
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 1513–1524

June 6–11, 2021. ©2021 Association for Computational Linguistics

1513

Video-aided Unsupervised Grammar Induction

Songyang Zhang1∗, Linfeng Song2, Lifeng Jin2, Kun Xu2, Dong Yu2 and Jiebo Luo1

1University of Rochester, Rochester, NY, USA
szhang83@ur.rochester.edu, jluo@cs.rochester.edu

2Tencent AI Lab, Bellevue, WA, USA
{lfsong,lifengjin,kxkunxu,dyu}@tencent.com

Abstract

We investigate video-aided grammar induc-
tion, which learns a constituency parser from
both unlabeled text and its corresponding
video. Existing methods of multi-modal gram-
mar induction focus on learning syntactic
grammars from text-image pairs, with promis-
ing results showing that the information from
static images is useful in induction. However,
videos provide even richer information, includ-
ing not only static objects but also actions and
state changes useful for inducing verb phrases.
In this paper, we explore rich features (e.g.
action, object, scene, audio, face, OCR and
speech) from videos, taking the recent Com-
pound PCFG model (Kim et al., 2019) as the
baseline. We further propose a Multi-Modal
Compound PCFG model (MMC-PCFG) to ef-
fectively aggregate these rich features from dif-
ferent modalities. Our proposed MMC-PCFG
is trained end-to-end and outperforms each in-
dividual modality and previous state-of-the-art
systems on three benchmarks, i.e. DiDeMo,
YouCook2 and MSRVTT, confirming the ef-
fectiveness of leveraging video information for
unsupervised grammar induction.

1 Introduction

Constituency parsing is an important task in nat-
ural language processing, which aims to capture
syntactic information in sentences in the form of
constituency parsing trees. Many conventional ap-
proaches learn constituency parser from human-
annotated datasets such as Penn Treebank (Marcus
et al., 1993). However, annotating syntactic trees
by human language experts is expensive and time-
consuming, while the supervised approaches are
limited to several major languages. In addition,
the treebanks for training these supervised parsers
are small in size and restricted to the newswire
domain, thus their performances tend to be worse
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(a)

Sentence: Man starts to play the guitar fast.

Sentence: A squirrel jumps on stump.

(b)

Bird soundBird sound

Guitar soundGuitar sound

Figure 1: Examples of video aided unsupervised gram-
mar induction. We aim to improve the constituency
parser by leveraging aligned video-sentence pairs.

when applying to other domains (Fried et al., 2019).
To address these issues, recent approaches (Shen
et al., 2018b; Jin et al., 2018; Drozdov et al., 2019;
Kim et al., 2019) design unsupervised constituency
parsers and grammar inducers, since they can be
trained on large-scale unlabeled data. In partic-
ular, there has been growing interests in exploit-
ing visual information for unsupervised grammar
induction because visual information can capture
important knowledge required for language learn-
ing that is ignored by text (Gleitman, 1990; Pinker
and MacWhinney, 1987; Tomasello, 2003). This
task aims to learn a constituency parser from raw
unlabeled text aided by its visual context.

Previous methods (Shi et al., 2019; Kojima et al.,
2020; Zhao and Titov, 2020; Jin and Schuler, 2020)
learn to parse sentences by exploiting object infor-
mation from images. However, images are static
and cannot present the dynamic interactions among
visual objects, which usually correspond to verb
phrases that carry important information. There-
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fore, images and their descriptions may not be fully-
representative of all linguistic phenomena encoun-
tered in learning, especially when action verbs are
involved. For example, as shown in Figure 1(a),
when parsing a sentence “A squirrel jumps on
stump”, a single image cannot present the verb
phrase “jumps on stump” accurately. Moreover,
as shown in Figure 1(b), the guitar sound and the
moving fingers clearly indicate the speed of mu-
sic playing, while it is impossible to present only
with a static image as well. Therefore, it is difficult
for previous methods to learn these constituents,
as static images they consider lack dynamic visual
and audio information.

In this paper, we address this problem by lever-
aging video content to improve an unsupervised
grammar induction model. In particular, we ex-
ploit the current state-of-the-art techniques in both
video and audio understanding, domains of which
include object, motion, scene, face, optical charac-
ter, sound, and speech recognition. We extract fea-
tures from their corresponding state-of-the-art mod-
els and analyze their usefulness with the VC-PCFG
model (Zhao and Titov, 2020). Since different
modalities may correlate with each other, indepen-
dently modeling each of them may be sub-optimal.
We also propose a novel model, Multi-Modal
Compound Probabilistic Context-Free Grammars
(MMC-PCFG), to better model the correlation
among these modalities.

Experiments on three benchmarks show substan-
tial improvements when using each modality of the
video content. Moreover, our MMC-PCFG model
that integrates information from different modali-
ties further improves the overall performance. Our
code is available at https://github.com/
Sy-Zhang/MMC-PCFG.

The main contributions of this paper are:

• We are the first to address video aided unsuper-
vised grammar induction and demonstrate that
verb related features extracted from videos are
beneficial to parsing.

• We perform a thorough analysis on different
modalities of video content and propose a
model to effectively integrate these important
modalities to train better constituency parsers.

• Experiments results demonstrate the effective-
ness of our model over the previous state-of-
the-art methods.

2 Background and Motivation

Our model is motivated by C-PCFG (Kim et al.,
2019) and its variant of the image-aided unsuper-
vised grammar induction model, VC-PCFG (Zhao
and Titov, 2020). We will first review the evolution
of these two frameworks in Sections 2.1–2.2, and
then discuss their limitations in Section 2.3.

2.1 Compound PCFGs

A probabilistic context-free grammar (PCFG) in
Chomsky normal form can be defined as a 6-tuple
(S,N ,P,Σ,R,Π), where S is the start symbol,
N ,P and Σ are the set of nonterminals, preter-
minals and terminals, respectively. R is a set of
production rules with their probabilities stored in
Π, where the rules include binary nonterminal ex-
pansions and unary terminal expansions. Given a
certain number of nonterminal and preterminal cat-
egories, a PCFG induction model tries to estimate
rule probabilities. By imposing a sentence-specific
prior on the distribution of possible PCFGs, the
compound PCFG model (Kim et al., 2019) uses a
mixture of PCFGs to model individual sentences in
contrast to previous models (Jin et al., 2018) where
a corpus-level prior is used. Specifically in the gen-
erative story, the rule probability πr is estimated by
the model g with a latent representation z for each
sentence σ, which is in turn drawn from a prior
p(z):

πr = gr(z; θ), z ∼ p(z). (1)

The probabilities for the CFG initial expansion
rules S → A, nonterminal expansion rules A →
B C and preterminal expansion rules T → w can
be estimated by calculating scores of each combi-
nation of a parent category in the left hand side of
a rule and all possible child categories in the right
hand side of a rule:

πS→A =
exp(u>Afs([wS ; z]))∑

A′∈N exp(uA′fs([wS ; z]))
,

πA→BC =
exp(u>BC [wA; z])∑

B′,C′∈N∪P exp(u>B′C′ [wA; z]))
,

πT→w =
exp(u>wft([wT ; z]))∑

w′∈Σ exp(uTw′ft([wT ; z]))
,

(2)
where A,B,C ∈ N , T ∈ P , w ∈ Σ, w and u
vectorial representations of words and categories,
and ft and fs are encoding functions such as neural
networks.

https://github.com/Sy-Zhang/MMC-PCFG
https://github.com/Sy-Zhang/MMC-PCFG
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Optimization of the PCFG induction model usu-
ally involves maximizing the marginal likelihood
of a training sentence p(σ) for all sentences in a
corpus. In the case of compound PCFGs:

log pθ(σ) = log

∫
z

∑
t∈TG(σ)

pθ(t|z)p(z)dz, (3)

where t is a possible binary branching parse tree of
σ among all possible trees T under a grammar G.
Since computing the integral over z is intractable,
log pθ(σ) can be optimized by maximizing its evi-
dence lower bound ELBO(σ;φ, θ):

ELBO(σ;φ, θ) = Eqφ(z|σ)[log pθ(σ|z)]

−KL[qφ(z|σ)||p(z)],
(4)

where qφ(z|σ) is a variational posterior, a neural
network parameterized with φ. The sample log like-
lihood can be computed with the inside algorithm,
while the KL term can be computed analytically
when both prior p(z) and the posterior approxima-
tion qφ(z|σ) are Gaussian (Kingma and Welling,
2014).

2.2 Visualy Grounded Compound PCFGs
The visually grounded compound PCFGs (VC-
PCFG) extends the compound PCFG model (C-
PCFG) by including a matching model between
images and text. The goal of the vision model is
to match the representation of an image v to the
representation of a span c in a parse tree t of a
sentence σ. The word representation hi for the ith
word is calculated by a BiLSTM network. Given
a particular span c = wi, . . . , wj(0 < i < j ≤ n)],
we then compute its representation c. We first
compute the probabilities of its phrasal labels
{p(k|c, σ)|1 ≤ k ≤ K,K = |N |}, as described in
Section 2.1. The representation c is the sum of all
label-specific span representations weighted by the
probabilities we predicted:

c =
K∑
k=1

p(k|c, σ)fk(
1

j − i+ 1

j∑
l=i

hl), (5)

Finally, the matching loss between a sentence σ
and an image representation v can be calculated as
a sum over all matching losses between a span and
the image representation, weighted by the marginal
of a span from the parser:

simg(v, σ) =
∑
c∈σ

p(c|σ)himg(c,v), (6)

where himg(c,v) is a hinge loss between the dis-
tances from the image representation v to the
matching and unmatching (i.e. sampled from a dif-
ferent sentence) spans c and c′, and the distances
from the span c to the matching and unmatching
(i.e. sampled from a different image) image repre-
sentations v and v′:

himg(c,v) = Ec′ [cos(c′,v)− cos(c,v)) + ε]+

+ Ev′ [cos(c,v′)− cos(c,v) + ε]+, (7)

where ε is a positive margin, and the expectations
are approximated with one sample drawn from
the training data. During training, ELBO and the
image-text matching loss are jointly optimized.

2.3 Limitation
VC-PCFG improves C-PCFG by leveraging the
visual information from paired images. In their
experiments (Zhao and Titov, 2020), comparing
to C-PCFG, the largest improvement comes from
NPs (+11.9% recall), while recall values of other
frequent phrase types (VP, PP, SBAR, ADJP and
ADVP) are fairly similar. The performance gain
on NPs is also observed with another multi-modal
induction model, VG-NSL (Shi et al., 2019; Ko-
jima et al., 2020). Intuitively, image representa-
tions from image encoders trained on classifica-
tion tasks very likely contain accurate information
about objects in images, which is most relevant to
identifying NPs1. However, they provide limited
information for phrase types that mainly involve
action and change, such as verb phrases. Represen-
tations of dynamic scenes may help the induction
model to identify verbs, and also contain informa-
tion about the argument structure of the verbs and
nouns based on features of actions and participants
extracted from videos. Therefore, we propose a
model that induces PCFGs from raw text aided by
the multi-modal information extracted from videos,
and expect to see accuracy gains on such places in
comparison to the baseline systems.

3 Multi-Modal Compound PCFGs

In this section, we introduce the proposed multi-
modal compound PCFGs (MMC-PCFG). Instead

1Jin and Schuler (2020) reports no improvement on En-
glish when incorporating visual information into a similar
neural network-based PCFG induction model, which may be
because Zhao and Titov (2020) removes punctuation from
the training data, which removes a reliable source of phrasal
boundary information. This loss is compensated by the induc-
tion model with image representations. We leave the study of
evaluation configuration on induction results for future work.
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of purely relying on object information from im-
ages, we generalize VC-PCFG into the video do-
main, where multi-modal video information is con-
sidered. We first introduce the video representation
in Section 3.1. We then describe the procedure
for matching the multi-modal video representation
with each span in Section 3.2. After that we in-
troduce the training and inference details in Sec-
tion 3.3.

3.1 Video Representation
A video contains a sequence of frames, denoted
as V = {vi}L

0

i=1, where vi represents a frame in a
video and L0 indicates the total number of frames.
We extract video representation from M models
trained on different tasks, which are called experts.
Each expert focuses on extracting a sequence of
features of one type. In order to project different
expert features into the same dimension, their fea-
ture sequences are feed into linear layers (one per
expert) with same output dimension. We denote
the outputs of the mth expert after projection as
Fm = {fmi }L

m

i=1, where fmi and Lm represent the
ith feature and the total number of features of the
mth expert, respectively.

A simple method would average each feature
along the temporal dimension and then concate-
nating them together. However, this would ignore
the relations among different modalities and the
temporal ordering within each modality. In this
paper, we use a multi-modal transformer to col-
lect video representations (Gabeur et al., 2020; Lei
et al., 2020).

The multi-modal transformer expects a sequence
as input, hence we concatenate all feature se-
quences together and take the form:

X = [f1
avg, f

1
1 , ..., f

1
L1
, ...fMavg, f

M
1 , ..., fMLM ], (8)

where fmavg is the averaged feature of {fmi }
Lm
i=1.

Each transformer layer has a standard architecture
and consists of multi-head self-attention module
and a feed forward network (FFN). Since this ar-
chitecture is permutation-invariant, we supplement
it with expert type embeddings E and positional
encoding P that are added to the input of each at-
tention layer. The expert type embeddings indicate
the expert type for input features and take the form:

E = [e1, e1, ..., e1, ..., eM , eM , ..., eM ], (9)

where em is a learned embedding for the mth ex-
pert. The positional encodings indicate the location

of each feature within the video and take the form:

P = [p0,p1, ...,pL1 , ...,p0,p1, ...,pLM ], (10)

where fixed encodings are used (Vaswani et al.,
2017). After that, we collect the output of trans-
former that corresponds to the averaged features as
the final video representation, i.e., Ψ = {ψiavg}Mi=1.
In this way, we can learn more effective video rep-
resentation by modeling the correlations of features
from different modalities and different timestamps.

3.2 Video-Text Matching
To compute the similarity between a video V and
a particular span c, a span representation c is ob-
tained following Section 2.2 and projected to M
separate expert embeddings via gated embedding
modules (one per expert) (Miech et al., 2018):

ξi1 = W i
1c+ bi1,

ξi2 = ξi1 ◦ sigmoid(W i
2ξ
i
1 + bi2),

ξi =
ξi2
‖ξi2‖2

,

(11)

where i is the index of expert, W i
1 , W i

2 , bi1, bi2
are learnable parameters, sigmoid is an element-
wise sigmoid activation and ◦ is the element-wise
multiplication. We denote the set of expert embed-
dings as Ξ = {ξi}Mi=1. The video-span similarity
is computed as following,

ωi(c) =
exp(u>i c)∑M
j=1 exp(u>j c)

,

o(Ξ,Ψ) =
M∑
i=1

ωi(c)cos(ξi,ψi),

(12)

where {ui}Mi=1 are learned weights. Given Ξ′, an
unmatched span expert embeddings of Ψ, and Ψ′,
an unmatched video representation of Ξ, the hinge
loss for video is given by:

hvid(Ξ,Ψ) = Ec′ [o(Ξ
′,Ψ)− o(Ξ,Ψ)) + ε]+

+ EΨ′ [o(Ξ,Ψ
′)− o(Ξ,Ψ) + ε]+, (13)

where ε is a positive margin. Finally the video-text
matching loss is defined as:

svid(V, σ) =
∑
c∈σ

p(c|σ)hvid(Ξ,Ψ). (14)

Noted that svid can be regarded as a generalized
form of simg in Equation 6, where features from
different timestamps and modalities are considered.
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3.3 Training and Inference
During training, our model is optimized by the
ELBO and the video-text matching loss:

L(φ, θ) =
∑

(V,σ)∈Ω

−ELBO(σ;φ, θ)+αsvid(V, σ),

(15)
where α is a hyper-parameter balancing these two
loss terms and Ω is a video-sentence pair.

During inference, we predict the most likely tree
t∗ given a sentence σ without accessing videos.
Since computing the integral over z is intractable,
t∗ is estimated with the following approximation,

t∗ = arg max
t

∫
z
pθ(t|z)pθ(z|σ)dz

≈ arg max
t

pθ(t|σ,µφ(σ)),
(16)

where µφ(σ) is the mean vector of the variational
posterior qφ(z|σ) and t∗ can be obtained using
the CYK algorithm (Cocke, 1969; Younger, 1967;
Kasami, 1966).

4 Experiments

4.1 Datasets
DiDeMo (Hendricks et al., 2017) collects 10K
unedited, personal videos from Flickr with roughly
3 − 5 pairs of descriptions and distinct moments
per video. There are 32 994, 4 180 and 4 021 video-
sentence pairs, validation and testing split.
YouCook2 (Zhou et al., 2018) includes 2K long
untrimmed videos from 89 cooking recipes. On av-
erage, each video has 6 procedure steps described
by imperative sentences. There are 8 713, 969 and
3 310 video-sentence pairs in the training, valida-
tion and testing sets.
MSRVTT (Xu et al., 2016) contains 10K videos
sourced from YouTube which are accompanied
by 200K descriptive captions. There are 130 260,
9 940 and 59 794 video-sentence pairs in the train-
ing, validation and testing sets.

4.2 Evaluation
Following the evaluation practice in Zhao and Titov
(2020), we discard punctuation and ignore trivial
single-word and sentence-level spans at test time.
The gold parse trees are obtained by applying a
state-of-the-art constituency parser, Benepar (Ki-
taev and Klein, 2018), on the testing set. All models
are run 4 times for 10 epochs with different ran-
dom seeds. We evaluate both averaged corpus-level

F1 (C-F1) and averaged sentence-level F1 (S-F1)
numbers as well as their standard deviations.

4.3 Expert Features

In order to capture the rich content from videos,
we extract features from the state-of-the-art models
of different tasks, including object, action, scene,
sound, face, speech, and optical character recog-
nition (OCR). For object and action recognition,
we explore multiple models with different architec-
tures and pre-trained dataset. Details are as follows:
Object features are extracted by two models:
ResNeXt-101 (Xie et al., 2017), pre-trained on In-
stagram hashtags (Mahajan et al., 2018) and fine-
tuned on ImageNet (Krizhevsky et al., 2012), and
SENet-154 (Hu et al., 2018), trained on ImageNet.
These datasets include images of common objects,
such as, “cock”, “kite”, and “goose”, etc. We use
the predicted logits as object features for both mod-
els, where the dimension is 1000.
Action features are extracted by three models: I3D
trained on Kinetics-400 (Carreira and Zisserman,
2017), R2P1D (Tran et al., 2018) trained on IG-
65M (Ghadiyaram et al., 2019) and S3DG (Miech
et al., 2020) trained on HowTo100M (Miech et al.,
2019). These datasets include videos of human ac-
tions, such as “playing guitar”, “ski jumping”, and
“jogging”, etc. Following the same processing steps
in their original work, we extract the predicted log-
its as action features, where the dimension is 400
(I3D), 359 (R2P1D) and 512 (S3DG), respectively.
Scene features are extracted by DenseNet-
161 (Huang et al., 2017) trained on
Places365 (Zhou et al., 2017). Places365
contains images of different scenes, such as
“library”, “valley”, and “rainforest”, etc. The
predicted logits are used as scene features, where
the feature dimension is 365.
Audio features are extracted by VGGish trained
on YouTube-8M (Hershey et al., 2017), where the
feature dimension is 128. YouTube-8M is a video
dataset where different types of sound are involved,
such as “piano”, “drum”, and “violin”.
OCR features are extracted by two steps: char-
acters are first recognized by combining text de-
tector Pixel Link (Deng et al., 2018) and text rec-
ognizer SSFL (Liu et al., 2018). The characters
are then converted to word embeddings through
word2vec (Mikolov et al., 2013) as the final OCR
features, where the feature dimension is 300.
Face features are extracted by combining face de-
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tector SSD (Liu et al., 2016) and face recognizer
ResNet50 (He et al., 2016). The feature dimension
is 512.
Speech features are extracted by two steps: tran-
scripts are first obtained via Google Cloud Speech
to Text API. The transcripts are then converted
to word embeddings through word2vec (Mikolov
et al., 2013) as the final speech features, where the
dimension is 300.

4.4 Implementation Details
We keep sentences with fewer than 20 words in
the training set due to the computational limita-
tion. After filtering, the training sets cover 99.4%,
98.5% and 97.1% samples of their original splits
in DiDeMo, YouCook2 and MSRVTT.

We train baseline models, C-PCFG and VC-
PCFG, with same hyper parameters suggested
in Kim et al. (2019); Zhao and Titov (2020). Our
MMC-PCFG is composed of a parsing model and
a video-text matching model. The parsing model
has the same parameters as VC-PCFG (please refer
to their paper for details). For video-text matching
model, all extracted expert features are projected
to 512-dimensional vectors. The transformer has
2 layers, a dropout probability of 10%, a hidden
size of 512 and an intermediate size of 2048. We
select the top-2000 most common words as vocab-
ulary for all datasets. All the baseline methods and
our models are optimized using Adam (Kingma
and Ba, 2015) with the learning rate set to 0.001,
β1 = 0.75 and β2 = 0.999. All parameters are
initialized with Xavier uniform initializer (Glorot
and Bengio, 2010). The batch size is set to 16.

Due to the long video durations, it is infeasible to
feed all features into the multi-modal transformer.
Therefore, each feature from object, motion and
scene categories is partitioned into 8 chunks and
then average-pooled within each chunk. For fea-
tures from other categories, global average pooling
is applied. In this way, the coarse-grained temporal
information is preserved. Noted that some videos
do not have audio and some videos do not have
detected faces or text characters. For these missing
features, we pad them with zeros. All the aforemen-
tioned expert features are obtained from Albanie
et al. (2020).

4.5 Main Results
We evaluate the proposed MMC-PCFG approach
on three datasets, and compare it with recently
proposed state-of-the-art methods, C-PCFG (Kim

et al., 2019) and VC-PCFG (Zhao and Titov, 2020).
The results are summarized in Table 1. The val-
ues high-lighted by bold and italic fonts indicate
the top-2 methods, respectively. All results are
reported in percentage (%). LBranch, RBranch
and Random represent left branching trees, right
branching trees and random trees, respectively.
Since VC-PCFG is originally designed for images,
it is not directly comparable with our method. In
order to allow VC-PCFG to accept videos as in-
put, we average video features in the temporal di-
mension first and then feed them into the model.
We evaluate VC-PCFG with 10, 7, and 10 expert
features for DiDeMo, YouCook2 and MSRVTT,
respectively. In addition, we also include the con-
catenated averaged features (Concat). Since object
and action categories involve more than one ex-
pert, we directly use experts’ names instead of their
categories in Table 1.
Overall performance comparison. We first com-
pare the overall performance, i.e., C-F1 and S-F1,
among all models, as shown in Table 1. The right
branching model serves as a strong baseline, since
English is a largely right-branching language. C-
PCFG learns parsing purely based on text. Com-
pared to C-PCFG, the better overall performance of
VC-PCFG demonstrates the effectiveness of lever-
aging video information. Compared within VC-
PCFG, concatenating all features together may not
even outperform a model trained on a single expert
(R2P1D v.s. Concat in DiDeMo and MSRVTT).
The reason is that each expert is learned indepen-
dently, where their correlations are not considered.
In contrast, our MMC-PCFG outperforms all base-
lines on C-F1 and S-F1 in all datasets. The superior
performance indicates that our model can leverage
the benefits from all the experts2. Moreover, the su-
perior performance over Concat demonstrates the
importance of modeling relations among different
experts and different timestamps.
Performance comparison among different
phrase types. We compare the models’ recalls
on top-3 frequent phrase types (NP, VP and
PP). These three types cover 77.4%, 80.1% and
82.4% spans of gold trees on DiDeMo, YouCook2
and MSRVTT, respectively. In the following,
we compare their performance on DiDeMo, as
shown in Table 1. Comparing VC-PCFG trained

2The larger improvement on DiDeMo may be caused by
the diversity of the video content. Videos in DiDeMo are more
diverse in scenes, actions and objects, which provide a great
opportunity for leveraging video information.
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Method DiDeMo YouCook2 MSRVTT

NP VP PP C-F1 S-F1 C-F1 S-F1 C-F1 S-F1
LBranch 41.7 0.1 0.1 16.2 18.5 6.8 5.9 14.4 16.8
RBranch 32.8 91.5 66.5 53 .6 57 .5 35.0 41.6 54.2 58.6
Random 36.5±0.6 30.5±0.5 30.1±0.5 29.4±0.3 32.7±0.5 21.2±0.2 24.0±0.2 27.2±0.1 30.5±0.1

C-PCFG 72.9±5.5 16.5±6.2 23.4±16.9 38.2±5.0 40.4±4.1 37.8±6.7 41.4±6.6 50.7±3.2 55.0±3.2

V
C

-P
C

FG

ResNeXt 64.4±21.4 25.7±17.7 34.6±25.0 40.0±13.7 41.8±14.0 38.2±8.3 42.8±8.4 50.7±1.7 54.9±2.2

SENet 70 .5±15.3 25.7±15.9 36.5±24.6 42.6±10.4 44.0±10.4 39.9±8.7 44.9±8.3 52.2±1.2 56.0±1.6

I3D 57.9±13.5 45.7±14.1 45.8±17.2 45.1±6.0 49.2±6.0 40.6±3.6 45.7±3.2 54.5±1.6 59 .1±1.7

R2P1D 61.2±8.5 38.1±5.4 62.1±4.1 48.1±4.4 50.7±4.2 39.4±8.1 44.4±8.3 54.0±2.5 58.0±2.3

S3DG 61.3±13.4 31.7±16.7 51.8±8.0 44.0±2.7 46.5±5.1 39.3±6.5 44.1±6.6 50.7±3.2 54.7±2.9

Scene 62.2±9.6 30.6±12.3 41.1±24.8 41.7±6.5 44.9±7.4 − − 54 .6±1.5 58.4±1.3

Audio 64.2±18.6 21.3±26.5 34.7±11.0 38.7±3.7 39.5±5.2 39.2±4.7 43.3±4.9 52.8±1.3 56.7±1.4

OCR 64.4±15.0 27.4±19.5 42.8±31.2 41.9±16.9 44.6±17.5 38.6±5.5 43.2±5.6 51.0±3.0 55.5±3.0

Face 60.8±16.0 31.5±17.0 52.8±9.8 43.9±4.5 46.3±5.5 − − 50.5±2.6 54.5±2.6

Speech 61.8±12.8 26.6±17.6 43.8±34.5 40.9±16.0 43.1±16.1 − − 51.7±2.6 56.2±2.5

Concat 68.6±8.6 24.9±19.9 39.7±19.5 42.2±12.3 43.2±14.2 42 .3±5.7 47 .0±5.6 49.8±4.1 54.2±4.0

MMC-PCFG 67.9±9.8 52 .3±9.0 63 .5±8.6 55.0±3.7 58.9±3.4 44.7±5.2 48.9±5.7 56.0±1.4 60.0±1.2

Table 1: Performance comparison on three benchmark datasets.
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Figure 2: Recall comparison over constituent length on DiDeMo. Methods are differentiated with colors. For easy
comparison, we additional draw gray lines in each figure to indicate the average recall shown by other figures.

with a single expert, we find that object features
(ResNeXt and SENet) achieve top-2 recalls on
NPs, while action features (I3D, R2P1D and
S3DG) achieve the top-3 recalls on VPs and
PPs. It indicates that different experts help parser
learn syntactic structures from different aspects.
Meanwhile, action features improve C-PCFG3 on
VPs and PPs by a large margin, which once again
verifies the benefits of using video information.

Comparing our MMC-PCFG with VC-PCFG,
our model achieves the top-2 recall and is smaller in
variance in NP, VP and PP. It demonstrates that our
model can take the advantages of different experts
and learn consistent grammar induction.

3The low performance of C-PCFG on DiDeMo in terms
of VP recall may be caused by it attaching a high attaching
PP to the rest of the sentence instead of the rest of the verb
phrase, which breaks the whole VP. For PPs, C-PCFG attaches
prepositions to the word in front, which may be caused by
confusion between prepositions in PPs and phrasal verbs.

2 3 4 5 6 7 8 9 10 11 12 13 All
Constituent Length

NP

VP

PP

All

26.5 9.1 3.6 2.1 1.9 0.8 0.4 0.2 0.1 0.1 0.1 0.0 45.0

5.9 5.8 6.4 4.4 3.2 2.1 1.6 1.0 0.8 0.3 0.2 0.2 32.0

6.9 9.3 3.8 1.2 0.8 0.5 0.1 0.1 0.0 0.0 0.0 0.0 22.8

39.3 24.2 13.9 7.8 5.8 3.4 2.2 1.4 0.9 0.4 0.3 0.2 100.0

Figure 3: Label distributions over the constituent
length on DiDeMo. All represent frequencies of con-
stituent lengths.

4.6 Ablation Study

In this section, we conduct several ablation studies
on DiDeMo, shown in Figures 2–4. All results are
reported in percentage (%).
Performance comparison over constituent
length. We first demonstrate the model perfor-
mance for constituents at different lengths in
Figure 2. As constituent length becomes longer,
the recall of all models (except RBranch) decreases
as expected (Kim et al., 2019; Zhao and Titov,
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57.9 60.4 59.5 60.9 55.9

57.7 62.0 64.2 60.0

59.5 62.0 64.6

58.1 59.6

67.7

Figure 4: Consistency scores for different models on
DiDeMo.

2020). MMC-PCFG outperforms C-PCFG and
VC-PCFG under all constituent lengths. We further
illustrate the label distribution over constituent
length in Figure 3. We find that approximately
98.1% of the constituents have fewer than 9 words
and most of them are NPs, VPs and PPs. This
suggests that the improvement on NPs, VPs and
PPs can strongly affect the overall performance.
Consistency between different models. Next, we
analyze the consistency of these different models.
The consistency between two models is measured
by averaging sentence-level F1 scores over all pos-
sible pairings of different runs4 (Williams et al.,
2018). We plot the consistency for each pair of
models in Figure 4 and call it consistency matrix.
Comparing the self F1 of all the models (the diag-
onal in the matrix), R2P1D has the highest score,
suggesting that R2P1D is the most reliable feature
that can help parser to converge to a specific gram-
mar. Comparing the models trained with different
single experts, ResNeXt v.s. SENet reaches the
highest non-self F1, since they are both object fea-
tures trained on ImageNet and have similar effects
to the parser. We also find that the lowest non-self
F1 comes from Audio v.s. I3D, since they are ex-
tracted from different modalities (video v.s. sound).
Compared with other models, our model is most
consistent with R2P1D, indicating that R2P1D con-
tributes most to our final prediction.
Contribution of different modalities. We also
evaluate how different modalities contribute to the
performance of MMC-PCFG. We divide current
experts into three groups, video (objects, action,
scene and face), audio (audio) and text (OCR and
ASR). By ablating one group during training, we
find that the model without video experts has the

4Different runs represent models trained with different
seeds.

Model NP VP PP C-F1 S-F1

full 68.0±9.9 52.7±9.0 63.8±8.7 55.3±3.3 59.0±3.4

w/o audio 69.3±8.0 41.8±11.0 45.3±20.2 48.7±6.2 52.0±6.5

w/o text 68.5±13.7 38.8±16.9 57.0±20.4 49.6±10.4 52.0±11.1

w/o video 64.3±4.4 28.1±7.5 38.9±25.6 41.4±6.0 44.8±5.9

Table 2: Performance comparison over modalities on
MMC-PCFG on DiDeMo.
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Figure 5: Parse trees predicted by different models for
the sentence The man falls to the floor.

largest performance drops (see Table 2). Therefore,
videos contribute most to the performance among
all modalities.

4.7 Qualitative Analysis

In Figure 5, we visualize a parse tree predicted by
the best run of SENet154, I3D and MMC-PCFG.
We can observe that SENet identifies all NPs but
fails at the VP. I3D correctly predicts the VP but
fails at recognizing a NP, “the man”. Our MMC-
PCFG can take advantages of all experts and pro-
duce the correct prediction.

5 Related Work

Grammar Induction Grammar induction and un-
supervised parsing has been a long-standing prob-
lem in computational linguistics (Carroll and Char-
niak, 1992). Recent work utilized neural networks
in predicting constituency structures with no super-
vision (Shen et al., 2018a; Drozdov et al., 2019;
Shen et al., 2018b; Kim et al., 2019; Jin et al.,
2019a) and showed promising results. In addition
to learning purely from text, there is a growing
interest to use image information to improve accu-
racy of induced constituency trees (Shi et al., 2019;
Kojima et al., 2020; Zhao and Titov, 2020; Jin and
Schuler, 2020). Different from previous work, our
work improves the constituency parser by using
videos containing richer information than images.
Video-Text Matching Video-text matching has
been widely studied in various tasks, such as video
retrieval (Liu et al., 2019; Gabeur et al., 2020), mo-
ment localization with natural language (Zhang
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et al., 2019, 2020) and video question and an-
swering (Xu et al., 2017; Jin et al., 2019b). It
aims to learn video-semantic representation in a
joint embedding space. Recent works (Liu et al.,
2019; Gabeur et al., 2020; Chen et al., 2020) focus
on learning video’s multi-modal representation to
match with text. In this work, we borrow this idea
to match video and textual representations.

6 Conclusion

In this work, we have presented a new task re-
ferred to as video-aided unsupervised grammar in-
duction. This task aims to improve grammar in-
duction models by using aligned video-sentence
pairs as an effective way to address the limitation
of current image-based methods where only ob-
ject information from static images is considered
and important verb related information from vision
is missing. Moreover, we present Multi-Modal
Compound Probabilistic Context-Free Grammars
(MMC-PCFG) to effectively integrate video fea-
tures extracted from different modalities to in-
duce more accurate grammars. Experiments on
three datasets demonstrate the effectiveness of our
method.
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A Performance Comparison - Full Tables

Method NP VP PP SBAR ADJP ADVP C-F1 S-F1
LBranch 41.7 0.1 0.1 0.7 7.2 0.0 16.2 18.5
RBranch 32.8 91.5 66.5 88.2 36.9 63.6 53 .6 57 .5
Random 36.5±0.6 30.5±0.5 30.1±0.5 25.7±2.8 29.5±2.3 28.5±4.8 29.4±0.3 32.7±0.5

C-PCFG 72.9±5.5 16.5±6.2 23.4±16.9 26.6±15.9 25.0±11.6 14.7±12.8 38.2±5.0 40.4±4.1

V
C

-P
C

FG

ResNeXt 64.4±21.4 25.7±17.7 34.6±25.0 40.5±26.3 16.7±9.5 28.4±21.3 40.0±13.7 41.8±14.0

SENet 70.5±15.3 25.7±15.9 36.5±24.6 36.8±25.9 21.2±12.5 23.6±16.8 42.6±10.4 44.0±10.4

I3D 57.9±13.5 45.7±14.1 45.8±17.2 38.2±14.8 28.4±9.2 22.0±9.3 45.1±6.0 49.2±6.0

R2P1D 61.2±8.5 38.1±5.4 62.1±4.1 61.5±5.1 21.4±11.4 40.8±7.3 48.1±4.4 50.7±4.2

S3DG 61.3±13.4 31.7±16.7 51.8±8.0 50.3±6.5 18.0±4.5 35.2±11.4 44.0±2.7 46.5±5.1

Scene 62.2±9.6 30.6±12.3 41.1±24.8 35.2±21.9 21.4±14.0 27.6±17.1 41.7±6.5 44.9±7.4

Audio 64.2±18.6 21.3±26.5 34.7±11.0 37.3±19.6 26.1±4.9 18.2±11.6 38.7±3.7 39.5±5.2

OCR 64.4±15.0 27.4±19.5 42.8±31.2 35.9±20.7 14.6±1.7 23.2±24.0 41.9±16.9 44.6±17.5

Face 60.8±16.0 31.5±17.0 52.8±9.8 49.3±5.6 12.6±3.3 32.9±14.6 43.9±4.5 46.3±5.5

Speech 61.8±12.8 26.6±17.6 43.8±34.5 34.2±20.6 14.4±4.8 12.9±9.6 40.9±16.0 43.1±16.1

Concat 68.6±8.6 24.9±19.9 39.7±19.5 39.3±19.8 10.8±2.8 18.3±18.1 42.2±12.3 43.2±14.2

MMC-PCFG 67 .9±9.8 52 .3±9.0 63 .5±8.6 60 .7±10.8 34 .7±17.0 50 .4±8.3 55.0±3.7 58.9±3.4

Table 3: Performance Comparison on DiDeMo.

Method NP VP PP SBAR ADJP ADVP C-F1 S-F1
LBranch 1.7 42.8 0.4 8.1 1.5 0.0 6.8 5.9
RBranch 35.6 47 .5 67.0 88.9 33.9 65.0 35.0 41.6
Random 27.2±0.3 27.1±1.4 29.9±0.5 31.3±5.2 26.9±7.7 26.2±11.9 21.2±0.2 24.0±0.2

C-PCFG 47.4±18.4 49.4±11.9 58.0±22.6 45.7±6.0 27 .7±15.1 36.2±7.4 37.8±6.7 41.4±6.6

V
C

-P
C

FG

ResNeXt 46.5±13.7 40.8±9.8 67.9±12.7 50.5±13.3 22.3±6.7 38.8±21.3 38.2±8.3 42.8±8.4

SENet 48.3±14.4 40.7±9.2 73.6±11.2 45.5±17.0 26.9±13.6 41.2±17.5 39.9±8.7 44.9±8.3

I3D 48.1±10.7 39.0±8.0 79 .4±8.4 50.0±14.9 18.5±7.0 41.2±4.1 40.6±3.6 45.7±3.2

R2P1D 52 .4±10.9 33.7±16.4 66.7±10.7 49.5±13.8 25.8±10.6 33.8±12.4 39.4±8.1 44.4±8.3

S3DG 50.4±13.1 32.6±16.3 71.7±7.5 33.3±5.9 30.8±17.5 40.0±7.1 39.3±6.5 44.1±6.6

Audio 51.2±3.1 42.0±7.2 61.5±18.0 51 .0±14.8 23.5±16.8 48.8±8.2 39.2±4.7 43.3±4.9

OCR 48.6±8.1 41.5±4.1 65.5±17.4 39.9±4.4 18.5±6.6 53 .8±14.7 38.6±5.5 43.2±5.6

Concat 50.3±10.3 42.3±2.9 81.6±8.7 40.1±3.9 17.7±8.2 52.5±5.6 42 .3±5.7 47 .0±5.6

MMC-PCFG 62.7±9.8 45.3±2.8 63.4±17.7 43.9±4.8 26.2±7.5 35.0±3.5 44.7±5.2 48.9±5.7

Table 4: Performance Comparison on YouCook2.

Method NP VP PP SBAR ADJP ADVP C-F1 S-F1
LBranch 34.6 0.1 0.9 0.2 3.8 0.3 14.4 16.8
RBranch 34.6 90.9 67.5 94.8 25.4 54.8 54.2 58.6
Random 34.6±0.1 26.8±0.1 28.1±0.2 24.6±0.3 24.8±1.0 28.1±1.4 27.2±0.1 30.5±0.1

C-PCFG 46.6±3.2 61.1±3.3 72.5±8.3 63.7±4.0 33.1±7.1 67.1±4.7 50.7±3.2 55.0±3.2

V
C

-P
C

FG

ResNeXt 48.6±3.0 59.0±6.0 72.0±3.6 62.1±5.2 32.6±2.5 70.4±6.4 50.7±1.7 54.9±2.2

SENet 49.0±4.4 63.5±6.4 71.7±4.8 60.9±10.6 34.0±6.4 74 .1±1.9 52.2±1.2 56.0±1.6

I3D 53.9±10.5 63.2±9.1 73.7±2.9 65.3±9.1 35.0±6.8 73.8±4.1 54.5±1.6 59 .1±1.7

R2P1D 52.8±3.6 63.3±4.6 73.1±10.1 66.9±2.0 34.0±2.2 72.5±4.2 54.0±2.5 58.0±2.3

S3DG 48.2±4.4 60.4±3.9 71.4±6.4 58.1±8.2 25.3±2.2 61.8±8.4 50.7±3.2 54.7±2.9

Scene 50.7±1.6 65.0±4.7 78.6±3.6 67 .3±3.9 34 .5±4.6 71.7±1.8 54 .6±1.5 58.4±1.3

Audio 50.0±1.1 63.7±6.1 72.7±3.0 61.9±6.5 34 .5±2.3 68.0±5.9 52.8±1.3 56.7±1.4

OCR 48.3±8.3 57.1±4.6 76.9±0.6 60.7±4.9 33.9±8.3 72.1±4.4 51.0±3.0 55.5±3.0

Face 46.5±6.8 61.3±3.6 71.5±7.1 60.8±11.0 30.9±3.4 68.4±6.0 50.5±2.6 54.5±2.6

Speech 48.5±7.6 60.7±3.5 74.5±5.7 62.6±6.2 27.3±1.8 74.0±3.1 51.7±2.6 56.2±2.5

Concat 43.6±6.0 64.7±3.0 68.5±8.0 63.8±3.8 32.0±5.5 70.4±5.9 49.8±4.1 54.2±4.0

MMC-PCFG 52 .3±5.1 68 .1±2.9 78 .2±1.9 65.8±2.4 32.0±2.0 74.7±2.3 56.0±1.4 60.0±1.2

Table 5: Performance Comparison on MSRVTT.


