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Abstract

Probes are models devised to investigate
the encoding of knowledge—e.g. syntac-
tic structure—in contextual representations.
Probes are often designed for simplicity,
which has led to restrictions on probe design
that may not allow for the full exploitation
of the structure of encoded information; one
such restriction is linearity. We examine the
case of a structural probe (Hewitt and Man-
ning, 2019), which aims to investigate the en-
coding of syntactic structure in contextual rep-
resentations through learning only linear trans-
formations. By observing that the structural
probe learns a metric, we are able to kernel-
ize it and develop a novel non-linear variant
with an identical number of parameters. We
test on 6 languages and find that the radial-
basis function (RBF) kernel, in conjunction
with regularization, achieves a statistically sig-
nificant improvement over the baseline in all
languages—implying that at least part of the
syntactic knowledge is encoded non-linearly.
We conclude by discussing how the RBF ker-
nel resembles BERT’s self-attention layers
and speculate that this resemblance leads to the
RBF-based probe’s stronger performance.

1 Introduction

Probing has been widely used in an effort to bet-
ter understand what linguistic knowledge may be
encoded in contextual word representations such
as BERT (Devlin et al., 2019) and ELMo (Peters
et al., 2018). These probes tend to be designed with
simplicity in mind and with the intent of revealing
what linguistic structure is encoded in an embed-
ding, rather than simply learning to perform an
NLP task (Hewitt and Liang, 2019; Zhang and Bow-
man, 2018; Voita and Titov, 2020) This preference
for simplicity has often led researchers to place re-
strictions on probe designs that may not allow them
to fully exploit the structure in which information is
encoded (Saphra and Lopez, 2019; Pimentel et al.,

2020b,a). This preference has led many researchers
to advocate the use of linear probes over non-linear
ones (Alain and Bengio, 2017).

This paper treats and expands upon the structural
probe of Hewitt and Manning (2019), who crafted
a custom probe with the aim of investigating
the encoding of sentence syntax in contextual
representations. They treat probing for syntax as
a distance learning problem: they learn a linear
transformation that warps the space such that two
words that are syntactically close to one another
(in terms of distance in a dependency tree) should
have contextual representations whose Euclidean
distance is small. This linear approach performs
well, but the restriction to learning only linear
transformations seems arbitrary. Why should it be
the case that this information would be encoded
linearly within the representations?

In this paper, we recast Hewitt and Manning
(2019)’s structural probing framework as a general
metric learning problem. This reduction allows us
to take advantage of a wide variety of non-linear
extensions—based on kernelization—proposed in
the metric learning literature (Kulis, 2013). These
extensions lead to probes with the same number of
parameters, but with an increased expressivity.

By exploiting a kernelized extension, we are able
to directly test whether a structural probe that is
capable of learning non-linear transformations im-
proves performance. Empirically, we do find that
non-linearity helps—a structural probe based on a
radial-basis function (RBF) kernel improves perfor-
mance significantly in all 6 languages tested over
a linear structural probe. We then perform an anal-
ysis of BERT’s attention, asserting it is a rough
approximation to an RBF kernel. As such, it is not
surprising that the syntactic information in BERT
representations is more accessible with this spe-
cific non-linear transformation. We conclude that
kernelization is a useful tool for analyzing contex-
tual representations—enabling us to run controlled
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experiments and investigate the structure in which
information is encoded.

2 The Structural Probe

Hewitt and Manning (2019) introduce the struc-
tural probe, a novel model designed to probe for
syntax in contextual word representations. We re-
view their formulation here and build upon it in
§4. A sentence w lives in a space V ∗, defined here
as the Kleene closure of a (potentially open) vo-
cabulary V . The syntactic distance ∆ij between
any two words in a sentence w is the number of
steps needed to go from one word to the other while
walking in the sentence’s syntactic tree. More for-
mally, if we have a dependency tree t (a tree on
n+1 nodes) of a sentence w of length n, we define
∆ij as the length of the shortest path in t between
wi and wj ; this may be computed, for example, by
Floyd–Warshall. Contextual representations of a
sentence w are a sequence of vectors hi ∈ Rd1
that encode some linguistic knowledge about a se-
quence. In the case of BERT, we have

hi = BERT(w)i ∈ Rd1 (1)

Here, the goal of probing is to evaluate whether
the contextual representations capture the syntax
in a sentence. In the case of the structural probe,
the goal is to see whether the syntactic distance
between any two words can be approximated by a
learned, linear distance function:

dB(hi,hj) = ||Bhi −Bhj ||2 (2)

where B ∈ Rd2×d1 is a linear projection matrix.
That is to say, they seek a linear transformation
such that the transformed contextual representa-
tions relate to one another roughly as their corre-
sponding words do in the dependency tree. To learn
this probe, Hewitt and Manning minimize the fol-
lowing per-sentence objective with respect to B
through stochastic gradient descent

1

|w|2

|w|∑
i=1

|w|∑
j=i+1

|∆ij − dB(hi,hj)| (3)

This is simply minimizing the difference between
the syntactic distances obtained from the depen-
dency tree and the distance between the two vec-
tors under our learned transformation. From the
pairwise distances predicted by the probe, Prim’s
(1957) algorithm can be used to recover the one-
best undirected dependency tree.

3 Kernelized Metric Learning

The restriction to a linear transformation may hin-
der us from uncovering some of the syntactic struc-
ture encoded in the contextual representations. In-
deed, there is no reason a-priori to expect that
BERT encodes its knowledge in a fashion that is
specifically accessible to a linear model. However,
if we were to introduce non-linearity by using a
neural probe, for example, we would have to pit a
model with very few parameters (the linear model)
against one with very many (the neural network);
this comparison is not fair and also goes against
the spirit of designing simple probes. To preclude
the need for a neural probe, we instead turn to a
kernelized probe.

The key insight is that the structural probe re-
duces the problem of probing for linguistic struc-
ture to that of metric learning (Kulis, 2013). This
can be clearly seen in eq. (3), where the probe
learns a distance metric between two representa-
tions in such a way that it matches the syntactic
one. Recognizing this relationship allows us to take
advantage of established techniques from the met-
ric learning literature to improve the performance
of the probe without increasing its complexity, e.g.
through kernelization.

3.1 The “Kernel Trick” for Distances
Many algorithms in machine learning, e.g. support
vector machines and k-means, can be kernelized
(Schölkopf and Smola, 2002), thus allowing for
linear models to be adapted into non-linear ones.
Expanding on a classic result (Schoenberg, 1938),
Schölkopf (2001) show that any positive semi-
definite (PSD) kernel can be used to construct a
distance in a Hilbert spaceH. Formally, their result
states that for any PSD kernel κ : X × X → R≥0,
there exists a feature map φ : X → H such that

||φ(x)− φ(y)||2 = (4)√
κ(x,x)− 2κ(x,y) + κ(y,y)

This generalizes eq. (2) to yield a new, non-linear
distance metric. This means that we can achieve the
effects of using some non-linear feature mapping φ
without having to specify it: we need only specify a
kernel function and perform calculations using this
kernelized distance metric. Importantly, as opposed
to deep neural probes, this learnable metric has an
identical number of parameters to the original.1

1We note that we do not use selectivity (Hewitt and Liang,
2019) to control for probe complexity since it does not apply to
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3.2 Common Kernels

In this section we introduce the kernels to be used.
These kernels were chosen as they represent a com-
prehensive selection of commonly-used kernels in
the metric learning literature (Kulis, 2013). The
original work of Hewitt and Manning (2019) makes
use of the linear kernel:

κlinear(hi,hj) = (Bhi)
>(Bhj) (5)

The first non-linear kernel we consider is the poly-
nomial kernel, defined as

κpoly(hi,hj) =
(

(Bhi)
>(Bhj) + c

)d
(6)

where d ∈ Z+ and c ∈ R≥0. A polynomial kernel
of degree d allows for d-order interactions between
the terms. When working with BERT, this means
that we may construct d-order conjunctions of the
dimensions of the contextual representations input
into the probe. Next, we consider the radial-basis
function kernel (RBF). This kernel is also called
the Gaussian kernel and is defined as

κrbf(hi,hj) = exp

(
−||Bhi −Bhj ||2

2σ2

)
(7)

This kernel has an alternative interpretation as a
similarity measure between both vectors, being at
its maximum value of 1 when hi = hj . In con-
trast to the polynomial kernel, the Gaussian kernel
implies a feature map in an infinite dimensional
Hilbert space. When the RBF kernel is used in our
probe, we may rewrite eq. (2) as follows:

dκrbf (hi,hj)
2 (8)

= κrbf(hi,hi)− 2κrbf(hi,hj) + κrbf(hj ,hj)

= 2− 2κrbf(hi,hj)

= 2− 2 exp

(
−||Bhi −Bhj ||2

2σ2

)
Which is similar to the original linear case in eq. (2),
but with a scaling term − 1

2σ2 and a non-linearity
exp(·). Finally, we consider, the sigmoid kernel,
which is defined as 2

κsig(hi,hj) = tanh (a(Bhi)
>(Bhj) + b) (9)

this syntax tree reconstruction task—selectivity control tasks
work at the word type level, as opposed to the sentence one.

2Lin and Lin (2003) observe that it is difficult to effec-
tively tune a and b in the sigmoid kernel. They also note that
although this kernel is not in fact PSD, it is PSD when a and b
are both positive, which we enforce in this work.

4 Regularized Metric Learning

We also take advantage of two common regular-
ization techniques employed in the metric learning
literature to further improve the transformations
learned; both act on the matrix A = B>B and
are added to the objective specified in eq. (3). The
Frobenius norm regularizer takes the form

r(A) = ||A||2F = tr
(
A>A

)
(10)

This is the matrix analogue of the L2 squared reg-
ularizer. Minimizing the Frobenius norm of the
learned matrix has the effect of keeping the values
in the matrix small. It has been a popular choice for
regularization in metric learning with adaptations
to a variety of problems (Schultz and Joachims,
2004; Kwok and Tsang, 2003). We also consider
the trace norm regularizer, which is of the form

r(A) = tr(A) (11)

The trace norm regularizer is the matrix analogue
of the L1 regularizer and it encourages the ma-
trix A to be low rank. As Jain et al. (2010) point
out, using a low-rank transformation in conjunction
with a kernel corresponds to a supervised kernel
dimensionality reduction method.

5 Experiments

We experiment with Hewitt and Manning’s (2019)
probe on 6 typologically diverse languages, fol-
lowing the experimental design of Hall Maudslay
et al. (2020). Our data comes from the Universal
Dependency 2.4 Treebank (Nivre et al., 2019), pro-
viding sentences and their dependency trees, anno-
tated using the Universal Dependencies annotation
scheme.3 For each sentence we calculate contex-
tual representations using multilingual BERT. For
all languages, we took the first 12,000 sentences
(or the maximum number thereof) in the train por-
tion of the treebank and created new 80–10–10
train–test–dev splits.4

3It was recently demonstrated by Kuznetsov and Gurevych
(2020) that choice of linguistic formalism may have an impact
on probing results. In this work, we investigate using only one
formalism, so we cannot be sure that our results would not
differ if an alternative formalism were used. Nonetheless, we
believe that the results that we find most interesting, which are
discussed in §6, should be robust to a change in formalism,
since their explanation lies in the way attention is calculated
in the transformer architecture.

4We cap the maximum number of sentences analyzed as a
naïve control for our multilingual analysis.



135

Basque English Finnish Korean Tamil Turkish

Kernel UUAS DSpr UUAS DSpr UUAS DSpr UUAS DSpr UUAS DSpr UUAS DSpr

None 58.39 0.6737 57.96 0.7382 59.90 0.7560 68.63 0.7026 48.52 0.5116 58.87 0.6784
Polynomial 50.10 0.5751 59.67 0.7635 57.12 0.7401 67.58 0.6966 54.43 0.5776 55.29 0.6421
Sigmoid 43.14 0.4500 41.62 0.6152 53.14 0.6201 44.48 0.3734 44.30 0.3836 51.77 0.5557
RBF 60.99 0.6937 62.77 0.7213 63.08 0.7382 71.87 0.6918 56.96 0.5379 61.67 0.6841

Table 1: Results of probes using various kernels, in terms of UUAS and DSpr

We present the results from our comparison of a
re-implementation of Hewitt and Manning’s (2019)
linear structural probe and the non-linear kernel-
ized probes in Table 1. The two evaluation met-
rics shown are unlabeled undirected attachment
score (UUAS) and the Spearman rank-order cor-
relation (DSpr) between predicted distances and
gold standard pairwise distances. UUAS is a stan-
dard parsing metric expressing the percentage of
correct attachments in the dependency tree, while
DSpr is a measure of how accurately the probe
predicts the overall ordering of distances between
words. We can see that the use of an RBF kernel
results in a statistically significant improvement in
performance, as measured by UUAS, in all 6 of
the languages tested.5 For some languages this im-
provement is quite substantial, with Tamil seeing
an improvement of 8.44 UUAS from the baseline
probe to the RBF kernel probe.

6 The RBF Kernel and Self-Attention

The RBF kernel produces improvements across all
analyzed languages. This suggests that it is indeed
the case that syntactic structure is encoded non-
linearly in BERT. As such, analyzing this specific
kernel may yield insights into what this structure
is. Indeed, none of the other kernels systematically
improve over the linear baseline, implying this is
not just an effect of the non-linearity introduced
through use of a kernel—the specific structure
of the RBF kernel must be responsible. In this
section, we argue that the reason that the RBF
kernel serves as such a boon to probing is that it
resembles BERT’s attention mechanism; recall
that BERT’s attention mechanism is defined as

att(hi,hj) ∝ exp

(
(Khi)

>(Qhj)√
d2

)
(12)

where K and Q are linear transformations and
d2 is the dimension vectors are projected into.

5Significance was established using paired permutation
tests with 10,000 samples, to the level of p < 0.05.

K projects vector hi into a key vector, while Q
projects hj into a query one. When the key and
query vectors are similar (i.e. have a high dot
product), the value of this equation is large and
word j attends to word i.

This bears a striking resemblance to the Gaus-
sian kernel. Indeed, if we assume the linearly trans-
formed representations have unit norm, i.e.

||Bhi||2 = ||Bhj ||2 = 1 (13)

then we have

exp

(
−1

2
√
d2
||Bhi −Bhj ||2

)
(14)

= exp

(
−1√
d2

+
(Bhi)

>(Bhj)√
d2

)
∝ exp

(
(Bhi)

>(Bhj)√
d2

)
where we take σ2 =

√
d2. The similarity between

eqs. (12) and (14) suggests the attention mecha-
nism in BERT is, up to a multiplicative factor,
roughly equivalent to an RBF kernel—as such, it
is not surprising that the RBF kernel produces the
strongest results.

The resemblance between these equations, taken
together with the significant improvements in cap-
turing syntactic distance, suggest that this encoded
information indeed lives in an RBF-like space in
BERT. Such information can then be used in its
self-attention mechanism; allowing BERT to pay
attention to syntactically close words when solving
the cloze language modeling task. Being attentive
to syntactically close words would also be sup-
ported by recent linguistic research, since words
sharing syntactic dependencies have higher mutual
information on average (Futrell et al., 2019).

The representations we analyze, though, are
taken from BERT’s final layer; as such, they are
not trained to be used in any self-attention layer—
so why should such a resemblance be relevant?
BERT’s architecture is based on the Transformer
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(Vaswani et al., 2017), and uses skip connections
between each self-attention layer. Such skip con-
nections create an incentive for residual learning,
i.e. only learning residual differences in each layer,
while propagating the bulk of the information (He
et al., 2016). As such, BERT’s final hidden repre-
sentations should roughly live in the same manifold
as its internal ones.

It is interesting to note that the RBF kernel
achieves the best performance in terms of UUAS
in all languages, but it only twice achieves the best
performance in terms of DSpr. This may be due
to the fact that, as we can see by examination of
eq. (8), the distance returned by the RBF kernel
will not exceed 2, whereas syntactic distances in
the tree will. Further, the gradient of the RBF ker-
nel contains an exponential term which will cause
it to go to zero as distance increases (while an ex-
amination of the unkernelized loss function reveals
the opposite behavior). This means that it will
be less sensitive to the distances between syntacti-
cally distant words and focus more on words with
small distances. This may partially explain its bet-
ter performance on UUAS, and comparably worse
performance as measured by correlation (which
counts pairwise differences between all words, not
just those which are directly attached in the tree).
Furthermore, our probe’s focus on nearby words
resembles the general attentional bias towards syn-
tactically close words (Voita et al., 2019).

The direct resemblance between self-attention
mechanisms and our proposed probe metric poses
a new way of understanding results from more
complex probes. While Reif et al. (2019) under-
stood the Euclidean-squared distance of Hewitt
and Manning as an isometric tree embedding, their
geometric interpretation did not factor in the rest
of BERT’s architecture. Such simplified context-
less probes cannot tell us how linguistic proper-
ties are processed by a sequence of learned mod-
ules (Saphra and Lopez, 2019). However, we con-
sider representations in the context of the model
which is expected to employ them. From this per-
spective, simpler metrics may be rough approxima-
tions to our RBF kernel space, which is actually ca-
pable of measuring linguistic properties that can be
easily extracted by an attention-based architecture.

7 Conclusion

We find that the linear structural probe (Hewitt and
Manning, 2019) used to investigate the encoding

of syntactic structure in contextual representations
can be improved through kernelization, yielding a
non-linear model. This kernelization does not in-
troduce additional parameters and thus does not in-
crease the complexity of the probe—at least if one
treats the number of parameters as a good proxy for
model complexity. At the same time, the RBF ker-
nel improves probe performance in all languages
under consideration. This suggests that syntactic
information may be encoded non-linearly in the
representations produced by BERT. We hypothe-
size that this is true due to the similarity of the RBF
kernel and BERT’s self-attention layers.

Ethical Considerations

The authors foresee no ethical concerns with the
research presented in this paper.
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lika Peljak-Łapińska, Siyao Peng, Cenel-Augusto
Perez, Guy Perrier, Daria Petrova, Slav Petrov,
Jussi Piitulainen, Tommi A Pirinen, Emily Pitler,
Barbara Plank, Thierry Poibeau, Martin Popel,
Lauma Pretkalnin, a, Sophie Prévost, Prokopis Proko-
pidis, Adam Przepiórkowski, Tiina Puolakainen,
Sampo Pyysalo, Andriela Rääbis, Alexandre Rade-
maker, Loganathan Ramasamy, Taraka Rama, Car-
los Ramisch, Vinit Ravishankar, Livy Real, Siva
Reddy, Georg Rehm, Michael Rießler, Erika
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