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Abstract

Contextual word embedding models, such
as BioBERT and Bio_ClinicalBERT, have
achieved state-of-the-art results in biomedical
natural language processing tasks by focusing
their pre-training process on domain-specific
corpora. However, such models do not take
into consideration structured expert domain
knowledge from a knowledge base.

We introduce UmlsBERT, a contextual em-
bedding model that integrates domain knowl-
edge during the pre-training process via a
novel knowledge augmentation strategy. More
specifically, the augmentation on UmlsBERT
with the Unified Medical Language System
(UMLS) Metathesaurus is performed in two
ways: (i) connecting words that have the same
underlying ‘concept’ in UMLS and (ii) lever-
aging semantic type knowledge in UMLS
to create clinically meaningful input embed-
dings. By applying these two strategies, Umls-
BERT can encode clinical domain knowledge
into word embeddings and outperform existing
domain-specific models on common named-
entity recognition (NER) and clinical natural
language inference tasks.

1 Introduction

In recent years, the volume of data being collected
in healthcare has grown considerably. A signifi-
cant proportion of the data is in text form, which
requires advanced Natural Language Processing
(NLP) models to process. This has led to the cre-
ation of high-performing, optimized NLP models
focused on the biomedical domain.

Contextual word embedding models, such as
ELMo (Peters et al., 2018) and BERT (Devlin et al.,
2019) have achieved state-of-the-art results in many
NLP tasks. Initially tested in a general domain,
these models have also been successfully applied
in the biomedical domain by pre-training them
on biomedical corpora, leading to the best perfor-
mances in a variety of biomedical NLP tasks (Lee

et al., 2019), (Alsentzer et al., 2019). However, cur-
rent biomedical applications of transformer-based
Natural Language Understanding (NLU) models
do not incorporate structured expert domain knowl-
edge from a knowledge base into their embedding
pre-training process.

The Unified Medical Language System (UMLS)
(Bodenreider, 2004) Metathesaurus is a com-
pendium of many biomedical terminologies with
the associated information, such as synonyms and
categorical groupings. It allows for the connec-
tion of words that represent the same or similar
‘concept’. For example, the words ‘lungs’ and ‘pul-
monary’ share a similar meaning and thus can be
mapped to the same concept unique identifier (CUI)
CUI: C0024109. Additionally, UMLS allows the
grouping of concepts according to their semantic
type (McCray et al., 2001). For example, ‘skeleton’
and ‘skin’ have the same ‘Body System’ seman-
tic type, and ‘inflammation’ and ‘bleed’ are in the
‘Pathologic Function’ semantic type.

In this paper, we present and publicly release1 a
novel architecture for augmenting contextual em-
beddings with clinical domain knowledge. Specif-
ically: (i) We are the first, to the best of our
knowledge, to propose the usage of domain (clin-
ical) knowledge from a clinical Metathesaurus
(UMLS Metathesaurus) in the pre-training phase of
a BERT-based model (UmlsBERT) in order to build
‘semantically enriched’ contextual representations
that will benefit from both the contextual learning
(BERT architecture) and the domain knowledge
(UMLS Metathesaurus). (ii) We propose a new
multi-label loss function for the pre-training of the
Masked Language Modelling (Masked LM) task in
the UmlsBERT that incorporates the connections
between clinical words using the CUI attribute of
UMLS. (iii) We introduce a semantic type embed-
ding that enriches the input embeddings process of
the UmlsBERT by forcing the model to take into

1https://github.com/gmichalo/UmlsBERT
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consideration the association between words that
are of the same semantic type. (iv) Finally, we
demonstrate that UmlsBERT outperforms two pop-
ular clinical-based BERT models (BioBERT and
Bio_ClinicalBERT) and a general domain BERT
model on different clinical named-entity recogni-
tion (NER) tasks and on one clinical natural lan-
guage inference task.

The rest of paper is organized as follows. Re-
lated work is presented in Section 2. The data that
were used to pre-train and test the new UmlsBERT
are described in Section 3. The characteristics of
the proposed UmlsBERT architecture for augment-
ing contextual embeddings with clinical knowledge
are detailed in Section 4. Finally, the results of the
down-stream tasks and the qualitative analysis are
reported in Section 5, and a conclusion and a plan
for future work are presented in Section 6.

2 Related Work

In (Peters et al., 2018), contextualized word embed-
dings were introduced in a bidirectional language
model (ELMo). This allowed the model to change
the embedding of a word based on its imputed
meaning, which was derived from the surrounding
context. Subsequently, (Devlin et al., 2019) pro-
posed the Bidirectional Encoder Representations
from Transformers (BERT) which used bidirec-
tional transformers (Vaswani et al., 2017) to create
context-dependent representations. For both mod-
els, pre-training is done on massive corpora and
the context-sensitive embeddings can be used for
downstream tasks.

Other approaches enhance the BERT’s perfor-
mance by injecting external knowledge from a
knowledge base. Sense-BERT (Levine et al., 2020)
is pre-trained to predict the supersenses (seman-
tic class) of each word by incorporating lexical
semantics (from the lexical database WordNet
(Miller, 1995)) into the model’s pre-training objec-
tive and by adding supersense information to the
input embedding. In addition, GlossBERT (Huang
et al., 2019) focuses on improving word sense dis-
ambiguation by using context-gloss pairs on the
sentence-pair classification task of a BERT model.

Furthermore, there have been multiple attempts
to improve the performance of contextual models
in the biomedical domain. BioBERT is a BERT-
based model which was pre-trained on both general
(BooksCorpus and English Wikipedia) and biomed-
ical corpora (PubMed abstracts and PubMed Cen-

tral full-text articles) (Lee et al., 2019). The au-
thors demonstrate that incorporating biomedical
corpora in the pre-training process improves the
performance of the model in downstream biomed-
ical tasks. This is likely because medical cor-
pora contains terms that are not usually found in
a general domain corpus (Habibi et al., 2017). Fi-
nally, Bio_ClinicalBERT (Alsentzer et al., 2019)
further pre-trains BioBERT on clinical text from
the MIMIC-III v1.4 database (Johnson et al., 2016).
It is shown that the usage of clinical specific con-
textual embeddings can be beneficial for the perfor-
mance of a model on different clinical NLP down-
stream tasks.

3 Data

We use the Multiparameter Intelligent Monitoring
in Intensive Care III (MIMIC-III) dataset (John-
son et al., 2016) to pre-train the UmlsBERT model.
MIMIC dataset consists of anonymized electronic
medical records in English of over forty-thousand
patients who were admitted to the intensive care
units of the Beth Israel Deaconess Medical Cen-
ter (Boston, MA, USA) between 2001 and 2012.
In particular, UmlsBERT is trained on the NO-
TEEVENTS table, which contains 2,083,180 rows
of clinical notes and test reports.

Dataset Train Dev Test C
MedNLi 11232 1395 14 22 3

i2b2 2006 44392 5547 18095 17
i2b2 2010 14504 1809 27624 7
i2b2 2012 6624 820 5664 13
i2b2 2014 45232 5648 32586 43

Table 1: Number of sentences for the train/dev/test set
of each dataset. We also include the number of classes
(C) for each dataset. We use the same splits that are
used in (Alsentzer et al., 2019).

We evaluate the effects of the novel features of
the UmlsBERT model on the English MedNLI natu-
ral language inference task (Romanov and Shivade,
2018) and on four i2b2 NER tasks (in IOB format
(Ramshaw and Marcus, 1995)). More specifically,
we experiment on the following English i2b2 tasks:
the i2b2 2006 de-identification challenge (Uzuner
et al., 2007), the i2b2 2010 concept extraction chal-
lenge (Uzuner et al., 2011), the i2b2 2012 entity
extraction challenge (Uzuner et al., 2011) and the
i2b2 2014 de-identification challenge (Stubbs et al.,
2015). These datasets are chosen because of their
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use in benchmarking prior biomedical BERT mod-
els, thereby allowing for performance comparison.
In addition, these publicly available datasets enable
the reproducibility of our results and meaningful
comparison with future studies. Table 1 lists the
statistics of all the datasets. Finally, it should be
noted that for the identification of the UMLS terms,
we use the UMLS 2020AA version.

4 Methods

4.1 BERT Model
The original BERT model (Devlin et al., 2019)
is based on multi-layer bidirectional transformers
(Vaswani et al., 2017), which generates contextual-
ized word representations. Incorporating informa-
tion from bidirectional representations allows the
BERT model to capture more accurately the mean-
ing of a word based on its surrounding context, i.e.
sentence.

The pre-training phase of the BERT model con-
sists of two self-supervised tasks: Masked Lan-
guage Modelling (LM), in which a percentage of
the input is masked at random and the model is
forced to predict the masked tokens, and Next Sen-
tence Prediction, in which the model has to deter-
mine whether two segments appear consecutively
in the original text. Since our UmlsBERT model
is focused on augmenting the Masked LM task
with clinical information from the UMLS Metathe-
saurus, we omit the description of the Next Sen-
tence Prediction task and only describe the details
of the Masked LM task herein.

In Masked LM, 15% of the tokens of each sen-
tence are replaced by a [MASK] token. For the jth

input token in the sentence, an input embedding
vector u(j)input is created by the following equation:

u
(j)
input = p(j) + SEGseg

(j)
id + Ewj (1)

where p(j) ∈ Rd is the position embedding of the
jth token in the sentence, and d is the transformer’s
hidden dimension. Additionally, SEG ∈ Rd×2 is
called the segment embedding, and segid ∈ R2, a
1-hot vector, is the segment id that indicates the
sentence to which the token belongs. In Masked
LM, the model uses only one sentence and there-
fore, the segment id indicates that all the tokens
belong to the first sentence. E ∈ Rd×D is the token
embedding where D is the length of the model’s
vocabulary and wj ∈ RD is a 1-hot vector corre-
sponding to the jth input token.

The input embedding vectors pass through mul-
tiple attention-based transformer layers where each
layer produces a contextualized embedding of each
token. Finally, for each masked token w, the model
outputs a score vector yw ∈ RD with the goal of
minimizing the cross-entropy loss between the soft-
max of yw and the 1-hot vector corresponding to
the masked token (hw):

loss = −log( exp(yw[w])∑
w′ exp(yw[w′])

) (2)

4.2 Enhancing Contextual Embeddings with
Clinical Knowledge

In the UmlsBERT model, we update the Masked
LM procedure to take into consideration the asso-
ciations between the words specified in the UMLS
Metathesaurus.

4.2.1 Semantic type embeddings
We introduce a new embedding matrix called ST ∈
RDs×d into the input embedding of the BERT
model, where d is BERT’s transformer hidden di-
mension and Ds = 44 is the number of unique
UMLS semantic types that can be identified in the
vocabulary of our model. In particular, in this ma-
trix, each row represents the unique semantic type
in UMLS that a word can be identified with (for
example the word ‘heart’ is associated with the
semantic type T023:‘Body Part, Organ, or Organ
Component’ in UMLS).

To incorporate the ST embedding matrix into
the input embedding of our model, all words with
a clinical meaning defined in UMLS are identified.
For each of these words, the corresponding con-
cept unique identifier (CUI) and semantic type are
extracted. We use sw ∈ RDs as a 1-hot vector
corresponding to the semantic type of the medical
word w. The identification of the UMLS terms and
their UMLS semantic type is accomplished using
the open-source Apache clinical Text Analysis and
Knowledge Extraction System (cTakes) (Savova
et al., 2010). Thus, by introducing the semantic
type embedding, the input vector (equation 1) for
each word is updated to:

u
(j)′
input = u

(j)
input + ST>sw (3)

where the semantic type vector ST>sw is set to
a zero-filled vector for words that are not identified
in UMLS.

We hypothesize that incorporating the clinical
information of the semantic types into the input
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Figure 1: (a) Original input vector of the BERT model (Devlin et al., 2019). (b) Augmented input vector of
the UmlsBERT where the semantic type embeddings is available. For the words ‘chest’ and ‘cavity’, their word
embeddings are enhanced with the embedding of the semantic type ‘Body Location or Region’(ET029) and ‘Body
Space or Junction’(ET030) respectively. The rest of the words are not related to a medical term, so a zero-filled
tensor Enull is used.

tensor could be beneficial for the performance of
the model as the semantic type representation can
be used to enrich the input vector of words that are
rare in the training corpus and the model do not
have the chance to learn meaningful information for
their representation. Figure 1 presents an overview
of the insertion of the semantic type embeddings
into the standard BERT architecture.

4.2.2 Updating the loss function of Masked
LM task

Furthermore, we update the loss function of the
Masked LM pre-training task to take into consider-
ation the connection between words that share the
same CUI. As described in Subsection 4.1, the loss
function of the Masked LM pre-training task of a
BERT model is a cross-entropy loss between the
softmax vector of the masked word and the 1-hot
vector that indicates the actual masked word. We
proposed to ‘soften’ the loss function and updated
it to a multi-label scenario by using information
from the CUIs.

More specifically, instead of using a 1-hot vector
(hw) that corresponds only to the masked word w,
we use a binary vector indicating the presence of
all the words which shared the same CUI of the
masked word (h′w). Finally, in order for the model
to properly function in a multi-label scenario, the
cross entropy loss (equation 2) is updated to a bi-
nary cross entropy loss:

loss =

D∑
i=0

(−h′
w[i]log(yw[i])

+ (1− h
′
w[i])log(1− yw[i])) (4)

These changes force UmlsBERT to learn the

semantic relations between words, which are asso-
ciated with the same CUI in a biomedical context.

An example of predicting the masked word
‘lungs’ with and without the clinical information is
presented in Figure 2. As seen in this figure, the
UmlsBERT model tries to identify the words ‘lung’,
‘lungs’ and ‘pulmonary’ because all three words
are associated with the same CUI: C0024109 in the
UMLS Metathesaurus.

Figure 2: An example of predicting the masked word
‘lungs’ (a) the BERT model tries to predict only the
word lungs (b) whereas the UmlsBERT tries to identify
all words that are associated with the same CUI (e.g
lungs, lung, pulmonary).

4.3 UmlsBERT Training
We initialize UmlsBERT with the pre-trained
Bio_ClinicalBERT model (Alsentzer et al., 2019),
and then we further pre-train it with the updated
Masked LM task on MIMIC-III notes. Afterwards,
in order to perform the downstream tasks, we add a
single linear layer on top of UmlsBERT and ‘fine-
tuned’ it to the task at hand, using either the associ-
ated embedding for each token or the embedding
of the [CLS] token. The same fine-tuning method
is applied to all other models used for comparison.
In order to keep the experiment controlled, we use



1748

Dataset BERTbased BioBERT Bio_ClinicalBERT UmlsBERT

MedNLI
epochs 4 4 4 3

batch size 16 16 32 16
learning rate 5e-5 3e-5 3e-5 3e-5

i2b2 2006
epochs 20 20 20 20

batch size 32 16 16 32
learning rate 2e-5 2e-5 2e-5 5e-5

i2b2 2010
epochs 20 20 20 20

batch size 16 32 32 16
learning rate 3e-5 3e-5 5e-5 5e-5

i2b2 2012
epochs 20 20 20 20

batch size 16 32 16 16
learning rate 3e-5 3e-5 5e-5 5e-5

i2b2 2014
epochs 20 20 20 20

batch size 16 16 32 16
learning rate 2e-5 2e-5 5e-5 3e-5

Table 2: Hyperparameter selection of all the models for each dataset

the same vocabulary and WordPiece tokenization
(Wu et al., 2016) across all the models. WordPiece
divides words not in the vocabulary into frequent
sub-words.

Since our goal is to demonstrate the beneficial
effect of incorporating domain knowledge in this
study, we haven’t experimented with a more com-
plicated layer on top of UmlsBERT (e.g. the Bi-
LSTM layer in (Si et al., 2019)). This is because
our goal is to demonstrate that incorporating do-
main knowledge was beneficial for the performance
of the model by showing that UmlsBert outper-
formed the other medical-based BERT models on a
variety of medical NLP tasks (Section 5). It should
be noted that we chose the UMLS Metathesaurus in
our process of augmenting the UmlsBERT model
for two reasons:

1. We aim to create a clinical contextual embed-
ding model that is capable of integrating do-
main (medical) knowledge.

2. The UMLS Metathesaurus is a compendium
of many popular biomedical vocabularies
(e.g. MeSH (Dhammi and Kumar, 2014) and
ICD-10 (Organization, 2004)). By choosing
to utilize the domain (medical) knowledge
of UMLS, we actually incorporate domain
knowledge from all major internationally stan-
dardized clinical terminologies.

In the pre-training phase, UmlsBERT is trained
for 1, 000, 000 steps with a batch size of 64, maxi-
mum sequence length of 128 and learning rate of

5 · 10−5. All other hyper-parameters are kept to
their default values. UmlsBERT is trained by us-
ing 2 nVidia V100 16GB GPU’s with 128 GB of
system RAM running Ubuntu 18.04.3 LTS.

5 Results

In this section, we present the results of an empiri-
cal evaluation of the UmlBERT model. In partic-
ular, we provide a comparison between different
available BERT models to show the efficiency of
our proposed model on different clinical NLP tasks.
In addition, we provide the results of an ablation
test to exam the effect of the semantic type em-
beddings on the performance of the model. Fur-
thermore, we conduct a qualitative analysis of the
embedding of each model in order to illustrate how
medical knowledge improves the quality of medi-
cal embeddings. Finally, we provide a visualized
comparison of the embeddings of the words that
are associated with semantic types between Umls-
BERT and Bio_ClinicalBert.

5.1 Downstream Clinical NLP Tasks

In this section, we report the results of the com-
parison of our proposed UmlsBERT model with
the other BERT-based models on different down-
stream clinical NLP tasks described in Section 3.
All BERT-based models are implemented using the
transformers library (Wolf et al., 2019) on PyTorch
0.4.1. All experiments are executed on a Tesla
P100 16.3 GB GPU with 32G GB of system RAM
on Ubuntu 18.04.3 LTS.
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Dataset BERTbased BioBERT Bio_ClinicalBERT UmlsBERT

MedNLI
Test Ac. 77.9 ± 0.6 82.2 ±0.5 81.2 ± 0.8 83.0 ± 0.1
Val. Ac. 79.0 ± 0.5 83.2 ± 0.8 83.4 ± 0.9 84.5 ± 0.1

Run. time(sec) 308 307 269 305
#parameters 108,312,579 108,312,579 108,312,579 108,346,371

i2b2 2006
Test F1 93.5 ± 1.4 93.3 ± 1.3 93.1 ± 1.3 93.6 ± 0.5
Val. F1 94.2 ± 0.6 93.8 ± 0.3 93.4 ± 0.2 94.4 ± 0.2

Run. time(sec) 12508 12807 12729 13167
#parameters 108,322,576 108,322,576 108,322,576 108,356,368

i2b2 2010
Test F1 85.2 ± 0.2 87.3 ± 0.1 87.7 ± 0.2 88.6 ± 0.1
Val. F1 83.4 ± 0.3 85.2 ± 0.6 86.2 ± 0.2 87.7 ± 0.5

Run. time(sec) 5325 5244 5279 5219
#parameters 108,315,655 108,315,655 108,315,655 108,349,447

i2b2 2012
Test F1 76.5 ± 0.2 77.8 ± 0.2 78.9 ± 0.1 79.4 ± 0.1
Val. F1 76.2 ± 0.7 78.1 ± 0.5 77.1 ± 0.4 78.3 ± 0.4

Run. time(sec) 2413 2387 2403 2432
#parameters 108,320,269 108,320,269 108,320,269 108,354,061

i2b2 2014
Test F1 95.2 ± 0.1 94.6 ± 0.2 94.3 ± 0.2 94.9 ± 0.1
Val. F1 94.5 ± 0.4 93.9 ± 0.5 93.0 ± 0.3 94.3 ± 0.5

Run. time(sec) 16738 17079 16643 16554
#parameters 108,343,339 108,343,339 108,343,339 108,377,131

Table 3: Results of mean ± standard deviation of five runs from each model on the test and the validation test;
we use the acronym Ac. for accuracy; average running time and number of parameters is also provided for each
model. The number of parameters is different between datasets as we included the linear layers that were used on
top of the Bert-based model for text and token classification; best values are bolded;

5.1.1 Hyperparameter tuning
In order to address the reproducibility concerns
of the NLP community (Dodge et al., 2019), we
provide the search strategy and the bound for each
hyperparameter as follows: the batch size is set
between 32 and 64, and the learning rate is chosen
between the values 2e-5, 3e-5 and 5e-5. For the
clinical NER tasks, we take a similar approach to
(Lee et al., 2019) and set the number of training
epochs to 20 to allow for maximal performance,
except for MedNLI, for which we train the models
on 3 and 4 epochs.

The best values are chosen based on validation
set F1 values using the seqevals python framework
for sequence labeling evaluation, due to the fact
that it can provide an evaluation of a NER task on
entity-level2 for the i2b2 tasks and validation set ac-
curacy, which is the standard metric for this task 3

for the MedNLI dataset. In the interest of providing
a fair comparison, we also tune the hyperparame-
ters of each model in order to demonstrate its best

2https://github.com/chakki-works/
seqeval

3https://tinyurl.com/
transformers-metrics

performance. The final hyper-parameters selection
of all the models for each dataset can be found in
Table 2.

In order to achieve more robust results, we run
our model on five different (random) seeds (6809,
36275, 5317, 82958, 25368) and we provide the
average scores and standard deviation for the test-
ing and the validation set. It should be noted that
BERTbase, BioBERT and Bio_ClinicalBERT have
the exact same number of parameters as they use
the same BERT-based architecture. However, be-
cause we introduce the semantic type embeddings
into the UmlsBERT model, our model has an ad-
ditional 33792 [the number of unique UMLS se-
mantic types (44) × transformer’s hidden dimen-
sion(768)] parameters 4. In Table 3, we provide the
number of parameters for each dataset where we
include the linear layer on top of the BERT-based
models for the text and token classification.

4UmlsBert also contains an additional zero-filled vector,
that we use as the semantic type vector of the words that
are not identified in UMLS, which was not included in the
calculation of the number of the parameters of the model.

https://github.com/chakki-works/seqeval
https://github.com/chakki-works/seqeval
https://tinyurl.com/transformers-metrics
https://tinyurl.com/transformers-metrics
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ANATOMY DISORDER GENERIC
feet kidney mass bleeding school war

ft liver masses bleed college battle
BERTbased foot lung massive sweating university conflict

foot liver masses bleed college wartime
BioBERT wrists lung weight strokes schooling battle

foot liver masses bleed college warfare
Bio_ClinicalBERT legs lung weight bloody university wartime

foot Ren lump bleed college warfare
UmlsBERT pedal liver masses hem students military

Table 4: The two nearest neighbors for six words in three semantic categories (two clinical and one generic). Note
that only UmlsBERT finds word associations based on the CUIs of the UMLS Metathesaurus that have clinical
meaning whereas in the generic category, there is no discernible discrepancies between the models.

5.1.2 BERT-based model comparison

The mean and standard deviation (SD) of the scores
for all the competing models on different NLP tasks
are reported in Table 3. UmlsBERT achieves the
best results in 4 out of the 5 tasks. It achieves
the best F1 score in three i2b2 tasks (2006, 2010
and 2012) (93.6%, 88.6% and 79.4%) and the best
accuracy on the MedNLI task (83.0%).

Because our model is initialized with
Bio_ClinicalBERT model and pre-trained
on the MIMIC-III dataset, it is not surprising that
it does not outperform the BERT model on i2b2
2014 (The BERTbase model achieved 95.2% on
i2b2 2014). This is probably due to the nature
of the de-ID challenges which is described in
detail in (Alsentzer et al., 2019). In summary,
protected health information (PHI) are replaced
with a sentinel ‘PHI’ marker in the MIMIC dataset,
but in the de-ID challenge dataset (i2b2 2014), the
PHI is replaced with different synthetic masks, and
thus, the sentence structure that appears in BERT’s
training is not present at the down-stream task
(Alsentzer et al., 2019). However, even in this task,
UmlsBERT achieves a better performance than the
other biomedical BERT models.

These results confirm that augmenting con-
textual embedding through domain (biomedical)
knowledge is indeed beneficial for the model’s per-
formance in a variety of biomedical down-stream
tasks.

5.1.3 Effect of semantic type embeddings

In order to understand the effect that semantic type
embeddings have on the model performance, we
conduct an ablation test where the performance of

two variations of the UmlsBERT model are com-
pared, where in one model the semantic type em-
beddings are available to it, and in the other, they
are not. The results of this comparison are listed in
Table 5. We observe that for every dataset, Umls-
Bert achieves its best performance when semantic
type embeddings are available. This experiment
further confirms the positive effect of the semantic
type embeddings on the performance of the Umls-
BERT model.

Dataset UmlsBERT−ST UmlsBERT
MedNLI Ac. 82.3 ± 0.2 83.0 ± 0.1
i2b2 2006 F1 93.3 ± 0.7 93.6 ± 0.5
i2b2 2010 F1 88.3 ± 0.3 88.6 ± 0.1
i2b2 2012 F1 79.1 ± 0.2 79.4 ± 0.1
i2b2 2014 F1 94.7 ± 0.1 94.9 ± 0.1

Table 5: Results of mean ± standard deviation of five
runs for both variations of UmlsBERT on the test sets
of all the datasets; In UmlsBERT−ST , the semantic
type embeddings are not available.

5.2 Qualitative Embedding Comparisons

Table 4 shows the nearest neighbors for 6 words
from 3 semantic categories using UmlsBERT,
Bio_ClinicalBERT, BioBERT and BERT. The first
two categories (‘ANATOMY’ and ‘DISORDER’)
are chosen to demonstrate the ability of the mod-
els to identify similar words in a clinical context,
and the third category (‘GENERIC’) is used to
validate that the medical-focus BERT models can
find meaningful associations between words in a
general domain even if they are trained on medical-
domain text datasets.
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This analysis demonstrates that augmenting the
contextual embedding of UmlsBERT with Clinical
Metathesaurus (UMLS) information is indeed ben-
eficial for discovering associations between words
with similar meanings in a clinical context. For in-
stance, only UmlsBERT discovers the connection
between ‘kidney’ and ‘ren’ (from the latin word
‘renes’, which means kidneys), between ‘mass’ and
‘lump’, between ‘bleeding’ and ‘hem’ (a commonly
used term to refer to blood) and between ‘feet’ and
‘pedal’(a term pertaining to the foot or feet in a
medical context).

These associations are the result of changing
the nature of the Masked LM training phase of
UmlsBERT to a multi-label scenario by connect-
ing different words which share a common CUI
in UMLS. In the previously mentioned examples,
‘kidney’ and ‘ren’ have CUI:C0022646; ‘mass’ and
‘lump’ have CUI:C0577559; ‘bleeding’ and ‘hem’
have CUI:C0019080 and ‘feet’ and ‘pedal’ have
CUI:C0016504.

Finally, the results in the generic list of words
indicate that the medical-focused BERT models
did not trade their ability to find meaningful asso-
ciations in a general domain in order to be more
precise in a clinical context as there is no mean-
ingful difference observed in the list of neighbour
words that the four models identified.

5.3 Semantic Type Embedding Visualization

(a) (b)

Figure 3: UMAP visualization of the clustering (a) of
the Bio_ClinicalBert input embedding (word embed-
ding) (b) of the UmlsBert input embedding (word em-
bedding + semantic type embedding).

In order to demonstrate the effect of the semantic
types on the input embeddings, we present in Fig-
ure 3, a UMAP dimensionality reduction (McInnes
and Healy, 2018) mapping comparison between
Bio_ClinicalBERT and UmlsBERT. We compare
the input embedding of Bio_ClinicalBERT with
the input embedding of UmlsBERT for all the clin-
ical terms that UMLS identified in the standard

BERT vocabulary. It should be noted that in the
graph, we group the medical terms by their se-
mantic groups, which are clusters that consist of
different semantic types. For example, the seman-
tic types ‘Cell’ and ‘Body System’ are grouped in
the semantic group ‘ANATOMY’. It is evident that
the clustering according to the semantic group that
exists in the UmlsBERT embeddings (Figure 3b)
cannot be found in the Bio_ClinicalBERT embed-
dings (Figure 3a). Thus, we can conclude that more
meaningful input embeddings can be provided to
the model, by augmenting the input layer of the
BERT architecture with the semantic type vectors,
as they force the embeddings of the words of the
same semantic type to become more similar.

6 Conclusion and Future Work

This paper presents UmlsBERT, a novel BERT-
based architecture that incorporates domain
(biomedical) knowledge in the pre-training pro-
cess of a contextual word embeddings model. We
demonstrate that UmlsBERT can learn the associa-
tion of different clinical terms with similar mean-
ing in the UMLS Metathesaurus. UmlsBERT can
also create more meaningful input embeddings by
leveraging information from the semantic type of
each (biomedical) word. Finally, we confirm that
these modifications can improve the model’s perfor-
mance as our UmlsBERT model outperforms other
biomedical BERT models in various downstream
tasks.

As for future work, we plan to address the limi-
tations of this study including: (i) Examining the
effect of augmenting contextual embeddings with
medical knowledge when more complicated layers
are used atop of the output embedding of Umls-
BERT. (ii) Exploring the UMLS hierarchical asso-
ciations between words that extend the concept con-
nection that we investigated in this paper. (iii) Test-
ing our model in other datasets and biomedical
tasks (e.g. relation extraction task (Krallinger et al.,
2017)) to investigate further the strengths and weak-
nesses of our model.
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Ethical Considerations

Contextual word embeddings models have
achieved state-of-the-art results in many (clinical)
NLP tasks such as NER or relation extraction
(Devlin et al., 2019; Lee et al., 2019). These
results suggest that medical-based contextual
word embeddings models, such as our model
(UmlsBERT), can be a valuable tool for better
processing and understanding the vast volume of
health data that is amassed at a rapid speed in
health and biomedical domain.

However, one of obstacles for adopting such a
model in any system lies in the computing cost
of pre-training. For example, our UmlsBERT
model was trained for 10 days using 2 nVidia V100
16GB GPU’s with 224 GB of system RAM running
Ubuntu 18.04.3 LTS, and we acknowledge that in-
vesting these types of computational resources or
even time is not a viable option for many research
groups, let alone regular healthcare providers. This
is the reason for making the UmlsBert model pub-
licly available, as we hope that the clinical NLP
community can benefit from using our model. In
addition, UmlsBERT is the first contextual word
embedding model, to the best of our knowledge,
that integrated structured medical-domain knowl-
edge into its pre-training phase. Although this
study demonstrates the beneficial effect of incor-
porating structured biomedical domain knowledge
in the pre-training phase of a contextual embed-
ding model on the performance of the model, it
is not a far-fetched hypothesis that similar pre-
training strategy can be applied to incorporate struc-
tured domain-knowledge in different disciplines
(e.g. environment, sciences, etc) to improve the
performance of the model in the respective domain-
specific down-stream tasks.

Finally, we believe that many research groups in
the clinical NLP field could benefit from the use
of our models by either using the contextual em-
beddings of our model or fine-tuning our model in
specific down-stream tasks, for example, automatic
encoding of diseases and procedures in electronic
medical records. This automatic encoding model
can significantly reduce time and cost in data ex-
traction and reporting. Success in such task will
have huge impact in clinical practices and research
since assigning correct codes for diseases and clin-
ical procedures are important for making care or
operational decisions in healthcare.
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