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Abstract

Syntax is fundamental to our thinking about
language. Failing to capture the structure of
input language could lead to generalization
problems and over-parametrization. In the
present work, we propose a new syntax-aware
language model: Syntactic Ordered Memory
(SOM). The model explicitly models the struc-
ture with an incremental parser and maintains
the conditional probability setting of a stan-
dard language model (left-to-right). To train
the incremental parser and avoid exposure bias,
we also propose a novel dynamic oracle, so
that SOM is more robust to wrong parsing
decisions. Experiments show that SOM can
achieve strong results in language modeling,
incremental parsing and syntactic generaliza-
tion tests, while using fewer parameters than
other models.

1 Introduction

Several recent works have systematically studied
the linguistic abilities of modern language models,
particularly syntax (Linzen et al., 2016; Marvin and
Linzen, 2018; Gulordava et al., 2018). They find
that most language models are good at capturing
frequent syntactic structures but do not generalize
well to those in the long tail. Moreover, although
some excel at having low perplexity scores, this
is less due to their syntactic ability but more due
to capturing collocations (frequently co-occurring
words). Recently, Hu et al. (2020) show that RNNs
underperform on a syntactic generalization (SG)
test set, whereas models that have an explicit notion
of syntax, such as RNNG (Dyer et al., 2016), fare
well on SG but at the cost of generally poorer lan-
guage modeling (higher perplexity). Transformer-
based models achieve strong performance when
trained with large datasets, but are worse than ran-
dom when trained on a small dataset.

These works showed that building language
models with an explicit internal model of syntax

Figure 1: The mechanism of SOM. “Context” is a dis-
tributed representation of previous sentences. It could
also represents the source sentence in a sequence to se-
quence task. It incrementally build subtrees given the
input sentences. A RNN will takes the context represen-
tation and the representations of subtrees in the current
sentence to predict next token.

helps in achieving better performance in SG tasks
and is also thought to help learn more efficiently
in low data settings. However, building syntax-
aware models that also obtain strong language mod-
eling performance, when compared with recent
transformer-based models, has until now seemed
elusive. In this work, we propose a new syntax-
aware language model dubbed Syntactic Ordered
Memory (SOM; Fig. 1), which jointly acts as a
language model and an incremental parser. SOM
inherits the syntax representation used in Ordered
Memory (OM; Shen et al. 2019) in which syntax
trees are embedded in a grid-like memory repre-
sentation. Whereas OM was trained as an unsuper-
vised parser, SOM is explicitly trained to predict
both ground-truth syntax trees incrementally and,
using the predicted partial syntactic structure, to
predict the next token. Fig.1 shows the mechanism
of SOM.

SOM factorizes the next-token prediction pro-
cess into two steps: first, we predict the attachment
position for the next token with a zero-step look-
ahead parser, trained in a supervised fashion; then,
we predict the next token distribution conditioned
on the partially predicted structure. One way of
training the incremental parser is to use teacher-
forcing. However, this can lead to exposure bias,
due to the fact that the model was never exposed
to its own predictions during training. To avoid
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this, we introduce a dynamic oracle (Goldberg and
Nivre, 2012) for our model, so that our model can
learn to recover from previous parsing mistakes
during inference. We found this to be crucial to
obtain good performance.

We compare SOM with existing methods that
integrate syntax into language models. RN-
NGs (Dyer et al., 2016) and Ordered Neu-
rons (Shen et al., 2018) are particularly related.
RNNGs are generative models of language which
define a joint distribution on syntactic structures
and sequence of words. Ordered Neurons attempt
to model the hierarchical structure of language by
defining an ordering to the hidden states and the
gates that impose that structure. We show that our
proposed SOM model can achieve strong language
modeling, parsing and SG performance even when
trained on small amounts of data.

In summary, our contributions are threefold:

• We introduce SOM, a new syntax-augmented
language model that learns an incremental
parser and use its predictions to improve lan-
guage modeling.

• We propose a novel dynamic oracle that al-
lows to reduce the exposure bias and is instru-
mental to achieving good downstream perfor-
mance.

• We report high SG score, language modeling
and incremental parsing performance for var-
ious dataset sizes. We also find that jointly
learning both language modelling and parsing
improves both these capabilities in the model.

2 Related Work

Syntax-aware models There has been work to
integrate syntax into our current models of lan-
guage. Socher et al. (2013) used parse trees for
composing sentences in order to predict sentiment
over movie reviews. However, having an external
parser and restriction of batched computations in
that early model made the method unwieldy. Bow-
man et al. (2016) introduced the SPINN model,
which alleviated those issues, turning sentences
into a sequence of actions to be executed by a shift-
reduce parser. Our SOM model is based on shift-
reduce as well, because of the incremental nature
of the parsing we want to achieve. RNNG (Dyer
et al., 2016; Kuncoro et al., 2016) was an exam-
ple of integrating syntax information for language
modelling.

There is also work that attempts to learn these
syntactic structures without supervision. Kim et al.
(2019) later devised an unsupervised version of the
RNNG, a method which produced good parsing
performance. DIORA (Drozdov et al., 2019, 2020)
was a method that leveraged the Inside-Outside
algorithm to construct sentence embeddings for
downstream tasks, with the benefit of being able to
read off parse trees in the encoding process.

Swayamdipta et al. (2019) finds that there are
no improvements over using ELMo (Peters et al.,
2018) embeddings when shallow syntactic infor-
mation is included, concluding that ELMo-style
pretraining has learned the syntactic information.
However, Kuncoro et al. (2019) investigated the im-
portance of the learnt syntactic knowledge RNNG
in a large pre-trained model like BERT, they found
that syntax information helps with downstream
tasks. In our experiments, we find that explicitly
training OM with syntax (with our dynamic ora-
cle scheme) improves performance on syntactic
generalization tasks.

Incremental Parsing & Language Modelling
In SOM, we specifically focus on incremental pars-
ing. Ghezzi and Mandrioli (1979) discusses in-
cremental parsing in the context of programming
languages, with shift-reduce parsers being a spe-
cific type of incremental parsing. OM, RNNG, and
SPINN are models that were designed with shift-
reduce in mind.

Incremental parsing lends itself well to the task
of autoregressive language modelling. Since the
parser only sees the prefix of a sentence, the model
can use the partial parse to make a prediction about
upcoming words. Demberg et al. (2013) sum-
marises several empirical results that provide ev-
idence for incremental and predictive parsing in
humans, and makes several connections between
incrementality (that comprehenders do not wait to
the end of the sentence before building a represen-
tation) and prediction about future words coming
in the sentence.

Given that an incremental parser processes a sen-
tence from left to right, there are naturally some
limitations. Hassan et al. (2009) show why either
a beam or delay is necessary if performing incre-
mental parsing with monotonic extensions: They
experiment with a parser based on Combinatory
Categorial Grammar (Steedman, 2000). They find
that without the look-ahead, there is a 30 % point
reduction in the parsing results. One of our con-
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tributions in this paper is the one-step lookahead
while performing parsing, but zero-step lookahead
when performing next-word prediction, allowing
the model to be trained jointly as a incremental
parser and language model.

Despite the left-to-right nature of incremental
parsing, this setting may aid language modelling
too. Shieber (1983) suggests the biases may corre-
spond to the way humans parse English, and use
a modified shift-reduce parser to disambiguate be-
tween different parses of a sentence. There have
been work that show that incremental parsing can
improve language modelling. Köhn and Baumann
(2016) demonstrate that combining an incremental
dependency parser with a language model yields
improvements in perplexity. Roark (2001) presents
a top-down phrase structure parser that performs
beam-search to generate connected intermediate
structures for every sentence prefix. This model
can be used for language modeling and beats tri-
gram models on the Penn Treebank (Marcus et al.,
1994)

Dynamic Oracles Since incremental parsing re-
quires that we break down the problem of structure
prediction into sequential decisions, we are prone
to exposure bias. There are techniques to address
this by allowing the model to make mistakes and
supervising future actions based on the state arrived
at (Daumé et al., 2009). Goldberg and Nivre (2012)
introduces the concept of dynamic oracles for de-
pendency parsing. Coavoux and Crabbé (2016)
uses this technique for incremental constituency
parsing, but uses morphological features, and does
not perform language modelling. Fried and Klein
(2018) cover in further detail the related work re-
lating to dynamic oracles and parsing. We find
that using dynamic oracles for training is crucial
in seeing benefits in both language modelling and
incremental parsing.

Evaluating Syntactic Generalization Recent
tests have been developed that attempt to probe the
linguistic abilities of language models. Gulordava
et al. (2018) explores the extent to which RNNs
are able to model grammar, independent of the se-
mantics of the sentence. Marvin and Linzen (2018)
evaluate language models on their ability to score
sentences with and without the proper subject-verb
agreements over a variety of different settings.

Hu et al. (2020) expands on these ideas, and
propose a suite of syntactic generalization tests

Figure 2: The grid view of a tree structure. Blue ar-
rows represent composing children into parent. Gray
arrows represent copying from previous time step. Or-
ange slots are memories generated at the current time
step. Gray slots are memories copied from previous
time step.

for language models over a series of different sized
datasets. They find that while GPT-2 performs well,
their performance is highly dependent on the scale
of the language modeling training dataset, while
other models remain more robust. In this paper, we
use this test suite for the evaluation.

3 Ordered Memory

We first provide useful background on Ordered
Memory. Ordered Memory (OM, Shen et al. 2019)
is a recurrent neural network that explicitly models
recursive structure through memory writing and
erasing operations. OM maps the latent syntax into
a T × N memory grid M̃ , where T is the length
of input sequence and N is the maximum number
of memory slots. Figure 2 gives an intuition of
what the grid contains. Empty blocks in the figure
represent memory slots that can be discarded dur-
ing inference. Ideally, the memory network should
generate the t-th column of the grid M̃t at time step
t. But generating M̃t requires the model to have ac-
cess about the tree structure which is usually latent.
For this reason, OM induces the latent structure
through inductive biases of its reading and writing
operations.

As a recurrent model, OM performs one-step
look-ahead incremental parsing through maintain-
ing three states:

• Memory Mt: a matrix of dimension N ×D,
where each occupied slot is a distributed repre-
sentation for a node spanning an subsequence
in x1, .., xt−1 conditioned on xt, i.e. Mt repre-
sents a one-step look-ahead parser stack. It’s
represented by gray blocks in Figure 3.
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(a) The transition from time step 4 to 5. 1 The one-step look-
ahead parser combines M̂t−1 and Mt−1 considering on the
current input xt, in this example, the split point of M̂t−1 and
Mt−1 is i = 2. 2 Current input xt is written into the lower
slot of new candidate memory M̂ i−1

t . 3 The rest of new can-
didate memories M̂≥i

t are generated with bottom-up recurrent
composition.

(b) Predicting the next token at time step 4. 1 The zero-
step look-ahead parser combines Mt and M̂t at time step
t. 2 The recurrent network takes the combined memory
Mout

t as input and output a hidden state ht = f(w≤t). 3
ht is then fed into an linear layer to compute p(xt+1|x≤t).

Figure 3: The recurrent transition (left) and prediction network (right) of SOM. In the recurrent transition, a one-
step look-ahead parser predict the syntax once e is observed and can be seen as a posterior over the syntax given
the current word. The prediction network uses a zero-step look-ahead parser to predict the location of the next
phrase and acts as a prior on the syntactic structure.

• Candidate memory M̂t: a matrix of dimen-
sion N × D contains representations for all
possible new nodes at time step t. At next
time step t+ 1, the model will decide whether
or not to write these candidates into memory
Mt+1 conditioned on xt+1. They are repre-
sented by orange blocks in Figure 3. if the
model is making correct parsing decisions,
then Mt = M̃t−1.

• Memory mask −→π t: −→π t ∈ {0, 1}N , where
each entry indicates whether the respective
slot in M̂t is occupied by a candidate, e.g., if
−→π t = (0, 1, 1), then the occupied slots are
M̂≥2

t . At next time step, the model can only
choose a candidate from masked slots to write
into the memory Mt+1.

At each time step, the model takes
[Mt−1, M̂t−1,

−→π t−1] and word embedding
xt as inputs, returning the outputs [Mt, M̂t,

−→π t].
To generate the new memory Mt, we combine

Mt−1 and M̂t−1 to match M̃t−1. The model uses
xt as its query to attend on previous candidates
M̂t−1. The attention distribution is pt, which mod-
els the split point of gray blocks and orange blocks
in Figure 2. Suppose pt is a one-hot distribution
and pit = 1. The candidates M̂≤it−1 are written into
the respective memory slot M≤it , while M>i

t−1 are
copied to M>i

t :

M≤it = M̂≤it−1, M>i
t = M>i

t−1 (1)

We will refer to the process of generating Mt as
a one-step look-ahead parser, since the model is
using the current input xt as extra information to
build the partial parse for time step t− 1. To gener-
ate new candidates M̂t, the input embedding xt is
written into M̂ i−1

t , and M̂≥it are computed recur-
rently with eq.3:

M̂<i−1
t = ∅, M̂ i−1

t = xt (2)

M̂ j
t = cell(M j

t , M̂
j−1
t ), ∀j ≥ i (3)

where cell() is the composition function that takes
its childrens’ representations as input and output
the parent’s representation. The non-empty slots in
candidate memory are then M̂≥i−1

t , and they can
be masked by:

−→π <i−1
t = 0, −→π ≥i−1

t = 1 (4)

In other words,−→π i
t =

∑
j≤i+1 p

j
t , and−→π i

t is mono-
tonically increasing. More details of the OM can
be found in Shen et al. (2019).

4 Syntactic Ordered Memory

We propose two augmentations to OM in order to
better perform language modelling and incremental
parsing: a prediction network and the dynamic ora-
cle. a) Previous language models mostly focus on
predicting the next token or a missing token. In our
case, we are explicitly modeling the latent struc-
ture. By predicting the structure for the next token,
we exploit this latent structure for word prediction.
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This helps the model better organize information
for predicting next word, allowing shortcuts to be
created for long-term dependencies, as shown in
Fig.1. b) If the model only observes states result-
ing from correct past decisions at training time, it
will not be prepared to recover from its own mis-
takes during prediction, suffering from exposure
bias (Schmidt, 2019; Fried and Klein, 2018). In
the experiment section, we demonstrate how this
phenomenon will significantly hurt the language
model performance and, to a lesser extent, also hurt
the parsing performance.

4.1 Prediction Network

At time step t, the prediction network takes
[Mt, M̂t,

−→π t] as input, and produces a probabil-
ity distribution over the next token p(wt+1|w≤t).
To do this, we need to have a temporary estimate
of the local structure. We therefore need to approx-
imate pt+1 with a zero-step look-ahead prediction
p′t:

αi
t =

wAtt
2 ReLU

(
WAtt

1 M̂ i
t + b1

)
+ b2

√
N

(5)

p′t = masked_softmax(αt,mask = −→π t) (6)

where WAtt
1 is N × N weight matrix, wAtt

2 is
a N dimension weight vector, and αi

t is a scalar.
We then sample the slot at index i from the dis-
tribution p′t. i is the zero-step look-ahead pars-
ing decision, which means that the next phrase
will be a sibling of node M̂ i

t . We therefore need
to predict the next token conditioned on M̂ i

t and
its previous contexts. So we feed memory slots
[MN

t ,M
N−1
t , ...,M i+1

t , M̂ i
t ] into a recurrent neu-

ral network:

ht = RNN
(
MN

t ,M
N−1
t , ...,M i+1

t , M̂ i
t

)
(7)

where ht is the final hidden state of the RNN. As
shown in Figure 3b, the input sequence are repre-
sentations of non-overlapping subtrees spanning
from x1 to xt. ht can therefore be seen as a dis-
tributed representation of the sequence w≤t. In
the RNN, we use the same architecture as the cell
function in OM to model the recurrent transition

function:
fj
ij
cj
uj

 = WCell
2 ReLU

(
WCell

1

[
hj+1
t

Mj

]
+ b1

)
+ b2

(8)

hjt = LN(σ(fj)� hj+1
t + σ(ij)�Mj + σ(cj)� uj)

(9)

where σ is the sigmoid function, LN is layer nor-
malization function, fj , ij , cj are controlling gates,
cj is cell state, and hN+1

t is a zero vector. After
obtaining ht, we can compute the distribution over
the next token and the language modelling loss:

p(wt+1|w≤t) = softmax(Wembht + b) (10)

LLM = −
∑
t

log(p(wt+1|w≤t)) (11)

4.2 Dynamic Oracle for SOM

Data: θ1, ..., θT , Γ
Result: ξ1, ..., ξT
initialize ξ1 = N ;
for i← 2 to T do

j = first_siblingΓ(i);
µi = max(θj+1, ..., θi−1);
ξi = max(ξj − 1, µi);

end
Algorithm 1: The structure label generation algo-
rithm, where Γ is the ground-truth tree and θi is the
structural decisions made by our model. This algo-
rithm produces a parse close to the original given
the errors already made, and that new gold parse is
converted into grid decisions. Given Γ, the func-
tion first_siblingΓ(i) returns the index of the
first token in the smallest clause that contains wi,
and where wi is not the first token. Ideally, wi

should be written into the slot (ξj − 1). For ex-
ample, in Figure 2, c is written into the slot 2, then
d, e should be written into the slot 1. However, the
model could make a wrong decision between wj

and wi. If the model has merged information from
wj into a higher slot µi, xi should be written into
slot µi as well.

One way to provide a supervision signal for pt
and p′t is to train the parser with static oracle: feed
the gold tree to the model, and have the model pre-
dict future decisions. However, static oracle makes
the language model overfit on the gold tree, result-
ing in bad perplexity scores (Table 2). Inspired
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Type Max Median Mean
Constituency 29 7 7.7
Dependency 16 4 4.2

Table 1: Statistics of tree depth for Penn Treebank. De-
pendency trees are converted from constituency tree
with Stanford Corenlp toolkit.

Figure 4: The universal dependency tree is converted
into a constituency tree Γ through merging the head and
its children into one single constituent. Since the grid
view only works with binary trees, we binarize n-ary
nodes with a left branching bias.

by the dynamic oracles proposed in (Goldberg and
Nivre, 2012; Coavoux and Crabbé, 2016), we pro-
pose a dynamic oracle for ordered memory, which
dynamically changes the reference structure based
on mistakes made by our model on previous steps.
To do this, we build the structure label for each time
step based on the gold tree and previous decisions
made by the model. During training, we sample
the model’s decision from pt:

θt = Multinomial(pt) (12)

and we make greedy decisions during evaluation:

θt = argmax(pt) (13)

The same operations are applied to p′t as well.
We use the Algorithm.1 to convert the gold tree

Γ into labels ξt for pt. Since the zero-step look-
ahead distribution p′t should match the one-step
look-ahead distribution pt+1 at next time step t+ 1,
we use ξt+1 as label for p′t. The structure loss is
the negative log-likelihood:

LS = −
∑
t

(
log(pt(ξt|w≤t)) + log(p′t(ξt+1|w≤t))

)

For our model, the depth of Γ has a linear re-
lation to the computational complexity and GPU
memory consumption. To maximize the model’s
efficiently, the gold tree Γ is constructed from uni-
versal dependency trees.1 There are two reasons

1https://universaldependencies.org/

we chose universal dependency trees instead of
constituency trees: 1) In Table 1, the dependency
trees are on average shallower than constituency
trees; this means faster computation time and less
memory consumption for our model. 2) Univer-
sal dependency trees can be applied to many more
languages than Penn Treebank-style constituency
grammar. Additionally, Penn Treebank-style trees
can easily be converted to universal dependency
trees. As shown in Figure 4, we convert the uni-
versal dependency tree into Γ by merging the head
and its children into one single constituent.

5 Experiments

We present the results of SOM on language model-
ing, syntactic generalization, and incremental pars-
ing. Details of hyperparameters and experiment
settings can be found in Appendix B.

5.1 Language Modeling
Penn Treebank has one million words of 1989
Wall Street Journal corpus annotated with con-
stituency trees. Since SOM primarily focuses on
sentence-level structure and language modeling,
we use the same preprocessing schema as RNNG2

(Dyer et al., 2016). Sentences are modeled sepa-
rately, punctuation is retained, and singleton words
are replaced with the Berkeley parser’s mapping
rules3, resulting in 23,815-word types. Ortho-
graphic case distinction is preserved, and numbers
(beyond singletons) are not normalized.

BLLIP is a large Penn Treebank-style parsed cor-
pus of approximately 24 million sentences. We
train and evaluate SOM on three splits of BLLIP:
BLLIP-XS (40k sentences, 1M tokens), BLLIP-
SM (200K sentences, 5M tokens), and BLLIP-MD
(600K sentences, 14M tokens). They are obtained
by randomly sampling sections from BLLIP 1987-
89 Corpus Release 1. All models are tested on a
shared held-out tested set.

Following the settings provided in (Hu et al.,
2020), datasets are preprocessed into two differ-
ent versions. The first setting is similar to the
PTB dataset. Singleton words are mapped to UNK
classes that preserve fine-grained information, such
as orthographic case distinctions and morpholog-
ical suffixes (e.g. UNK-ed, UNK-ly). The sec-
ond setting use subword-level vocabulary extracted

22-21 for training, 24 for validation, 23 for evaluation.
3http://github.com/slavpetrov/

berkeleyparser

https://universaldependencies.org/
http://github.com/slavpetrov/berkeleyparser
http://github.com/slavpetrov/berkeleyparser
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Model # parameters ppl p acc UF1 p′ acc

SOM 17.7M 77.68 0.927 87.96 0.870
SOM − Prediction network 13.0M 83.63 0.923 87.09 –
SOM − Prediction network − Language Modeling Loss 13.0M – 0.925 86.26 –
SOM − Dynamic Oracle + Static Oracle 17.7M 129.27 0.913 86.58 0.849
SOM − Dynamic Oracle + Left-branching Oracle 17.7M 82.01 – – –

Inference with External Trees
SOM − Predicted tree + Gold tree 17.7M 60.87 0.947 100.00 0.884

Table 2: Ablation tests on the PTB dataset. “p acc” and “p′ acc” are the prediction accuracies of the one-step
look-ahead and zero-step look-ahead parsers respectively. “UF1” is the parsing performance with respect to the
converted constituency tree Γ. “− Prediction network”: this model uses the last candidate memory slot M̂N

t

to predict the next token, instead of using the ht from the prediction network. “− Predicted tree + Gold tree”:
the model’s parsing decisions were replaced with ground truth decisions; these results can be considered as the
performance upper bound of SOM.

Model PTB

Without annotations
RNNLM 93.2
PRPN (Shen et al., 2017) 96.7
URNNG (Kim et al., 2019) 90.6

With annotations
RNNG (Dyer et al., 2016) 88.7
RNNG→ URNNG (Kim et al., 2019) 85.9
SOM 77.7

Table 3: Perplexities on Penn Treebank datasets. With
annotations are models that use the gold tree as super-
vision signal during training. Baseline results are from
Kim et al. (2019)

.

Model XS SM MD

n-gram 240.21 157.60 106.09
RNNG 122.46 86.72 69.57
LSTM 98.19 65.52 59.05
ON-LSTM 71.76 54.00 56.37
GPT-2 529.90* 183.10* 37.04*
SOM 70.41 51.47 31.95*

Table 4: Perplexities on BLLIP datasets achieved by
different models. Perplexity scores across training
dataset sizes are not strictly comparable for models that
use word-level vocabulary. * results are using GPT-2’s
subword vocabulary.

from the GPT-2 pretrained model rather than the
BLLIP training corpora.

Results of language modeling are given in Ta-
ble 3 and Table 4. SOM consistently outper-
forms both the annotated model and non-annotated
models. While GPT-2 seems to fail to learn on
smaller datasets, SOM still outperforms GPT-2 on
the BLLIP-MD dataset with far fewer parameters
(34.8M vs 124.4M), and achieves comparable re-
sults with the GPT-2 that is trained on a 3 times
larger dataset BLLIP-LG (Hu et al., 2020).

The ablation test results are shown in Table 2.

The biggest performance drop comes from replac-
ing the dynamic oracle with static oracle. We be-
lieve that this is due to the model overfitting on
the gold tree, and suffering from exposure bias as
a result. Another big performance drop happens
after removing the prediction network. This sug-
gests that predicting the attaching nodes of the next
phrase with the zero-step look-ahead parsers helps
to predict the next token. Replacing the gold tree
labels with trivial left-branching tree labels also
hurts the perplexity. This suggests that learning
syntactic structure helps language modeling.

5.2 Syntactic Generalization
Syntactic Generalization (SG) test suites evaluate
the syntactic knowledge of neural language mod-
els. Hu et al. (2020) proposed a set of 34 test
suites to evaluation 6 different aspects of syntax: 1)
agreement, 2) licensing, 3) garden-path effects, 4)
gross syntactic expectation, 5) center embedding,
6) long-distance dependencies.

Following their settings, we evaluate our lan-
guage models trained on the BLLIP datasets. Lan-
guage models are presented with a group of sen-
tences with minor differences. To pass each test,
the model needs to assign higher conditional prob-
abilities to designated phrases in the sentence that
are more grammatical.

Figure 6 shows the average accuracy over all
model on the complete set of SG test suites. SOM
achieves the best average accuracy, outperforms
models with hierarchical structure bias (RNNG,
ON-LSTM), and transformer-based model (GPT-
2). However, according to Figure 8a in Appendix
C.1, GPT-2 trained on BLLIP-LG and BLLIP-MD
still outperform SOM. This could due to that the
number of parameters in SOM is largely falling
behind GPT-2.
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Figure 5: Evaluation results on all models, split across test suite circuits.

SOM GPT-2 RNNG ON-LSTM
LSTM n-gram
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e

Figure 6: Average SG accuracy by model class.

Figure 5 provides fine-grained results on six SG
classes. SOM achieves strong performance on li-
censing, gross syntactic state, center embedding,
and long-distance embeddings. These classes re-
quire the model to keep track of syntactic features
across large syntactic chunks (e.g., relative or sub-
ordination clauses). SOM can effectively keep
this long-term information in higher-level memory
slots, and revisit the information after the clause in
the middle is ended. More detailed results can be
found in Appendix C.1.

5.3 Incremental Parsing

Model UF1

PRPN* 41.2
ONLSTM* 47.7
ONLSTM-SYD (Du et al., 2020) 61.3
Incremental Shift-reduce Parser 56.82
Shift-reduce + LM + Dynamic Oracle 58.04
SOM 67.27

Oracle Binary Trees 82.5

Table 5: Incremental parsing results on the standard
PTB constituency trees. “*” means that the model is
doing unsupervised grammar induction. Since we com-
pare UF1 against the standard, nonbinarized trees (per
convention), UF1 scores is upper bounded by the oracle
binary trees score.

To evaluate SOM’s performance on incremental
parsing, we trained and evaluated our models on
the standard PTB constituency trees. Baseline mod-
els include: a) a standard incremental shift-reduce
parser with one-step look-ahead; b) a incremental
shift-reduce parser that equipped with our predic-

tion network and trained on same dynamic oracle
and language model loss as our model; c) a re-
cently proposed ONLSTM-SYD model (Du et al.,
2020) that is also trained on both language model
and parsing loss; d) unsupervised ONLSTM; e)
unsupervised PRPN. As shown in Table 5, SOMs
outperform all baseline models, including the shift-
reduce parser that has the same extra components
as SOMs. For language modelling performance,
original constituency tree based models achieve
similar perplexity as dependency tree based coun-
terparts. But constituency tree based models re-
quire 2× GPU time and memory to train and eval-
uate.

For ablation test, we also compare parsing results
given by SOM with binary constituency trees Γ
converted from universal dependency trees.4 These
results are shown in Table 2. We observe that using
static oracle instead of dynamic oracle results in the
worst parsing performance. This suggests that our
dynamic oracle helps the model to learn a better
parser. After removing the language model loss,
the UF1 drops 1.7 points. This suggests that the
language model loss helps the model to learn better
representations for syntax.

6 Conclusion

In this work, we propose a new language model
with an integrated incremental parser. This was
done by augmenting the Ordered Memory model
with a prediction network, and by using a dynamic
oracle for training it to perform incremental parsing.
The resulting model models the joint distribution
of syntactic structure and sequence words. We
find that by using the dynamic oracle and explic-
itly modeling the syntax, we can achieve strong
performance on language modelling and syntactic
generalization and both these techniques are crucial
in the model’s performance.

4UF1 scores are computed by EVALB https://nlp.
cs.nyu.edu/evalb/

https://nlp.cs.nyu.edu/evalb/
https://nlp.cs.nyu.edu/evalb/
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A Disentangling Semantic and Syntactic
representations

Given the architecture of our model, we can easily
disentangle the language model information flow
and parsing information flow. Figure 7 illustrates
the disentangled information and gradient flows in
our model. The language model depends on both
prior context and structural inputs, and derivatives
are computed with respect to both of these inputs
and backpropagated. However, while the structure
also depends on both inputs, we limit backprop-
agation so that it can only update with respect to
the syntactic input. This is because we want the
parsing component to function independently of
the language modelling component, but still lever-
age the semantic information to deal with syntactic
ambiguity.

Figure 7: The schema of disentangling syntax from the
language model. Solid lines represent dependency dur-
ing inference, and gradients flow back during backprop-
agation. The dashed line represents the dependency
during inference, but detached so that the gradients do
not flow back during backpropagation.

It is possible that existing model architectures
could implicitly learn to split these representations,
even without the explicit disentanglement that we
proposed here. Yet, Table 2 shows that entangled
model can actually achieve stronger in-domain per-
formance, thanks to the liberty to allocate capacity
to the two different functionalities based on the
training set.

To do so, we propose splitting word embeddings,
memory slots, and intermediate hidden states into
two segments: semantic segment and syntactic seg-
ment. We then replace linear layers in our cell
functions with the following function:[

ysem
ysyn

]
=

[
Wsem2sem Wsyn2sem

0 Wsyn2syn

] [
xsem
xsyn

]
where ysem and xsem are the semantic segment
which is optimized to minimize language model-
ing loss, ysyn and xsyn are the syntactic segment
which is optimized to minimize both parsing and
language modeling loss. This architecture results
in the solid lines in Figure 7. Additionally, layer
normalization functions are replaced with two sep-
arate functions for the two segments respectively.

Meanwhile, pt still depends on both semantic and
syntactic segment, but the structural loss does not
backpropagate into the semantic segment:

pt = f(xt,sem, xt,syn, M̂t,sem, M̂t,syn) (14)
∂pt

∂xt,sem
= 0,

∂pt

∂M̂t,sem

= 0 (15)

and the same for p′t:

p′t = f(M̂t,sem, M̂t,syn) (16)

∂p′t

∂M̂t,sem

= 0 (17)

This gradient detachment is represented by the dash
line in Figure 7. In the experiment section, the
disentangled models are denoted as dSOM, and
entangled models are denoted as SOM. For dSOM,
the dimension of semantic and syntactic segments
for memory slots are denoted asDsem andDsyn re-
spectively. Among the proposed models, the eSOM
has the best performance on the in-domain test sets.
Appendix C.2 shows that the dSOM slightly outper-
forms eSOM in perplexity on out-of-domain test
sets.

B Hyperparameters

Model XS SM MD
RNNG 22.8M 48.4M 81.1M
LSTM 13.4M 30.5M 52.2M

ONLSTM+AWD 30.8M 44.2M 61.2M
GPT-2 124.4M 124.4M 124.4M
dSOM 16.4M 39.5M 34.8M
eSOM 17.8M 41.4M 37.9M

Table 6: Parameter counts for different models

Dropout is applied before all linear layers in
our model. They all share the same dropout rate,
except the dropout before language model output
layer has a different rate. We also applied embed-
ding dropout which randomly set some embedding
vectors to 0. Hyperparameters are chosen based on
the perplexity on validation set.

C More Experiment Results

C.1 Syntactic Generalization results
C.2 Out of Domain Evaluation

Out-of-domain Test set contains testsets from
other English universal dependencies treebanks. It
contains corpora of different genres, including aca-
demic, email, blog, fiction, legal, news, etc. We
use these datasets to test the generalization ability
of models that are trained on PTB.
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Dataset Dsem Dsyn #slots embedding dropout dropout output dropout
PTB 300 100 15 0.1 0.3 0.5

BLLIP-XS 300 100 15 0.1 0.3 0.5
BLLIP-SM 400 100 15 0.1 0.2 0.2

BLLIP-MD-BPE 400 100 15 0 0.1 0.1

Table 7: Hyperparameters. The hidden size of eSOM models are always the sum of Dsem and Dsyn
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Figure 9: Left: Model class has a trong effect on SG scores. Right: Data scale has little effect on SG scores

Dataset GUM EWT ParTUT LinES Pronouns PUD SG
Metric ppl UF1 ppl UF1 ppl UF1 ppl UF1 ppl UF1 ppl UF1 acc

eSOM 351.5 67.0 400.7 73.1 282.6 76.5 253.3 67.2 552.1 87.1 281.0 75.6 0.614
dSOM 350.3 66.4 403.0 72.3 269.8 74.3 252.1 66.6 565.8 87.3 280.3 75.1 0.581
LB 375.5 – 436.5 – 300.9 – 267.5 – 620.4 – 300.7 – 0.513

Table 8: Out of domain test results. Models are trained on PTB. The test sets are obtained from English universal
dependencies treebank. “LB” stands for left-branching tree labels. Thanks to the structure information, our models
generalize much better then the left-branching baseline.
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