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Abstract

The development of neural networks and
pretraining techniques has spawned many
sentence-level tagging systems that achieved
superior performance on typical benchmarks.
However, a relatively less discussed topic is
what if more context information is introduced
into current top-scoring tagging systems. Al-
though several existing works have attempted
to shift tagging systems from sentence-level to
document-level, there is still no consensus con-
clusion about when and why it works, which
limits the applicability of the larger-context ap-
proach in tagging tasks. In this paper, instead
of pursuing a state-of-the-art tagging system
by architectural exploration, we focus on inves-
tigating when and why the larger-context train-
ing, as a general strategy, can work.

To this end, we conduct a thorough com-
parative study on four proposed aggregators
for context information collecting and present
an attribute-aided evaluation method to in-
terpret the improvement brought by larger-
context training. Experimentally, we set up
a testbed based on four tagging tasks and
thirteen datasets. Hopefully, our preliminary
observations can deepen the understanding
of larger-context training and enlighten more
follow-up works on the use of contextual in-
formation.

1 Introduction

The rapid development of deep neural models has
shown impressive performances on sequence tag-
ging tasks that aim to assign labels to each token
of an input sequence (Sang and De Meulder, 2003;
Lample et al., 2016; Ma and Hovy, 2016). More
recently, the use of unsupervised pre-trained mod-
els (Akbik et al., 2018, 2019; Peters et al., 2018;
Devlin et al., 2018) (especially contextualized ver-
sion) has driven state-of-the-art performance to a
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new level. Among these works, researchers fre-
quently choose the boundary with the granularity
of sentences for tagging tasks (i.e., sentence-level
tagging) (Huang et al., 2015; Chiu and Nichols,
2015; Ma and Hovy, 2016; Lample et al., 2016).
Undoubtedly, as a transient, sentence-level setting
enables us to develop numerous successful tagging
systems, nevertheless the task itself should have
not be defined as sentence-level but for simplifying
the learning process for machine learning models.
Naturally, it would be interesting to see what if
larger-context information (e.g., taking informa-
tion of neighbor sentences into account) is intro-
duced to modern top-scoring systems, which have
shown superior performance under the sentence-
level setting. A small number of works have made
seminal exploration in this direction, in which part
of works show significant improvement of larger-
context (Luo et al., 2020; Xu et al., 2019) while oth-
ers don’t (Hu et al., 2020, 2019; Luo et al., 2018).
Therefore, it’s still unclear when and why larger-
context training is beneficial for tagging tasks. In
this paper, we try to figure it out by asking the
following three research questions:

Q1: How do different integration ways of larger-
context information influence the system’s perfor-
mance? The rapid development of neural networks
provides us with diverse flavors of neural com-
ponents to aggregate larger-context information,
which, for example, can be structured as a sequen-
tial topology by recurrent neural networks (Ma
and Hovy, 2016; Lample et al., 2016) (RNNs) or
graph topology by graph neural networks (Kipf
and Welling, 2016; Schlichtkrull et al., 2018).

Understanding the discrepancies of these aggre-
gators can help us reach a more generalized con-
clusion about the effectiveness of larger-context
training. To this end, we study larger-context aggre-
gators with three different structural priors (defined
in Sec. 3.2) and comprehensively evaluate their
efficacy.
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Q2: Can the larger-context training easily play to
its strengths with the help of recently arising con-
textualized pre-trained models (Akbik et al., 2018,
2019; Peters et al., 2018; Devlin et al., 2018) (e.g.
BERT)? The contextual modeling power of these
pre-trained methods makes it worth looking at its
effect on larger-context training. In this work, we
take BERT as a case study and assess its effective-
ness quantitatively and qualitatively.

Q3: Ifimprovements could be observed, where does
the gain come and how do different characteristics
of datasets affect the amount of gain? Instead of
simply figuring out whether larger-context train-
ing could work, we also try to interpret its gains.
Specifically, we propose to use fine-grained evalua-
tion to explain where the improvement comes from
and why different datasets exhibit discrepant gains.

Overall, the first two questions aim to explore
when larger-context training can work while the
third question addresses why. Experimentally, we
try to answer these questions by conducting a
comprehensive analysis, which involves four tag-
ging tasks and thirteen datasets. Our main obser-
vations are summarized in Sec. 8. ! Furthermore,
we show, with the help of these observations, it’s
easier to adapt larger-context training to modern
top-performing tagging systems with significant
gains. We brief our contributions below:

1) We try to bridge the gap by asking three
research questions, between the increasing top-
performing sentence-level tagging systems and in-
sufficient understanding of larger-context training,
encouraging future research to explore more larger-
context tagging systems. 2) We systematically in-
vestigate four aggregators for larger-context and
present an attribute-aided evaluation methodology
to interpret the relative advantages of them, and
why they can work (Sec. 3.2). 3) Based on some of
our observations, we adapt larger-context training
to five modern top-scoring systems in the NER task
and observe that all larger-context enhanced mod-
els can achieve significant improvement (Sec. 6).
Encouragingly , with the help of larger-context
training, the performance of Akbik et al. (2018)
on the WB (OntoNotes5.0-WB) dataset can be im-
proved by a 10.78 F'1 score.

"Putting the conclusion at the end can help the reader
understand it better since more contextual information about
experiments has been introduced.

2 Task, Dataset, and Model

We first explicate the definition of tagging task and
then describe several popular datasets as well as
typical methods of this task.

2.1 Task Definition

Sequence tagging aims to assign one of the pre-
defined labels to each token in a sequence. In this
paper, we consider four types of concrete tasks:
Named Entity Recognition (NER), Chinese Word
Segmentation (CWS), Part-of-Speech (POS) tag-
ging, and Chunking.

2.2 Datasets

The datasets used in our paper are naturally ordered
without random shuffling according to the paper
that constructed these datasets, except for WNUT-
2016 dataset.

Named Entity Recognition (NER) We consider
two well-established benchmarks: CoNLL-2003
(CN03) and OntoNotes 5.0. OntoNotes 5.0 is col-
lected from six different genres: broadcast conver-
sation (BC), broadcast news (BN), magazine (MZ),
newswire (NW), telephone conversation (TC), and
web data (WB). Since each domain of OntoNotes
5.0 has its nature, we follow previous works (Dur-
rett and Klein, 2014; Chiu and Nichols, 2016;
Ghaddar and Langlais, 2018) that utilize different
domains of this dataset, which also paves the way
for our fine-grained analysis.

Chinese Word Segmentation (CWS) We use
four mainstream datasets from SIGHAN2005 and
SIGHAN?2008, in which CITYU is traditional Chi-
nese, while PKU, NCC, and SXU are simplified
ones.

Chunking (Chunk) CoNLL-2000 (CNO0O) is a
benchmark dataset for text chunking.
Part-of-Speech (POS) We use the Penn Treebank
(PTB) III dataset for POS tagging.’

2.3 Neural Tagging Models

Despite the emergence of a bunch of architectural
explorations (Ma and Hovy, 2016; Lample et al.,
2016; Yang et al., 2018; Peters et al., 2018; Ak-
bik et al., 2018; Devlin et al., 2018) for sequence
tagging, two general frameworks can be summa-
rized: (i) cEnc-wEnc-CRF consists of the word-
level encoder, sentence-level encoder, and CRF

It’s hard to cover all datasets for all tasks. For Chunk
and POS tasks, we adopt the two most popular benchmark
datasets.
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layer (Lafferty et al., 2001); (ii) ContPre-MLP is
composed of a contextualized pre-trained layer, fol-
lowed by an MLP or CREF layer. In this paper, we
take both frameworks as study objects for our three
research questions first, 3 and instantiate them as
two specific models: CNN-LSTM-CRF (Ma and
Hovy, 2016) and BERT-MLP (Devlin et al., 2018).

3 Larger-Context Tagging

3.1 Sentence-level Tagging

Let S = s1,-- -, si represent a sequence of sen-
tences, where sentence s; contains n; words: s; =
w1, ,W;n,. Sentence-level tagging models pre-
dict the label for each word w; ; sentence-wisely
(within a given sentence s;). CNN-LSTM-CRF, for
example, first converts each word w; ; € s; into a
vector by different word-level encoders wEnc(+):

w;,: = wEnc(w; ) = Lookup(wi,¢) & CNN(w; ), (1)

where @ denotes the concatenation operation,
Lookup(w; ¢) can be pre-trained by context-free
(e.g., GloVe) or context-dependent (e.g., BERT)
word representations.

And then the concatenated representation of
them will be fed into sentence encoder sEnc(-)
(e.g., LSTM layer) to derive a contextualized rep-
resentation for each word.

h;; = sEnc(-) = LSTM®) (w; ;, h;;_1,6), (2)

where the lower case “s” of LSTM(*) represents a
sentence-level LSTM. Finally, a CRF layer will be
used to predict the label for each word.

3.2 Contextual Information Aggregators

Instead of predicting entity tags sentence-wisely,
more contextual information of neighbor sentences
can be introduced in diverse ways. Following, we
elaborate on how to extend sentence-level tagging
to a larger-context setting. The high-level idea is to
introduce more contextual information into word-
or sentence-level encoder defined in Eq. 1 and Eq. 2.
Here, we propose four larger-context aggregators,
whose architectures are illustrated in Fig. 1.

3Notably, in the setting, we don’t aim to improve perfor-
mance over state-of-the-art models.

Bag-of-Word Aggregator (bow) calculates a
fused representation r for a sequence of sentences.

r= BOW(wl,la L, Wing, 7wk,nk)7 (3)

where BOW(+) is a function that computes the av-
erage of all word representations of input sentences.
Afterward, r, as additional information, will be in-
jected into the word encoder.

More precisely, the word-level encoder and
sentence-level encoder can be re-written below:

w?f;w = GloVe(w; ) ® CNN(w; () &r, (4)
htY = LSTM®) (whsw hbsv,  6), o)

it
where the upper case “S” of LSTM®) denotes the
larger-context encoder that utilizes an LSTM deal
with a sequence of sentences (S = s1,- -+, Sg)
(instead of solely one sentence).

Sequential Aggregator (seq) first concatenates
all sentences s; € S and then encode it with a
larger-context encoder LSTM®). Formally, seq
aggregator can be represented as:

S = LSTM®) (wi hi5e,,0),  (6)

it o

where w;3? is defined as Eq. 1, and the

Lookup(w;-,t) is GloVe. Then, a CRF decoder is
utilized to predict the tags for each word.

Graph Aggregator (graph) incorporates non-
local bias into tagging models. Each word w; is
conceptualized as a node. For edge connections,
we define the following types of edges between
pairs of nodes (i.e. w; and w;) to encode various
structural information in the context graph: i) if
|i—j| = 1;ii) if w; = w;. In practice, the graph ag-
gregator first collects contextual information over
a sequence of sentences, and generate the word
representation:

G = GraphNN(V, E,0), @)

where V. = {wy 1, -+ ,Wipn,, -+, Wgy, } and
w; can be obtained as defined in Eq. 1. Addition-
ally, G = {11, ,&1,n1> " »8k,ny } StOTES ag-
gregated contextual information for each word. We
instantiate GraphNN(-) as graph convolutional
neural networks (Kipf and Welling, 2016).
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Figure 1: Illustration of four larger-context aggregators.

Afterwords, the contextual vector g will be intro-
duced into larger-context encoder , i.e., LSTM):

WY = LSTM) (g B0, (9)

Contextualized Sequential Aggregator (cPre-
seq) is an extension of seq aggregator by us-
ing contextualized pre-trained models, such as
BERT (Devlin et al., 2018), Flair (Akbik et al.,
2018), and ELMo (Peters et al., 2018), as a word
encoder. Here, cPre-seq is instantiated as BERT
to get the word representation, then followed by
a larger-context encoder LSTM (%), We make the
length of larger-context for the cPre-seq aggregator
within 512. cPre-seq can be formalized as:

h¢Pme = LSTM®) (BERT (w;), héf"$,60). (9)

4 Experiment: When Does It Work?

The experiment in this section is designed to an-
swer the first two research questions: Q1 and Q2
(Sec. 1). Specifically, we investigate whether larger-
context training can achieve improvement and how
different structures of aggregator, contextualized
pre-trained models influence it.

Settings and Hyper-parameters We adopt
CNN-LSTM-CRF as a prototype and augment it
with larger-context information by four categories
of aggregators: bow, seq, graph, and cPre-seq.
We use Word2Vec (Mikolov et al., 2013) (trained
on simplified Chinese Wikipedia dump) as non-
contextualized embeddings for CWS task, and
GloVe (Pennington et al., 2014) for NER, Chunk,
and POS tasks.

The window size (the number of sentence) k of
larger-context aggregators will be explored with a
range of k = {1,2,3,4,5,6, 10} for seq, bow, and
cPre-seq. We chose the best performance that the
larger-context aggregator achieved with window

size k # 1 as the final performance of a larger-
context aggregator. * We use the result from the
model with the best validation set performance,
terminating training when the performance on de-
velopment is not improved in 20 epochs.

For the POS task, we adopt dataset-level accu-
racy as evaluated metric while for other tasks, we
use a corpus-level F'1-score (Sang and De Meulder,
2003) to evaluate.

4.1 Exp-I: Effect of Structured Typologies

Tab. 1 illustrates the relative improvement results
of four larger-context training (k > 1) relative to
the sentence-level tagging (k = 1). To examine
whether the larger-context aggregation method has
a significant improvement over the sentence-level
tagging, we used significant test with Wilcoxon
Signed-RankTest (Wilcoxon et al., 1970) at p =
0.05 level. Results are shown in Tab. 1 (the last col-
umn). We find that improvements brought by four
larger-context aggregators are statistically signifi-
cant (p < 0.05), suggesting that the introduction of
larger-context can significantly improve the perfor-
mance of sentence-level models.

Results We detail main observations in Tab. 1:
1) For most of the datasets, introducing larger-
context information will bring gains regardless of
the ways how to introduce it (e.g. bow or graph),
indicating the efficacy of larger contextual informa-
tion. Impressively, the performance on dataset WB
is significantly improved by 7.26 F1 score with the
cPre-seq aggregator (p = 5.1 x 1073 < 0.05).

2) Overall, comparing with bow and graph aggre-
gators, seq aggregator has achieved larger improve-
ment by average, which can be further enhanced
by introducing contextualized pre-trained models
(e.g. BERT).

3) Incorporating larger-context information with
some aggregators also can lead to performance
drop on some datasets (e.g, using graph aggrega-

*The settings of window size k are listed in the appendix.
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CWS NER Chunk POS Signi.
Emb. Agg. ~_ Avg
CITYU NCC SXU PKU CNO3 BC BN MZ WB NW TC CNOO PTB (x1072)
norm 9370 92.26 94.94 94.35 90.46 75.38 86.89 85.42 62.09 88.38 63.69 93.85 97.25 - -
Non- bow  +0.17 +0.42 +0.03 +0.04 +1.66 +0.32 +1.51 +3.49 +0.92 +0.42 +0.54 1.74
Con. graph +0.33 +1.47 +0.17 +0.42 +4.84 +0.34 +0.90 +0.17 +0.61 2.17
seq  +0.27 +0.34 +0.18 +0.08 +0.65 +1.49 +5.61 +1.13 +2.39 +0.03 +0.77 0.86
norm 97.09 95.77 97.49 96.47 90.77 80.46 89.67 87.03 68.78 90.04 63.34 96.45 97.62 - -
Con. cpre  1+0.07 +0.07 +0.13 +0.14 +0.72 +1.27 +0.39 +0.19 +7.26 +0.99 +6.00 +0.11 +0.04 +1.15 0.26

Table 1: The relative improvement (the performance difference between a model with larger-context aggregator (e.g. bow) and
the one without it) on tasks CWS, NER, Chunk, and POS. “norm” denotes the normal setting () = 1). The values in red
are the performance of larger-context tagging (k > 1) lower than sentence-level tagging (k = 1). “Signi.” denotes p-value
of “significant test”. “Emb.”, “Non-Con.”, “Con.”, and “Agg.” are the abbreviations of “Embeddings”, “Non-Contextualized”,
“Contextualized”, and “Aggregator” respectively. The values in pink indicate that the value is less than zero.

tor on dataset MZ lead to 0.16 performance drop),
which suggests the importance of a better match
between datasets and aggregators.

4.2 Exp-II: Effect of BERT

To answer the research question Q2 ( Can the
larger-context approach easily play to its strengths
with the help of recently arising contextualized pre-
trained models?), we elaborate on how cPre-seq
and seq aggregators influence the performance.

Results Fig. 2 illustrates the relative improve-
ment achieved by two larger-context methods: seq
(blue bar) and cPre-seq (red bar) on four different
tagging tasks. We observe that:

1) In general, aggregators equipped with BERT
can not guarantee a better improvement, which is
dataset-dependent. 2) Task-wisely, cPre-seq can im-
prove performance on all datasets on NER, Chunk,
and POS tasks. By contrast, seq is beneficial to all
datasets on CWS task. It could be attributed to the
difference in language and characteristics of the
task. Specifically, for most non-CWS task datasets,
cPre-seq (7 out of 9 datasets) performs better than
seq (p < 0.05).

5 Experiment: Why Does It Work?

Experiments in this section are designed for the re-
search questions Q3, interpreting where the gains
of a larger-context approach come and why dif-
ferent datasets exhibit diverse improvements. To
achieve this goal, we use the concept of inter-
pretable evaluation (Fu et al., 2020a) that allows us
perform fine-grained evaluation of one or multiple
systems.

5.1 Attribute Definition

The first step of interpretable evaluation is attribute
definition. The high-level idea is, given one at-
tribute, the test set of each tagging task will be
partitioned into several interpretable buckets based
on it. And F'1 score (accuracy for POS) will be
calculated bucket-wisely. Next, we will explicate
the general attributes we defined in this paper.

We first detail some notations to facilitate def-
initions of our attributes. We define = as a token
and a bold form x as a span, which occurs in a
test sentence X = sent(x). We additionally define
two functions oov(-) that counts the number out of
training set words, and ent(+) that tallies the num-
ber of entity words. Based on these notations, we
introduce some feature functions that can compute
different attributes for each span or token. Follow-
ing, we will give the attribute definition of the NER.
Training set-independent Attributes

* deren(x) = |X|: entity span length
¢ Psren(x) = |sent(x)|: sentence length

* (epen(x) = |ent(sent(x))|/Psren(X): entity
density

* Paoov(x) = |oov(sent(x))|/dsren(x): OOV
density

Training set-dependent Attributes
* derre(x) = Fre(x): entity frequency

* decon(x) = Con(x): label consistency of en-

tity

where Fre(x) calculates the frequency of input x in
the training set. Con(x) quantify how consistently
a given span is labeled with a particular label, and
Con(x) can be formulated as:
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Figure 2: Tllustration of the relative improvement (%) achieved by two larger-context methods (i.e., seq and c¢Pre-seq) on four
different tagging tasks. The red and blue bars represent the improvements from seq and cPre-seq, respectively. The error bars
represent 95% confidence intervals of the relative improvement that are computed based on Bootstrap method (Efron and

Tibshirani, 1986).

~ Hellab(e)(x), Ve € ErY
Con(x) = str(e) = str(x),Ve € 7}
lab(e) = lab(x) N str(e) = str(x),

(10)

(1D

where £ denotes entities in the training set, lab(-)
denotes the label of input span while str(-) repre-
sents the surface string of input span. Similarly, we
can extend the above two attributes to token-level,
therefore obtaining ¢rrre(x) and ¢rcon(z).

Attributes for CWS task can be defined in a sim-
ilar way. Specifically, the entity (or token) in NER
task corresponds to the word (or character) in CWS
task. Note that we omit word density for CWS task
since it equals to one for any sentence.

5.2 Attribute Buckets

We breakdown all test examples into different at-
tribute buckets according to the given attribute.
Take entity length (eLen) attribute of NER task as
an example, first, we calculate each test sample’s
entity length attribute value. Then, divide the test
entities into N attribute buckets (N = 4 by de-
fault) where the numbers of the test samples in all
attribute intervals (buckets) are equal, and calculate
the performance for those entities falling into the
same bucket.

5.3 Exp-I: Breakdown over Attributes

To investigate where the gains of the larger-context
training come, we conduct a fine-grained evaluation
with the evaluation attributes defined in Sec. 5.1.
We use the cPre-seq larger-context aggregation
method as the base model. Fig. 3 shows the rel-
ative improvement of the cPre-seq larger-context
aggregation method in NER (7 datasets) and CWS
tasks (4 datasets). The relative improvement is the
performance of cPre-seq larger-context tagging mi-
nus sentence-level tagging.

Results

1) Test spans with lower label consistency can ben-
efit much more from the larger-context training. As
shown in Fig. 3 (a,b,i,j), test spans with lower la-
bel consistency (NER:eCon, tCon=5/XS, CWS:
wCon, cCon=S/XS) can achieve higher relative
improvement using the larger-context training,
which holds for both NER and CWS tasks.

2) NER task has achieved more gains on lower
and higher-frequency test spans, while CWS
task obtains more gains on lower-frequency
test spans. As shown in Fig. 2 (c,dk,l), in
NER task, test spans with higher or lower
frequency (NER:eFre=XS/XL; tFre=XS/XL)
will achieve larger improvements with the help
of more contextual sentences; while for the CWS
task, only the test spans with lower frequency will
achieve more gains.

Our findings from Fig. 3 are:

3) Test spans of NER task with lower entity den-
sity have obtained larger improvement with the
help of a larger-context training. In terms of entity
density shown in Fig. 3 (e), an evaluation attribute
specific to the NER task, the larger-context train-
ing is not good at dealing with the test spans with
high entity density (NER:eDen=X1/L), while do-
ing well in test spans with low entity density
(NER:eDen=Xx5/S).

4) Larger-context training can achieve more gains
on short entities in NER task while long words
in CWS task. As shown in Fig. 3 (f,m), the
dark blue boxes can be seen in the short enti-
ties (eLen=XS/S) of NER task, and long words
(wLen=XL/L) of CWS task.

5) Both NER and CWS tasks will achieve
more gains on spans with higher OOV den-
sity. For the OOV density shown in Fig. 2
(h,0), the test spans with higher OOV density
(NER,CWS:dOov=L/XL) will achieve more gains
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Figure 3: The relative increase (€ [0, 1]) of the cPre-seq larger-context training on NER (a—h) and CWS (i—o) tasks based on
their evaluation attributes. “co” denotes the CONLL-2003 dataset. In order to facilitate observation, we divide the attribute
value range into four categories: extra-small (XS), small (S), large (L), and extra-large (XL). The darker blue implies more
significant improvement while the darker red suggests larger-context leads to worse performance. For the attribute name, “e”
“t”, “w”, and “c” refers to “entity”, “token”, “word”, and “character”, respectively.

from the larger-context training, which holds for =~ where Spearman denotes the Spearman’s rank cor-
both NER and CWS tasks. relation coefficient (Mukaka, 2012). ¢, represents
dataset-level attribute values on all datasets with
respect to attribute p (e.g., eLen) while f, denotes
the relative improvements of larger-context training
Different datasets (e.g. CN03) may match different on corresponding datasets with respect to a given
information aggregators (e.g. cPre-seq). Figuring  aggregator y (e.g., cPre-seq).

out how different datasets influence the choices
of aggregators is a challenging task. We try to
approach this goal by (i) designing diverse mea-
sures that can characterize a given dataset from
different perspectives, (ii) analyzing the correlation
between different dataset properties and improve-
ments brought by different aggregators.

5.4 Exp-II: Quantifying and Understanding
Dataset Bias

Results Tab. 2 displays (using spider charts) mea-
sure (p 3 of seven datasets with respect to diverse
attributes, and correlation measure p in the NER
task. ® Based on these correlations, which passed
significantly test (p < 0.05), between dataset-level
measure (w.r.t a certain attribute, e.g. eCon) and
gains from larger-context training (w.r.t an aggre-
Dataset-level Measure Given a dataset £ andan  gator, e.g. seq), we can obtain that:

attribute p as defined in Sec. 5.1, the data-level (1) Regarding the cPre-seq aggregator, it negatively

measure can be deﬁned as. Correlated Wlth CeCOl'D CtCOn’ CeFre’ and CeDen Wlth
larger correlation values. Therefore, the cPre-seq

(& B te| Z op(e) (12)  aggregator is more appropriate to deal with WB, TC,

ecte BC and NW datasets, since these four datasets have

where £ c £ is a test set that contains enti- a lower value of ¢, with respect to the attribute
ties/tokens in the NER task or word/character in ~ €Con (IC, WB), tCon (TC, WB), eFre (NW, TC),
the CWS task. ¢,(-) is a function (as defined in ~ and eDen (BC, WB, TC). Additionally, since the
Sec. 5.1) that computes the attribute value for a ~ cPre-seq aggregator obtains the highest positive
given span. For example, (oo (CNO3) represents  correlation with (qoov, and Caoov(CNO3), as well

the average sentence length of CN03’s test set. as Caoov(BC), achieve the highest value, cPre-seq

o aggregator is suitable for CNO3 and BC.
Correlation Measure Statistically, we definea —

variable of p to quantify the correlation between ! X
. K . found in the appendix.
a dataset-level attribute and the relative improve- 6 Analysis of other tasks can be found in our appendix
ment of an aggregator: p = Spearman((p, fy),  section.
1469
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Attr. eCon tCon eFre tFre eLen dOov sLen eDen
Cp iz TC iz TC iz TC vz TC Mz‘ TC Mz‘ TC iz TC vz TC
bow -0.607 0.396 0.643 0.468 -0.571
graph -0.571 -0.393 -0.919 -0.643 0.286 -0.288

P seq -0.643 -0.857 -0.429 -0.714
cPre -0.714 -0.750 -0.571 -0.306 0.357 -0.643

Table 2: Illustration of measures (, in seven datasets (CNO3, TC, NW, WB, Mz, BN, BC) with respect to eight attributes (e.g.,
eCon) and correlation measure p in NER task. A higher absolute value p (e.g | -0.714 |) represents the improvement of the
corresponding aggregator (e.g., seq) heavily correlates with corresponding attribute (e.g. eCon). The number with the highest
absolute value of each column is colored by green. “cPre” represents “cPre-seq” and the values in grey denote correlation values
do not pass a significance test (p = 0.05). “Attr.” denotes attributes.

(2) Regarding the seq aggregator, it negatively cor-
related with Cecon, Ctcon, and (epen. Therefore, the
seq aggregator is better at dealing with datasets WB,
TC, and BC, since these datasets are with lower
value on one of the attributes (eCon, tCon, and
eDen).

Takeaways: We can conduct a similar analysis
for bow and graph aggregators. Due to limited
pages, we detail them in our appendix and highlight
the suitable NER datasets for each aggregator as
follows.

(1) bow: WB, TC, NW, M7, BC.

(2) graph: WB, TC, BN, CNO3.

(3) seq: WB, TC, BC.

(4) cPre-seq: CN03, WB, TC, BC, NW.

6 Adapting to Top-Scoring Systems

Beyond the above quantitative and qualitative anal-
ysis of our instantiated typical tagging models
(Sec.2.3), we are also curious about how well mod-
ern top-scoring tagging systems perform when
equipped with larger-context training.

To this end, we choose the NER task as a
case study and first re-implement existing top-
performing models for different NER datasets sep-
arately, and then adapt larger-context approach
to them based on the seq or cPre-seq aggrega-
tor,” which has shown superior performance in our
above analysis.

Settings We collect five top-scoring tagging sys-
tems (Luo et al., 2020; Lin et al., 2019; Chen et al.,
2019; Yan et al., 2019; Akbik et al., 2018) that

"Training all four aggregators for all tagging tasks is much
more costly and here we choose these two since they can
obtain better performance at a relatively lower cost.

are most recently proposed 8. Among these five
models, regarding Akbik et al. (2018), we use cPre-
seq aggregator for the larger-context training, since
this model originally relies on a contextualized
pre-trained layer. Besides, from above analysis in
Sec. 5.4 we know the suitable datasets for cPre-seq
aggregator: CNO3, WB, TC, BC, and NW. Regarding
the other four models, we use the seq aggregator for
the larger-context training and the matched datasets
are: WB, TC, and BC.

Results Tab. 3 shows the relative improvement of
larger-context training on five modern top-scoring
models in the NER task. We observe that the larger-
context training has achieved consistent gains on
all chosen datasets, which holds for both seq and
cPre-seq aggregators. Notably, the larger-cotext
training achieves sharp improvement on WB, which
holds for all the five top-scoring models. For ex-
ample, with the help of larger-context training, the
performance can be improved significantly using
Akbik et al. (2018) and 7.18 F'1 score using Luo
et al. (2020). This suggests that modern top-scoring
NER systems can also benefit from larger-context
training.

7 Related Work

Our work touches the following research topics for
tagging tasks.

Sentence-level Tagging Existing works have
achieved impressive performance at sentence-level
tagging by extensive structural explorations with
different types of neural components. Regarding
sentence encoders, recurrent neural nets (Huang
et al., 2015; Chiu and Nichols, 2015; Ma and Hovy,

8We originally aimed to select more (10 systems) but suffer
from reproducibility problems (Pineau et al., 2020), even after
contacting the first authors.
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Aggregator Datasets

Models

norm seq cPre BC WB TC CNO3 NW

78.78 62.38 65.56

v
Luo et al. (2020) v +0.54 +7.18 +1.7

77.80 63.16 65.19

Lin et al. (2019) v +2.94 4507 +2.25
Vv 7750 66.51 65.49
Chen et al. (2019) VA +1.96 +3.98 +0.89
Vv 81.29 65.05 67.92 92.17 90.37
Yan et al. (2019) Vv +0.16 +6.79 +3.03 +0.04 +1.11
v 81.13 64.79 69.00 93.03 90.76

Akbik et al. (2018) v/ +1.12 +10.78 +2.12 +0.05 +1.03

Table 3: The relative improvement of larger-context training
on top-scoring models in the NER task. “cPre” represents
“cPre-seq”. “norm” denotes the normal setting (KX = 1). The
testing datasets are chosen based on the analysis in Sec. 5.4.

2016; Lample et al., 2016; Li et al., 2019; Lin et al.,
2020) and convolutional neural nets (Strubell et al.,
2017; Yang et al., 2018; Chen et al., 2019; Fu et al.,
2020a) were widely used while transformer were
also studied to get sentential representations (Yan
et al., 2019; Yu et al., 2020). Some recent works
consider the NER as a span classification (Li et al.,
2019; Jiang et al., 2019; Mengge et al., 2020; Ouchi
et al., 2020) task, unlike most works that view it as
a sequence labeling task. To capture morphologi-
cal information, some previous works introduced a
character or subword-aware encoders with unsuper-
vised pre-trained knowledge (Peters et al., 2018;
Akbik et al., 2018; Devlin et al., 2018; Akbik et al.,
2019; Yang et al., 2019; Lan et al., 2019).

Document-level Tagging Document-level tagging
introduced more contextual features to improve the
performance of tagging. Some early works intro-
duced non-local information (Finkel et al., 2005;
Krishnan and Manning, 2006) to enhance tradi-
tional machine learning methods (e.g., CRF (Laf-
ferty et al., 2001)) and achieved impressive re-
sults. Qian et al. (2018); Wadden et al. (2019)
built graph representation based on the broad de-
pendencies between words and sentences. Luo
et al. (2020) proposed to use a memory network to
record the document-aware information. Besides,
document-level features was introduced by differ-
ent domains to alleviate label inconsistency prob-
lems, such as news NER (Hu et al., 2020, 2019),
chemical NER (Luo et al., 2018), disease NER (Xu
et al., 2019), and Chinese patent (Li and Xue,
2014, 2016). Compared with these works, instead
of proposing a novel model, we focus on investigat-
ing when and why the larger-context training, as a
general strategy, can work.

Interpretability and Robustness of Sequence
Labeling Systems Recently, there is a popular
trend that aims to (i) perform a glass-box analy-
sis of sequence labeling systems (Fu et al., 2020b;
Agarwal et al., 2020), understanding their gener-
alization ability and quantify robustness (Fu et al.,
2020c), (i1) interpretable evaluation of them (Fu
et al., 2020a), making it possible to know what
a system is good/bad at and where a system out-
performs another, (iii) reliable analysis (Ye et al.,
2021) for test set with fewer samples. Our work is
based on the technique of interpretable evaluation,
which provides a convenient way for us to diagnose
different systems.

8 Discussion

We summarize the main observations from our ex-
periments and try to provide preliminary answers
to our proposed research questions:

(i) How do different integration ways of larger-
context information influence the system’s per-
Jormance? Overall, introducing larger-context in-
formation will bring gains regardless of the ways
how to introduce it (e.g., seq, graph). Particu-
larly, larger-context training with seq aggregator
can achieve better performance at lower training
cost compared with graph and bow aggregators
(Sec.4.1).

(ii) Can the larger-context training easily play
to its strengths with the help of contextualized
pre-trained models? Yes for all datasets on NER,
Chunk, and POS tasks. By contrast, for CWS
tasks, the aggregator without BERT (e.g., seq) can
achieve better improvement (Sec. 4.2).

(iii) Where does the gain of larger-context train-
ing come? And how do different characteris-
tics of datasets affect the amount of gain? The
source of gains, though, is dataset- and aggregator-
dependent, a relatively consensus observation is
that text spans with lower label consistency and
higher OOV density can benefit a lot from larger-
context training (Sec. 5.3). Regarding different
datasets, diverse aggregators are recommended in
Sec.5.4.
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A Aggregator Setting

Tab. 4 illustrates the window size k(k # 1) when
the larger-context aggregator achieves the best per-
formance. The window size k when seqg achieves
the best performance will be chosen to set the
document-length of the graph aggregator.

B Quantifying and Understanding
Dataset Bias

In this section, we will supplement some analyses
related to Sec. 5.3.

B.1 Data-level Measure

Tab. 5 gives the data-level measure ¢, in seven
(four) datasets with respect to eight (seven) at-
tributes in NER (CWY) task. The data-level mea-
sure ¢, will be used to compute the correlation
measure in Sec. 5.3.

B.2 Results

Tab. 6 displays (using spider charts) measure (;, of
seven datasets with respect to diverse attributes, and
correlation measure p in NER task. We have given a
detail analysis on seq and cPre-seq on the main text,
here, we will provide the suggestion for choosing
the datasets for bow and graph aggregator.

(1) regarding bow aggregator, it negatively corre-
lated with (:con and (epen With larger correlation
values. Therefore, bow aggregator is more appro-
priate to deal with datasets WB, TC, BC, since these
four datasets are with lower value of ¢, with re-
spect to the attribute tCon (TC, WB) and eDen
(BC, WB, TC). Additionally, bow aggregator ob-
tained the highest positive correlation with (igyre,

<eLena and <sLen- BeSideS’ (tFre (Mz)a <eLen (Nw)a
and (sren(NW), also achieved the highest value,

suggesting that bow aggregator is suitable for MZ
and NW.

(2) regarding graph aggregator, it negatively cor-
related with Cecon, Cerres Cerres and Ceren, With
larger correlation values. Therefore, graph aggre-
gator is more appropriate to deal with datasets WB,
TC, NW, and CNO3, since these four datasets are
with lower value of ¢, with respect to the attribute
eCon (TC,WB), eFre (NW, TC), tFre (CNO3,
WB), and eLen (CNO03),.

Tab. 7 illustrates the measures ¢, in four CWS
datasets with respect to seven attributes (e.g.,
wCon) and correlation measure p. We can conduct
similar analysis like NER for CWS. We highlight
the suitable CWS datasets for each aggregator as
follows:

* bow: NCC, and SXU.
e graph: PKU and CITYU.
* seq: SXU, and NCC.

* cPre-seq: CITYU, PKU, SXU.
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Agg. CITYU NCC SXU PKU CNO3 BC BN Mz WB NW TC CNOO PTB

bow 5 6 2 2 2 5 4 210 2 5 2 4
graph 7 33 6 10 6 4 3 7 6 10 3 10
seq 7 3 3 6 100 6 4 3 7 6 10 3 10
cPre 7 33 6 100 7 4 3 7 6 10 2 10

Table 4: The window size k when the four larger-context aggregators achieve the final performance.

Task Data eCon tCon eFre tFre elen dOov sLen eDen

CNO3 0.485 0.514 0.109 0.017 1.436 0.067 13.4 0.232
BC 0.486 0.440 0.113 0.108 1.905 0.064 16.3 0.085
BN 0.627 0.552 0.147 0.089 1.623 0.004 19.5 0.148
NER MZ 0.496 0.487 0.129 0.119 1.832 0.015 229 0.124
WB 0294 0.269 0.111 0.084 1.631 0.024 229 0.050
NW 0.567 0.512 0.083 0.108 2.015 0.014 26.1 0.179
TC 0.261 0.258 0.082 0.105 1.598 0.043 8.3 0.040

Task Data wCon cCon wFre cFre wLen dOov sLen

CITYU 0.763 0.285 1.834 0.489 1.634 0.010 62.400
NCC 0.743 0.274 3.856 1.016 1.546 0.021 64.400
SXU 0.781 0.293 3.832 1.005 1.590 0.020 69.700
PKU 0.777 0.292 1.765 0.466 1.615 0.019 59.200

CWS

Table 5: The data-level measure (;, in seven (four) datasets with respect to eight (seven) attributes in NER (CWS) task. The value
of wFre and cFre on CWS task needs to multiply by 1077,

Attr. eCon tCon eFre tFre eLen dOov sLen eDen
Cp iz TC iz TC iz TC Mz‘ TC Mz‘ TC Mz‘ TC MZ‘ TC Mz‘ TC
bow -0.607 0.396 0.643 0.468 -0.571
graph -0.571 -0.393 -0.919 -0.643 0.286 -0.288

P seq -0.643 -0.857 -0.429 -0.714
cPre -0.714 -0.750 -0.571 -0.306 0.357 -0.643

Table 6: Illustration of measures (, in seven datasets (CNO3, TC, NW, WB, MZ, BN, BC) with respect to eight attributes (e.g.,
eCon) and correlation measure p in NER task. A higher absolute value p (e.g | -0.714 |) represents the improvement of
corresponding aggregator (e.g., seq) heavily correlate with corresponding attribute (e.g. eCon). The number with the highest
absolute value of each column is colored by green. “cPre” represents “cPre-seq” and the value in grey denotes correlation value
does not pass a significance test (p = 0.05).

Attr. wCon cCon wEre cFre wlLen dOov sLen
SXu PKU SXu v PKU SXuU PKU SXuU PKU SXu PKU SXu PKU SXu PKU
bow -0.657 -0.771 0.257 -0.600 0.319 -0.486
graph 0.257 -0.543 -0.429 -0.319 -0.486
P seq 0.371 0314 -0.257 0.464 0.257
cPre 0.580 0.493 -0.261 0.544

Table 7: Illustration of measures ¢, in four datasets ( CITYU, NCC, SXU, PKU) with respect to seven attributes (e.g., wCon) and
correlation measure p in CWS task. A higher absolute value p (e.g | -0.657 |) represents the improvement of corresponding
aggregator (e.g., bow) heavily correlate with corresponding attribute (e.g. wCon). The number with the highest absolute value of
each column is colored by green. “cPre” represents “cPre-seq” and the value in grey denotes correlation value does not pass a
significance test (p = 0.05).
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