10.

4.2 Evaluation Tasks

In the task evaluation part, lexical tasks are con-
ducted to evaluate word embeddings and the ef-
fectiveness of new linguistic fields, fine-grained
pipeline, and our novel loss function. Downstream
tasks are conducted to evaluate performances of
grain embeddings compared to word embeddings.
Qualitative analysis is used to validate seman-
tic information in grain embeddings. All task
datasets are widely used in previous word embed-
ding works.

Lexical Evaluations Lexical evaluations in-
clude word similarity and word analogy, which are
widely applied to evaluate the quality of word em-
beddings.

(a) Word Similarity This task evaluates the
model’s ability of capturing the semantic relevance
between given word pairs. We adopt datasets
Sim240 and Sim297 from (Chen et al., 2015b) for
word similarity tasks to evaluate Chinese word em-
beddings, and use Sim353 from (Mikolov et al.,
2013a) for English word embeddings. For each
pair of words in each dataset, a human-labeled
score is provided. We compute the cosine similar-
ity of each word pair and use the Spearman corre-
lation to measure the quality of word embeddings.

(b) Word Analogy This task evaluates whether
the word embeddings capture the linguistic rela-
tionship between word pairs. Given three words

like Berlin, Germany, Paris, the model should in-
fer that the most similar word vector vec(France)
with vec(Germany)-vec(Berlin)+vec(Paris). We
adopt the Chinese dataset provided by (Chen
et al., 2015b), and English datasets from Google
(Mikolov et al., 2013a) and MSR (Mikolov et al.,
2013c¢).

Downstream Task In downstream tasks, we use
our embeddings to represent words in a text or sen-
tence as input features. Both word embeddings and
grain embeddings can construct a word representa-
tion for a word w. By word embeddings Fy, a
word w can be represented as Ey (w). By grain
embeddings, the representation of word w can be
constructed by concatenating all word projection
pr(w) together, where f € F are available fields.
In downstream tasks, the learned embeddings are
frozen and not updated in training phases.

(a) Text Classification We follow cw2vec and se-
lect five topics in the Chinese dateset FudanCorpus
and obtain 5,885 texts. For English, we use News-
Group and obtain 20 topics as well as 18,756 texts.
We average word representation of words in a text
as its input feature vectors. We build the classifier
by using SVM in sklearn and utilize five-fold cross
validation to obtain accuracy scores.

(b) Named Entity Recognition For Chinese, we
adopt Boson, which contains 19,214 sentences and
five entity categories and randomly separate it into
train, validation, and test parts by 8:1:1. For En-
glish, we use CoNLL2003, which contains 16,477
sentences, 4 entity categories, and its own dataset
segmentation. We develop a CRF model (Lafferty
etal., 2001) based on PyTorch as the classifier. We
adopt a simple Embed-CRF structure to evaluate
the embedding quality and a complicated BiLSTM-
CRF to validate both static and dynamic embed-
dings.

Qualitative Evaluation It is based on the vec-
tors of selected character, component and pinyin
grains from learned field grain embeddings. We
evaluate their top similar words from the learned
embeddings, which are retrieved based on the co-
sine similarity.

S Experimental Result

The fields and their logograms we used in this
work are: word W, POS Pos; if Chinese, charac-
ter H, component C, stroke S, pinyin P; if English,
letter C, phoneme P.
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Method Sim240  Sim297 Analogy
word2vec  48.16 58.03 72.4
CWE 50.8 55.33 33.37
Chinese JWE 53.44 58.95 66.4
cw2vec 49.88 48.42 39.35
W.Pos 58.08 59.24 78.8
W.C.Pos 56.66 59.6 79.43
W.C.PPos 56.53 60.88 79.12
Method Sim353 AnaMSR AnaGoogle
word2vec  65.14 57.46 65.12
English CWE 65.47 57.35 64.81
W.C 68.38 62.16 70.09
W.P.Pos 68.32 61.51 70.02
W.C.P.Pos 68.51 59.01 69.5

Table 1: Performance on lexical tasks achieved by word
embeddings generated by the proposed method and
state-of-the-art methods. Spearman correlation coeffi-
cient is presented in percentage (%).

5.1 Lexical Evaluation

The lexical tasks evaluate word embeddings
in terms of different field combinations, using
pipeline or not, and loss functions to verify the
effectiveness of our proposed methods. Results
in Table 1 show that our proposed framework
achieves best performances for different tasks.
For instance, in Chinese Sim240 task, our model
W.Pos gets the best similarity score 58.08%, with
a 4.64% increase from best baseline method JWE.
Next, we analyze sources of the improvements.
Linguistic Field In Table 1, for both Chinese
and English, our models which integrate phoneme
and syntax fields perform better on three different
tasks and outperform other existing models. For
example, W.C.P.Pos achieves best performances
in both Chinese Sim297 (1.93% increase from the
best baseline JWE) and English Sim353 (3.04%
increase from the best baseline CWE). This sup-
ports phoneme and syntax fields carry new linguis-
tic fields which previously widely used morpho-
logical fields do not contain. Moreover, putting
all fields together to train embeddings does not
guarantee that the learned word embeddings can
achieve best performances for all tasks, such as the
Chinese W.C.P.Pos model in Table 1. This indi-
cates some linguistic fields bring more noise than
semantic information for the corresponding task.
Instead, finding the best field combination to train
embeddings for specific tasks is more important.
Our proposed framework makes it easy to explore
the best field combination for each specific task.

NewsGroup (English) Fudan (Chinese)

Method B Fo B o
Word2Vec | 69.48 - 93.88 -
W.C | 72.98 75.36 9424 9455
W.CP | 73.03 76.82 93.92  94.61
W.C.P.Pos | 77.04 80.12 9426  95.00
Table 2: Comparison of the proposed method with

Word2 Vec on the text classification tasks. Accuracy is
presented in percentage (%).

Fine-Grained Pipeline Fig.4 verifies the fine-
grained pipeline’s effectiveness. Given fields and
loss function of the model, leveraging the whole
fine-grained pipeline including n-gram and grain
dropping can lead to advanced word embeddings.
For example, in the W.H.C model, the fine-grained
pipeline yields a 9.13% increase in the Chinese
Analogy task. Beyond this, Fig. 5 further validates
the effectiveness of grain dropping. In the W.H.P
model, grain dropping achieves a 1.57% improve-
ments in Analogy task. The improvements demon-
strate that our fine-grained pipeline does produce
high-quality grain sequences and can successfully
capture more linguistic information that previous
works missed.

Loss Function Fig. 6 asserts the effectiveness
of our loss function. Ly, loss function outper-
forms other loss functions in all tasks. For ex-
ample, in Sim240 task, L. achieves 4.49% in-
crease compared to L2, and 3.04% increase com-
pared to Lj,e. It’s the same for Sim297 and
Analogy. Compared with L2, and Ljye, Ly
considers prominent linguistic phenomena such as
morpheme-phoneme pairs. Therefore, it success-
fully captures the within-field and crossing-field
information.

5.2 Downstream Task

We conduct both Chinese and English downstream
tasks, including text classification and NER, to test
the performances of word embeddings and grain
embeddings.

Text Classification Table 5.2 shows with more
linguistic fields, both word and grain embeddings
gain performance improvements on text classifi-
cation tasks. This reveals that phoneme and syn-
tax fields can improve the quality of both word
and grain embeddings. Moreover, grain embed-
dings Eg always outperform word embeddings
Ey. In NewsGroup task, Eg of W.C.P.Pos ex-
ceed Ey with 3.08%. Furthermore, compared
with word embeddings, grain embeddings make
larger improvements with more fields. For exam-
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Figure 4: Fine-grained pipeline per- Figure 5:
formances on lexical tasks.

CoNLL2003 (English) Boson (Chinese)

Method

Ew Eq Ew Eq
Word2Vec | 77.04 64.13
w.C 77.19 80.35 64.96 65.08
W.C.P 78.06 82.01 65.08 65.34
W.C.P.Pos | 78.44 86.92 6540  71.75

Table 3: Comparison of the proposed method with the
Embed-CREF structure and Word2Vec on NER. F1 score
is presented in percentage (%).

ple, from W.C to W.C.P.Pos, Eyy achieve a 4.06%
increase while F g achieves a 4.76% increase in
NewsGroup task. Such additional improvement
derives from additional linguistic information that
is not included in word embeddings. This strongly
indicates that grain embeddings carry more linguis-
tic information than the associated word embed-
dings and can be a better alternative to word em-
beddings.

Named Entity Recognition As to NER perfor-
mances of Table 3, a similar pattern is observed
to that of text classification. It demonstrates that
more linguistic fields benefit the NER tasks. For
example, from W.C.P to W.C.P.Pos, grain em-
beddings gain 4.91% and 6.41% improvements in
CoNLL2003 and Boson tasks. The reason for the
improvements is that the hyperfield POS carries
the part of a sentence’ s syntactical information,
which is crucial in sequence labeling tasks. This il-
lustrates the hyperfield’s significance in learning
embeddings. Moreover, it shows grain embed-
dings outperform word embeddings. For instance,
in W.C.P.Pos model, F1 scores of grain embed-
dings exceed that of word embeddings with 8.48%
and 6.35% in CoNLL2003 and Boson tasks.

To further prove that our embeddings are ef-
fective with complicated neural networks, we
adopt Embed-BiLSTM-CRF and conduct experi-
ments on CoONLL2003. Besides static embedding
Word2Vec, dynamic embedding methods, such as
ELMo and BERT, are also listed as baselines for

no Dropping  with Dropping

59.28
57. 7257.79Sg g |

Grain dropping perfor- Figure 6:
mances on lexical tasks.

85.00
WCS  mloss(w2v) MLoss(jwe)  Loss (fe)
77.48

74.40

un|

Analogy

with Dropping 77.48

246675907587
75.00

65.00
58.7959.28

5495I

Sim297

56.41

51925337

Sim240

55.00
45.00
35.00

25.00

Sim297 Analogy

Loss function perfor-
mances on lexical tasks.

Method F1 Score (%)
W.C 91.82
W.C.P 92.16
W.C.P.Pos 92.34
Word2Vec (Mikolov et al., 2013b) 90.72
ELMo (Peters et al., 2018) 92.22
BERT (Devlin et al., 2018) 92.80

Table 4: Different embeddings with BiLSTM-CRF
structure on the CoNLL2003 NER task.

comparison, as shown in Table 4. In terms of
static embeddings, additional fields still benefit the
task, with around 0.54% increase per field from
Word2Vec to W.C.P.Pos. This shows that, even
in complex neural networks, grain embeddings are
superior to word embeddings, and phoneme and
syntax are useful.

For dynamic embeddings, though it is
marginally inferior to BERT, our W.C.P.Pos
is better than EMLo by 0.12%. It indicates
our framework exploits the potential of static
embeddings with multiple fields which surpasses
the relatively shallow dynamic embeddings.
This also suggests the potential of introducing
multi-fields to dynamic embeddings. Our static
embeddings also enjoy other advantages. The
model’s structure is simple and straightforward
and parameter size is small. It requires less
corpus and resources to train compared to BERT,
which is a complicated deep neural networks. In
downstream tasks, though BERT outperforms our
model, it bears expensive costs of model com-
plexity and computational resources. Moreover,
the dynamic embeddings cannot represent the
independent word or gain, whereas our model
yields high quality representations for them and
achieves best performances in lexical tasks.
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5.3 Qualitative Evaluation

We evaluate the embeddings’ abilities to uncover
the semantic relatedness of words, characters, and
components through case studies based on a model
trained with character, component, and pinyin.
Taking Hi (apply) as an example, which is also
an ancient state name and a popular last name in
China, it can be a Chinese character or word. We
list its closest words from word embeddings in Ta-
ble 5 where we treat H as a character and a word.
When it is a character, most of the closest words
are semantically related to apply. When it acts as
a word, the closest words related to country name
and last name meanings in Hi. For example, X
(Zhao), E% (Yin) are ancient state names and last
names, and 7€/ (Duke Ding) ¥/ (Duke Zhao
of Jin) are dukes in ancient China. This reveals that
grain embeddings can supplement the word embed-
dings for a more complete semantic representation.

We further take the component ¥~ (illness) as
an example and Table 5 shows its closest charac-
ters and words. All of the closest characters and
words are semantically related to the component
J7. Most of them are related to diseases, symp-
toms and other medical terms, such as words J%&
3 (disease), J&& Yt (infection) and characters Jif
(symptom), ¥ (score). Most of them contain com-
ponent ¥, but it (gangrene), & (suffer), and Ji%
¢ (infection) without J also share the similar se-
mantics. Moreover, we study pinyin t-ong, sound
of Jiff (pain), and list its closest words and charac-
ters in Table 5 and observe a similar phenomenon
to ¥ . These closest characters have similar se-
mantic meaning with Jf§ (pain), whose pinyin is t-
ong, such as words ¥Jf (pain), 39 (headache),
and characters J& (sore), i (paralysis). The qual-
itative analysis shows that our proposed models
leverage both external context co-occurrence infor-
mation and internal morphological and phonetic
information. The medical information stored in
above grain embeddings could be utilized for clin-
ical NER tasks.

6 Conclusion

We propose a flexible field embedding frame-
work to jointly learn both word and grain embed-
dings by incorporating morphological, phonetic,
and syntactical linguistic fields simultaneously.
Our proposed framework leverages an innovative
fine-grained pipeline, including n-grams and grain
dropping, as well as a novel loss function to cap-

Vector Embedding Top 5 Closest Results

Ew H Ew # (Zhao), B (Yin), £ 7 (Duke Ding),
W W % (Chu), T/ (Duke Zhao of Jin)
Echar iy Euwr ATiif (application), H14§ A\ (applicant),
G w A (visa), %HE (qualification), A3 (entry)
B Ph (disease), Ji (infection),
EZ™ Y W YI (pain), ili (lung), FEAR (symptom)
Fpchar AE (symptom), # (sore), i (epilepsy),
G Jilr (swollen), 4f (gangrene)
Ew i (pain), itiH (tear), £ & (anxiety),
EZ™™ t-0ng W 4% (pain), 'K (vomit)
Fchar Jii (pain), JX (remorse), % (palpitate),
¢ JiE (disease), I (sneeze)

Table 5: Qualitative analysis. For a Vector, from an
Embedding top 5 closest results are listed.

ture the information contained within each linguis-
tic field and shared across multiple fields. By in-
troducing phonetic and syntactical linguistic fields
and leveraging our fine-grained pipeline and loss
function, our framework is capable of learning bet-
ter word embeddings in terms of word similarity
and analogy. Furthermore, we systemically inves-
tigate the effectiveness of grain embeddings and
provides the evidence that grain embeddings can
be a better alternative to word embeddings for
word representations. Experimental results show
that grain embeddings outperform word embed-
dings in several downstream NLP tasks, such as
text classification and named entity recognition.
The qualitative analysis illustrates that grain em-
beddings can effectively capture semantic informa-
tion.
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