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Abstract

External syntactic and semantic information
has been largely ignored by existing neural
coreference resolution models. In this pa-
per, we present a heterogeneous graph-based
model to incorporate syntactic and semantic
structures of sentences. The proposed graph
contains a syntactic sub-graph where tokens
are connected based on a dependency tree, and
a semantic sub-graph that contains arguments
and predicates as nodes and semantic role la-
bels as edges. By applying a graph atten-
tion network, we can obtain syntactically and
semantically augmented word representation,
which can be integrated using an attentive in-
tegration layer and gating mechanism. Experi-
ments on the OntoNotes 5.0 benchmark show
the effectiveness of our proposed model.!

1 Introduction

Coreference resolution is a core task in NLP, which
aims to identify all mentions that refer to the same
entity. Coreference encodes rich semantic infor-
mation which has been successfully applied to im-
prove many downstream NLP tasks (Luan et al.,
2019; Wadden et al., 2019; Dasigi et al., 2019; Sto-
janovski and Fraser, 2018).

Impressive progress has been made in recent
years since the introduction of the first end-to-end
neural coreference resolution model (Lee et al.,
2017) by utilising contextualized embeddings from
large pretrained language models (Joshi et al., 2019,
2020; Kantor and Globerson, 2019; Wu et al., 2020)
such as ELMo (Peters et al., 2018) and BERT (De-
vlin et al., 2019). Rich language knowledge en-
coded in these pretrained models has largely allevi-
ated the need for syntactic and semantic features.
However, such information has been shown to ben-
efit BERT based models on other tasks (Nie et al.,
2020a; Wang et al., 2020; Pouran Ben Veyseh et al.,

"https://github.com/Fantabulous-J/coref-HGAT

2020). Therefore, we believe such information
could also benefit the coreference resolution task.

In this paper, we propose a neural coreference
resolution model based on Joshi et al. (2019),
which we extend by incorporating external syn-
tactic and semantic information. For syntactic
information, we use dependency trees to capture
the long-term dependency exists among mentions.
Kong and Jian (2019) has successfully incorpo-
rated structural information into neural models,
but their model still requires the design of com-
plex hand-engineered features. In contrast, our
model is more flexible, using a graph neural net-
work to encode syntax in the form of dependency
trees. For semantic information, we adopt semantic
role labelling (SRL) structures. SRL labels capture
who did what to whom and it is effective in pro-
viding document-level event description informa-
tion, which allows us to better identify the relation-
ship between event mentions. Previous statistical
coreference systems have successfully integrated
such information (Ponzetto and Strube, 2006; Kong
et al., 2009), but their effectiveness has not been
examined in neural models.

Moreover, inspired by recent progress made in
document-level relation extraction (Christopoulou
et al., 2019), we encode both syntactic and seman-
tic information in a heterogeneous graph. Nodes of
different granularity are connected based on the fea-
ture structures. Node representations are updated
iteratively through our defined message passing
mechanism and incorporated into contextualized
embeddings using an attentive integration module
and gating mechanism. We conduct experiments
on the OntoNotes 5.0 (Pradhan et al., 2012) bench-
mark, where the results show that our proposed
model significantly outperforms a strong baseline.

2 Baseline Model

Our model is based on the c2f-coref model (Lee
et al., 2018) which enumerates all text spans as
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potential mentions and prunes unlikely spans ag-
gressively. For each mention 7,> the model learns a
distribution over its possible antecedents )(7):

es(i:y)
2yeya et

where the scoring function s(7, j) measures how
likely span ¢ and 7 comprise valid mentions and
corefer to one another:

P(y) = (1

s(i,4) = sm (i) + sm(j) +sc(i,5) ()
sm (1) = FFNNp, (gi) 3)

Sc(l’]) = FFNNC(gl’gj7¢(7’7])) (4)

where g; and g; are span representations formed
by the concatenation of contextualized embeddings
of span endpoints and head vector using attention
mechanism. FFINN represents the feedforward
layer, ¢(i, j) are meta features including span dis-
tance and speaker identities, and s, and s, are the
mention score and pairwise coreference score.

3 Proposed Model

Figure 2 shows the architecture of our proposed
model, where the key components are presented
in blue and orange backgrounds. Other parts fol-
low Lee et al. (2018) (see §2) except that we use
SpanBERT (Joshi et al., 2020) as the document en-
coder and discard the higher-order span refinement
module as suggested by Xu and Choi (2020).

3.1 Node Construction

There are three types of nodes in our heterogeneous
graph: token nodes (T), argument nodes (A) and
predicate nodes (P). The representation of token
nodes and predicate nodes is the contextualized
embeddings from the SpanBERT encoder, denoted
as h,, and h,, respectively. The representation of
an argument node is formed by averaging the em-
beddings of the tokens it contains, denoted as h,,.

3.2 [Edge Construction

Edges are constructed based on feature structures.
An example is shown in Figure 1.

Token-Token Edges are constructed according
to dependency tree structures. Specifically, there
will be a directed edge between two token nodes
starting from head to dependent if they are con-
nected, with edges being the corresponding depen-
dency labels. A self-loop edge with cyclic label is

%4 is a span with one or more tokens.
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Figure 1: An example of our proposed Syntactic and
Semantic based Heterogeneous Graph.

also added to each node in the graph. Besides, we
also link the root nodes of two adjacent sentences
to allow cross-sentence interaction.

Token-Argument Argument nodes are linked to
token nodes they contain. The edge is unlabelled
but bidirectional to allow token-level information to
augment the averaged representation of arguments
and propagate semantic information back to tokens.

Predicate-Argument Argument nodes are con-
nected to predicate nodes they belong to with edges
being the corresponding SRL labels. The edge is
made bidirectional to allow mutual information
propagation. Predicates can be regarded as inter-
mediate nodes to allow each argument to aggregate
information from other arguments with the same
predicate.

3.3 Graph Attention Layer

We use a Graph Attention Network (Velickovié
et al., 2018) to propagate syntactic and semantic
information to basic token nodes. For a node i,
the attention mechanism allows it to selectively
incorporate information from its neighbour nodes:

TI[Wh;; Whj;e;j]))  (5)

h} = [|f2;ReLU(D _ of, WFh;) (6)
J

a;j = softmax(o(a

where h; and h; are embeddings of node 7 and j,
a”, W and W* are trainable parameters. e;; is the
embedding of edge label type between node ¢ and
7 based on graph structures, o is the LeakyReLLU
activation function. || and [; ] represent the concate-
nation operation. Egs. 5 and 6 are designated as an
operation h = GAT(h;, h;), where h; and h; are
the embeddings of target and neighbour node and
h! is the updated embedding of target node.
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Figure 2: The architecture of our proposed model.

3.4 Message Propagation

To make each node embedding more informative,
we update all nodes in the graph multiple times
via our designed message passing path. First, we
update token nodes using neighbour token nodes
connected through dependency syntactic edges:

h!, = GAT(hl; !, bl ) (7)

where h!;"! is the token representation in previous
layer [ — 1, h!, is the updated representation in
current layer [ and h? is the SpanBERT encoding.

In parallel, we update the argument using the
token representation; then the updated argument
is used to update the predicate features; after that,
the updated predicate nodes propagate information
back to their connected argument nodes; finally,
the updated argument nodes distribute the represen-
tation to all connected basic token nodes:

GAT(hl‘l, hi ") ®)
GAT(h. ', hl) )
GAT(h/,hl) (10)

(

= GAT(h; 1 hl) (11)

After L iterations, we can get the final syntax and
semantics-enhanced token representation, which
can be denoted as h? and h? , respectively.

3.5 Attentive Integration Layer

Since attention mechanisms are effective in choos-
ing the most relevant information (Nie et al.,

2020a,b), we use an attentive integration layer to
selectively incorporate the syntactic and seman-
tic information. For each type of information
h¢ € {h? h%}, we concatenate it with initial
token representation h? and use the concatenation
to compute the importance score of h¢, to h¥ :

a. = softmax(FFNN.([h:hS]))  (12)

where FFININ, is a one-layer feedforward network
with sigmoid activation function for information
type c (either Dep or SRL). After obtaining the
valid attention weights using softmax function, we
could compute the weighted average sum of both
syntactic and semantic information:

Z achy,

ce{d,s}

(13)

Since the extra syntactic and semantic information

is not always useful, we use a gate to leverage such
information dynamically:

f=0(Wg- [h?m

! 0

h,=f®h,

o] +by)
+(1-f)oo

(14)
5)

where W and by, are trainable parameters, © rep-
resents element-wise multiplication and o is the
logistic sigmoid function.

Finally, the augmented token representation h/,
can be used to form span representation and com-
pute pairwise coreference score as in Section 2.

4 Experiments

Dataset We evaluate our model on the English
OnotoNotes 5.0 benchmark (Pradhan et al., 2012),
which consists of 2802, 343 and 348 documents in
the training, development and test data sets.

Implementation Details We reimplement the
c2f-coref+SpanBERT" baseline using PyTorch and
use the Independent setup for long documents. For
graph encoders, the number of heads of syntactic
and semantic sub-graphs is 4 and 8 for base and
large model, respectively. We set the size of edge
label embeddings to 300 and use 2 GAT layers for
both sub-graphs. More details are in Appendix A.

Results The main evaluation is the average F1
of three metrics — MUC, B? and CEAF¢, on the
test set using the official CoNLL-2012 evaluation
scripts.* Table 1 shows the results of coref-HGAT

*https://github.com/mandarjoshi90/coref
*http://conll.cemantix.org/2012/software.html
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MUC B? CEAF,,
P R F1 P R Fl P R F1 Avg. F1
e2e-coref (Lee et al., 2017) 784 734 758 68.6 61.8 650 62.7 59.0 60.8 67.2
c2e-coref (Lee et al., 2018) 814 79.5 804 722 69.5 70.8 682 67.1 67.6 73.0
EE (Kantor and Globerson, 2019) 82.6 84.1 834 733 762 747 724 7T1.1 718 76.6
SpanBERT-base (Joshi et al., 2020) 84.3 83.1 83.7 762 753 758 746 712 729 77.4
Our baseline + SpanBERT-base* ' 83.6 839 837 751 76.5 758 742 71.6 72.9 77.5(40.1)
coref-HGAT + SpanBERT-base 85.1 845 848 774 772 773 755 733 744 78.8(+0.1)
SpanBERT-large (Joshi et al., 2020) 85.8 84.8 853 783 779 78.1 764 742 753 79.6
Our baseline + SpanBERT-large*? 857 85.6 85.6 785 787 78.6 765 75.0 75.7 80.0(%0.1)
coref-HGAT + SpanBERT-large 86.8 863 865 80.0 79.7 79.8 78.0 759 769 81.1(+0.2)
CorefQA (Wu et al., 2020) 88.6 874 88.0 824 82.0 822 799 783 79.1 83.1

Table 1: The results on the test set of the OntoNotes English shared task compared with previous systems. The
main evaluate metric is the averaged F1 of MUC, B? and CEAF#,. * indicates our reimplemented baseline. f
indicates average performance over 5 runs using different random seeds.

Avg. F1 AF1
Baseline 71.5 -
+ Dep 78.5 +1.0
+ SRL 78.4 +0.9
+ Dep & SRL 78.8 +1.3
GAT Layer =1 78.5 -0.3
GAT Layer =2 78.8 -
GAT Layer =3 78.6 -0.2

Table 2: The Avg. F1 of coref-HGAT Base model by
adding different features and stacking different number
of GAT layers on the test set.

+SpanBERT-base and large model compared with
previous work. Our model consistently outper-
forms the SpanBERT baseline (Joshi et al., 2020)
on all three metrics with an improvement of 1.4%
and 1.5% on Avg. F1 score respectively, as well
as our reimplemented baseline (+1.3% and +1.1%),
which is a substantial improvement by consider-
ing the difficulty of this task. This demonstrates
the effectiveness of our heterogeneous graph-based
method in leveraging syntactic and semantic fea-
tures and such features are indeed useful in neural
methods. Note that we also show the current state-
of-the-art CorefQA model (Wu et al., 2020), which
uses span-prediction paradigm to compute pairwise
coreference scores. The model is compatible with
our method, i.e. adding our proposed graph atten-
tion and attentive integration layer on top of their
document encoder with minor modification. The
reason why we did not use it as a start baseline is
due to hardware limitations since it requires 128G
GPU memory for training.

Dep SRL F1 +4AF1
Baseline - - 77.5 -
Stanford CoNLLO5-SRL 78.1 +0.6
Stanford CoNLL12-SRL 78.2  +0.7
Biaffine CoNLLO5-SRL 78.2  +0.7
Biaffine CoNLL12-SRL 784 +0.9

Table 3: The Avg. F1 of coref-HGAT+Base model with
predicted features against the baseline.

Ablation Study We perform ablation study on
the test set to investigate the contribution of dif-
ferent features in our model, with results shown
in Table 2. We can see that both dependency fea-
tures and SRL labels individually contribute to the
success of our final model with minor difference
(+1.0% and 0.9%), and the gains are complemen-
tary to each other.

Effect of #Graph Layers From Table 2, we can
see that both using one layer and three layers hurt
model performance. This indicates that first-order
information is not effective in capturing long-range
dependencies while third-order information may
cause overfitting due to too much model capacity.

Effect of Feature Quality To evaluate how the
quality of features will affect the performance, we
use the biaffine dependency parser (Dozat and Man-
ning, 2017) and SRL parser (Shi and Lin, 2019)
(denoted as CoNLLI2-SRL) implemented by Al-
lenNLP (Gardner et al., 2018) as well as the Stan-
ford Parser (Chen and Manning, 2014) to extract
features. The biaffine parser has roughly 3% LAS
improvements compared to the Stanford CoreNLP
parser on Penn Treebank. Moreover, in order to
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Doc length #Docs Baseline Ours —+AF'1
0-128 57 82.9 854 425
129-256 73 81.8 83.1 +1.3
257-512 78 82.2 832 +1.0
512-768 71 77.7 782  +0.5
769 - 1152 52 76.8 78.6  +1.8
1153+ 12 67.5 703  +2.8
All 343 77.8 79.2  +14

Table 4: The Avg. FI on the development set of
the SpanBERT-base model and our core-HGAT+Base
model, broken down by document length following Xia
et al. (2020).

evaluate the impact of different SRL parsers, we
also implemented the same model from Shi and Lin
(2019) but trained on the CoNLL 2005 dataset (Car-
reras and Marquez, 2004) (denoted as CoNLLO5-
SRL), which achieves an F1 of 81.9% on the out-
of-domain setting. From Table 3, we observe that
better parsers and parsers trained in closer domains
result in higher Avg. F1 score, with improvements
of up to 0.9%. Meanwhile, although our model suf-
fers a performance drop from imperfect features, it
can still achieve robust performance, outperform-
ing the baseline with at least 0.6% improvement.
Overall, high-quality features are important to good
performance of the proposed model.

Document Length In Table 4, we show the per-
formance of our model against the baseline on the
development set as a function of document lengths.
As expected, our model consistently outperforms
the baseline model on all document sizes, espe-
cially for documents with length larger than 765
tokens. This demonstrates that the incorporated ex-
ternal syntax and semantics are beneficial for mod-
elling longer dependencies. However, our model
has similar pattern as the baseline model, perform-
ing distinctly worse as document length increases.
This shows that the sentence-level syntax and se-
mantics used in this work are not sufficient enough
to tackle the deficiency of modelling long-range
dependency. One possible solution is to leverage
document-level features such as hierarchical dis-
course structures.

5 Related Work

Graph Neural Networks (GNN) have long been
used for integrating external features of graph struc-
tures into a range of NLP tasks, including semantic
role labelling (Marcheggiani and Titov, 2017) and
machine translation (Bastings et al., 2017). How-

ever, the application of GNN on coreference reso-
lution task is less explored. Xu and Yang (2019)
adopted dependency syntax to improve gendered
pronoun resolution. However, they did not evaluate
their model on larger datasets and identify whether
syntax features are still useful for common corefer-
ence resolution. In this paper, we not only utilise
syntax but also semantic features, and we show
both of them contribute to significant improvement
over a strong baseline on a large standard dataset.

There are many GNN variants. Graph Convolu-
tional Network (GCN) (Kipf and Welling, 2017)
is the most widely-used one and has been shown
to benefit a number of NLP tasks. However, it
lacks the ability of modeling different edge la-
bels including directions and edge types. Al-
though Relational Graph Convolutional Network
(RGCN) (Schlichtkrull et al., 2017) was proposed
to tackle this problem, the way of representing
edge information as label-wise parameters makes
it suffer from over-parameteration problem even
for small sized label vocabularies. In this work,
we use a graph encoder improved based on Graph
Attention Network (GAT) (Velickovic et al., 2018)
to better capture structural syntax and semantics,
as GAT is able to model different types of edges
with few parameters.

6 Conclusion

In this paper, we propose a heterogeneous-graph
based model to enhance coreference resolution by
effectively leveraging dependency tree structures
and SRL semantic features. Particularly, nodes of
different granularity in the graph propagate and ag-
gregate information to and from neighbour nodes
to obtain both syntactically and semantically aug-
mented representation. Moreover, an attention-
based mechanism is used to dynamically aggre-
gate such augmented information. Experiments
on the OntoNotes 5.0 benchmark confirm the ef-
fectiveness of our proposed model with significant
improvement achieved against the strong baseline.
Future work will focus on applying other features,
such as constituent parsing trees and WordNet.
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A Implementation Details

We utilise the Adam Optimizer (Kingma and Ba,
2015) with a gradient clipping of 1.0 and a batch
size of 1 (single document) for both base and large
models. SpanBERT-base and large models are fin-
tuned using learning rates of 2x 10™° and 1 x 1075,
with a warmup scheduler in the first 10% train-
ing steps. We use learning rates of 3 x 10~* and
5 x 10~ for task-related parameters with linear de-
cay decreasing to 0. The training of base model is
conducted on a single Nvidia Telsa V100 GPU with
16G memory while training large model requires
32G memory.

Gold features annotated on the OntoNotes 5.0
dataset are used in the experiment. We use Stanford
CoreNLP toolkit (Manning et al., 2014) to convert
the annotated constituent trees into Stanford de-
pendency trees (de Marneffe and Manning, 2008).
SRL labels are organized in the form of triples:
(p, a,l), which refers to predicate, argument and
label, respectively.
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