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Abstract

Presentations are critical for communication in

all areas of our lives, yet the creation of slide

decks is often tedious and time-consuming.

There has been limited research aiming to au-

tomate the document-to-slides generation pro-

cess and all face a critical challenge: no pub-

licly available dataset for training and bench-

marking. In this work, we first contribute a

new dataset, SciDuet, consisting of pairs of pa-

pers and their corresponding slides decks from

recent years’ NLP and ML conferences (e.g.,

ACL). Secondly, we present D2S, a novel sys-

tem that tackles the document-to-slides task

with a two-step approach: 1) Use slide titles

to retrieve relevant and engaging text, figures,

and tables; 2) Summarize the retrieved con-

text into bullet points with long-form question

answering. Our evaluation suggests that long-

form QA outperforms state-of-the-art summa-

rization baselines on both automated ROUGE

metrics and qualitative human evaluation.

1 Introduction

From business to education to research, presenta-

tions are everywhere as they are visually effective

in summarizing and explaining bodies of work to

the audience (Bartsch and Cobern, 2003; Wang,

2016; Piorkowski et al., 2021). However, it is te-

dious and time-consuming to manually create pre-

sentation slides (Franco et al., 2016).

Researchers have proposed various methods to

automatically generate presentations from source

documents. For example, Winters and Mathewson

(2019) suggest heuristic rule-based mechanisms

to extract document contents and use those as the

generated-slide’s content. PPSGen (Hu and Wan,

2014) leverages machine learning (ML) approaches

∗Work done during internship at IBM Research.

Figure 1: An example slide in SciDuet. TOP is author’s

original slide; BOTTOM is from our system D2S.

to learn a sentence’s importance in the document,

and extract important sentences as slide’s content.

These existing research works have yielded

promising progress towards the goal of automated

slide generation, but they also face two com-

mon limitations: 1) these works primarily rely on

extractive-based mechanisms, thus the generated

content is merely an aggregation of raw sentences

from the document, whereas in real-world slides,

the presenter frequently uses abstractive summa-

rization; 2) these works assume the presentation

slide’s title has a one-to-one match to the docu-

ment’s subtitles or section headlines, whereas the

presenter in reality often uses new slide titles and

creates multiple slides under the same title (e.g.,
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the slides with a Cont. / Continue on it).

In our work, we aim to tackle both the limi-

tations. To achieve this goal, we consider the

document-to-slides generation task as a Query-

Based Single-Document Text Summarization (QSS)

task. Our approach leverages recent research devel-

opments from Open-Domain Long-form Question

Answering (QA). Specifically, we propose an inter-

active two-step architecture: in the first step, we

allow users to input a short text as the slide title and

use a Dense Vector IR module to identify the most

relevant sections/sentences as well as figures/tables

from the corresponding paper. Then, in the second

step, we use a QA model to generate the abstractive

summary (answer) of the retrieved text based on

the given slide title and use this as the final slide

text content.

We design a keyword module to extract a hier-

archical discourse structure from the paired paper.

For a given title, we leverage leaf nodes from this

tree structure in our IR module to rank paper snip-

pets. We further extract related keywords from this

structure and integrate them into the QA module.

Experiments demonstrate that the keyword module

helps our system to retrieve more relevant context

and generate better slide content.

It is worth noting that our system can extract

relevant figures and tables for a given title from the

source document as well. Figure 1 (bottom) shows

an example of a generated slide from our system.

In addition to our contribution of the novel model

architecture, we also contribute a high-quality

dataset (SciDuet), which contains 1,088 papers

and 10,034 slides. We carefully build this dataset

by leveraging a few toolkits for PDF parsing and

image/table extraction. To the best of our knowl-

edge, this is the first publicly available dataset

for the document-to-slides generation task1. Our

dataset together with the title-based document-to-

slide generation task provide a practical testbed for

the research field on query-based single-document

summarization. We release the dataset procure-

ment and preprocessing code as well as a portion

of SciDuet2 at https://github.com/IBM/

document2slides.

1Some previous works (SlideSeer (Kan, 2007), PPS-
Gen (Hu and Wan, 2014) and (Wang et al., 2017)) described
a dataset for training and testing, we could not obtain these
datasets with our best ability to search and contact authors.

2Due to copyright issues, we can only release a portion of
our dataset. See Section 3 for more details. Other researchers
can use our code to construct the full dataset from the original
places or extend it with additional data.

2 Related Work

Automated Document-To-Slides Generation

The early works of automatically generating

presentation slides date back to 20 years ago

and rely on heuristic rule-based approaches to

process information from web searches as slide

contents for a user-entered topic (Al Masum et al.,

2005). A recent example, Winters and Mathewson

(2019) used predefined schemas, web sources, and

rule-based heuristics to generate random decks

based on a single topic. Among this group of

works, different types of rules were used, but

they all relied heavily on handcrafted features or

heuristics (Shibata and Kurohashi, 2005; Prasad

et al., 2009; Wang and Sumiya, 2013).

More recently, researchers started to leverage

machine learning approaches to learn the impor-

tance of sentences and key phrases. These systems

generally consist of a method to rank sentence im-

portance: regression (Hu and Wan, 2014; Bhandare

et al., 2016; Syamili and Abraham, 2017), random

forest (Wang et al., 2017), and deep neural net-

works (Sefid et al., 2019). And they incorporate

another method for sentence selection: integer lin-

ear programming (Hu and Wan, 2014; Sefid et al.,

2019; Bhandare et al., 2016; Syamili and Abraham,

2017) and greedy methods (Wang et al., 2017).

However, these methods all rely on extractive ap-

proaches, which extract raw sentences and phrases

from the document as the generated slide content.

An abstractive approach based on diverse titles that

can summarize document content and generate new

phrases and sentences is under-investigated.

Text Summarization To support abstractive

document-to-slides generation, we refer to and

are inspired by the Text Summarization litera-

ture. We consider the abstractive document-to-slide

generation task as a query-based single-document

text summarization (QSS) task. Although there

has been increasing interest in constructing large-

scale single-document text summarization corpora

(CNN/DM (Hermann et al., 2015; Nallapati et al.,

2016), Newsroom (Grusky et al., 2018), XSum

(Narayan et al., 2018), TLDR (Cachola et al.,

2020)) and developing various approaches to ad-

dress this task (Pointer Generator (See et al., 2017),

Bottom-Up (Gehrmann et al., 2018), BERTSum

(Liu and Lapata, 2019)), QSS remains a relatively

unexplored field. Most studies on query-based text

summarization focus on the multi-document level
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(Dang, 2005; Baumel et al., 2016) and use extrac-

tive approaches (Feigenblat et al., 2017; Xu and

Lapata, 2020). In the scientific literature domain,

Erera et al. (2019) apply an unsupervised extrac-

tive approach to generate a summary for each sec-

tion of a paper. In contrast to previous work, we

construct a challenging QSS dataset for scientific

paper-slide pairs and apply an abstractive approach

to generate slide contents for a given slide title. In

addition, Kryscinski et al. (2019) argues that fu-

ture research on summarization should shift from

“general-purpose summarization” to constrained

settings. The new dataset and task we proposed

provide the practical testbed to this end.

Open-Domain Long-Form Question Answering

Our work is motivated by the recent advance-

ments in open-domain long-form question answer-

ing task, in which the answers are long and can

span multiple sentences (ELI5 (Fan et al., 2019),

NQ (Kwiatkowski et al., 2019)). Specifically, we

consider the user-centered slide titles as questions

and the paper document as the corpus. We use

information retrieval (IR) to collect the most rele-

vant text snippets from the paper for a given title

before passing this to a QA module for sequence-to-

sequence generation. We further improve the QA

module by integrating title-specific key phrases to

guide the model to generate slide content. In com-

parison to ELI5 and NQ, the questions in the slide

generation task are shorter; and a significant pro-

portion of the reference answers (slide contents)

contain tables and figures directly from the paper,

which then requires particular consideration.

3 SciDuet Dataset Construction

Data Sources The SciDuet (SCIentific DocU-

ment slidE maTch) dataset comprises of paper-

slide pairs scraped from online anthologies of

International Conference on Machine Learning

(ICML’19), Neural Information Processing Sys-

tems (NeurIPS’18&’19), and Association for Com-

putational Linguistics (since ACL’79) conferences.

We focus only on machine learning conferences as

their papers have highly specialized vocabulary; we

want to test the limits of language generation mod-

els on this challenging task. Nevertheless, these

generic procuration methods (web-scraping) can be

applied to other domains with structured archives.

Data Processing Text on papers was extracted

through Grobid (GRO, 2008–2020). Figures and

#papers #slides ST-len SC-len

train 952 8,123 3.6 55.1

dev 55 733 3.16 63.4

test 81 1,178 3.4 52.3

Table 1: Dataset statistic. ‘ST-len‘ and ‘SC-len ‘ indi-

cate the average token length for slide titles and slide

contents, respectively.

% of novel n-grams

unigrams bigrams trigrams

SlideTitle 35.1 71.9 87.4

SlideContent 22.9 64.1 84.7

Table 2: The average proportion of novel n-grams for

slide titles and slide contents in the training dataset.

captions were extracted through pdffigures2 (Clark

and Divvala, 2016). Text on slides was extracted

through IBM Watson Discovery package3 and OCR

by pytesseract.4 Figures and tables that appear on

slides and papers were linked through multiscale

template matching by OpenCV. Further dataset

cleaning was performed with standard string-based

heuristics on sentence building, equation and float-

ing caption removal, and duplicate line deletion.

Dataset Statistics and Analysis SciDuet has

952–55–81 paper-slide pairs in the Train–Dev–Test

split. We publicly release SciDuet-ACL which is

constructed from ACL Anthology. It contains the

full Dev and Test sets, and a portion of the Train

dataset. Note that although we cannot release the

whole training dataset due to copyright issues, re-

searchers can still use our released data procure-

ment code to generate the training dataset from the

online ICML/NeurIPS anthologies.

Table 1 shows the statistics of the dataset after

excluding figures and tables from slide contents. In

the training dataset, 70% of slide titles have fewer

than five tokens, and 59% of slide contents have

fewer than 50 tokens.5

We also calculate the novel n-grams for slide ti-

tles and slide contents compared to the correspond-

ing papers in the training dataset (Table 2). It seems

that slide titles contain a higher proportion of novel

n-grams compared to slide contents. Some exam-

3https://www.ibm.com/cloud/watson-discovery
4https://pypi.org/project/pytesseract
5Note that in Table 1, the Dev set has a slightly longer

SC-len than the Train/Test sets. This is because there are two
papers in the Dev set whose slides contain a lot of words.
ST-Len in the Dev set is 56 after removing these two papers.
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Figure 2: System architecture of our D2S framework.

ples of novel n-grams in slide titles are: recap,

motivation, future directions, key question, main

idea, and final remarks. Additionally, we found

that only 11% of slide titles can match to the sec-

tion and subsection headings in the corresponding

papers.

4 D2S Framework

We consider document-to-slide generation as a

closed-domain long-form question answering prob-

lem. Closed domain means the supporting context

is limited to the paired paper. While traditional

open-domain QA has specific questions, nearly

40% of our slide titles are generic (e.g., take home

message, results). To generate meaningful slide

contents (answers) for these titles (generic ques-

tions), we use title-like keywords to guide the sys-

tem to retrieve and generate key bullet points for

both generic titles and the specific keywords.

The system framework is illustrated in Figure 2.

Below, we describe each module in detail.

4.1 Keyword Module

The inspiration for our Keyword Module is that

paper often has a hierarchy structure and unspeci-

fied weak titles (e.g., Experiments or Results). We

define weak titles as undescriptive generic titles

nearly identical to section headers. The problem

with these generic section headers is the length of

their sections. Human presenters know to write

content that spans the entire section. E.g., one may

make brief comments on each subsection for a long

Experiments section. For that, we use the keyword

module to construct a parent-child tree of section

titles and subsection headings. We use this hierar-

chical discourse structure to aid our D2S system

to improve information retrieval (Section 4.2) and

slide content generation (Section 4.3).

4.2 Dense IR Module

Recent research has proposed various embedding-

based retrieval approaches (Guu et al., 2020; Lee

et al., 2019; Karpukhin et al., 2020) which out-

perform traditional IR methods like BM25. In our

work, we integrate the leaf nodes of the parent-child

trees from the keyword module into the reranking

function of a dense vector IR system based on a

distilled BERT miniature (Turc et al., 2019).

Without gold passage annotations, we train a

dense vector IR model to minimize the cross-

entropy loss of titles to their original content (taken

from the original slides) because of their similarity

to paper snippets. For a given title t, we randomly

choose slide contents from other slides with differ-

ent titles as the negative samples.

We precompute vector representations for all

paper snippets (4 sentence passages) with the pre-

trained IR model. We then apply this model to

compute a same-dimension dense vector represen-

tation for slide titles. Pairwise inner products are

computed between the vectors of all snippets from

a paper and the vector of a slide title. We use these

inner products to measure the similarity between

all title-snippet pairs, and we rank the paper pas-

sage candidates in terms of relevance to a given title

with the help of Maximum Inner Product Search

(Johnson et al., 2019). The top ten candidates are

selected as input’s context to the QA Module. We
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further improve the IR re-ranking with extracted

section titles and subsection headings (keywords)

from the Keyword Module. We design a weighted

ranking function with vector representations of ti-

tles, passage texts, and the leaf node keywords:

α(embtitle·embtext)+(1−α)(embtitle·embtextkw)

where embtitle, embtext, and embtextkw are the em-

bedding vectors based on the pre-trained IR model

for a given title, a text snippet, and the leaf node

keyword from the keyword module which contains

the text snippet, respectively. We find from the

dev set that α = 0.75 is optimal. Experiments in

Section 6 shows that this ranking function can help

our system become more header-aware and robust.

4.3 QA Module

The QA module in our D2S system combines slide

title and the corresponding keywords as the query.

It takes the concatenation of the top ten ranked text

snippets from the IR module as the context.

We match a title to a set of keywords using the

parent-child hierarchy from the keyword module.

Note that this hierarchy is not limited to core sec-

tions (1, 2, 3, . . .), but can also be leveraged for

all paper header matches x.x.x Specifically, if a

title t matches with a header 2.1 (Levenshtein ratio

≥ 0.9), then we will include header 2.1 as well as

all of its recursive children (e.g., 2.1.x, 2.1.x.x) as

keywords for the QA module. It is worth noting

that not every title has corresponding keywords.

Our QA model is a fine-tuned BART

(Lewis et al., 2020). We encode the

query and the context in the format of “{ti-

tle[SEP1]keywords[SEP2]context}”. Keywords

were embedded sequentially as a comma-separated

list into the input following the slide title. We

hypothesize that integrating keywords into the

query can help our model pay attention towards

relevant important context across all retrieved

text fragments when generating slide content.

This is indeed effective when the slide titles are

aligned with broader sections, such as “Results”.

In practice, embedding keywords helps the model

in not just summarizing the top-ranked paragraphs,

but also paying attention to additional paragraphs

relevant to the broad topic.

We fine-tune our QA model using filtered train-

ing data. Filtering is done because the process of

humans generating slides from a paper is highly cre-

ative and subjective to each author’s unique style.

Some may include anecdotes or details outside the

paired paper. These underivable lines, if not fil-

tered, may hinder the QA module’s performance

on generating faithful sentences from the paired

paper. Our experiments support this speculation.6

Training Data Filtering Due to the abstractive

nature of slides, it is difficult to filter out slide con-

tent that is underivable from the paper content. No

existing automated metrics can be used as a thresh-

old to differentiate the derivable or underivable

lines. To approach this, we performed manual gold

standard annotations on 200 lines from slides to

determine derivability. This led to the development

of a Random Forest Classifier trained on the major-

ity voting decision of annotators for 50 lines and

tested on the remaining 150 lines. The classifier

feature space is a combination of ROUGE-(1, 2,

L) recall, precision, and F-scores. We apply this

classifier to the original training set to filter out

slide content that likely cannot be derived from the

paired papers.7

4.4 Figure Extraction Module

Slide decks are incomplete without good visual

graphics to keep the audience attentive and en-

gaged. Our D2S system adaptively selects con-

nected figures and tables from the paper to build a

holistic slide generation process. Our implemen-

tation is simple, yet effective. It reuses the dense

vector IR module (Section 4.2) to compute vector

similarities between the captions of figures/tables

and the slide title (with the extended keywords if

applicable). Figures and tables are then ranked

and a final recommendation set is formed and pre-

sented to the user. This simulates an interactive

figure recommendation system embedded in D2s.

5 Experimental Setup

Implementation Details All training was done

on two 16GB P100 GPUs in parallel on PyTorch.

Our code adapts the transformer models from Hug-

gingFace (Wolf et al., 2020). All hyperparameters

are fine-tuned on the dev set. A distilled uncased

Bert miniature with 8-layers, 768 hidden units, and

12 attention heads was trained and used to perform

IR. The BERT model computes all sentence embed-

dings in 128-dimensional vectors. Our QA model

6Note that we always evaluate our model’s performance
on the unfiltered dataset (Section 8).

7The derivability annotations together with the trained
classifier can be accessed on our GitHub.
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was fine-tuned over BART-Large-CNN, a BART

model pre-trained on the CNN-Dailymail dataset.

Pilot experiments showed that BART-Large-CNN

outperforms BART-Large and other state-of-the-art

pre-trained language generation models on the dev

dataset. The BART model used the AdamW opti-

mizer and a linear decreasing learning rate sched-

uler.

During testing, we apply our trained QA model

with the lowest dev loss to the testing dataset. Note

that we do not apply any content filtering on the

testing data. The QA models generate the predicted

slide content using beam search with beam 8 and

no repeated trigrams. We use the dev dataset to

tune the minimum and maximum token lengths for

the output of the QA model.

Evaluation We evaluate our IR model using IDF-

recall, which computes the proportion of words

in the original slide text in the retrieved context

weighted by their inverse document frequency.

This metric gives more focuses to important words.

For adaptive figure selection, we report the top-(1,

3, 5) precision. Finally, for slide text content gener-

ation, we use ROUGE as the automatic evaluation

metric (Lin, 2004). We also carried out human

evaluation to assess the D2S system’s performance

on slide text generation.

6 Evaluation on IR and Figure Selection

Results on Dense IR For a given slide title, the

goal of IR is to identify relevant information from

the paired paper for the downstream generation

model. We compare our IR model (Dense-Mix IR)

described in Section 4.2 to a few baselines. Classi-

cal IR (BM25) is based on sparse word matching

which uses the BM25 similarity function. Dense-

Text IR and Dense-Keyword IR are variants of our

Dense-Mix IR model with different ranking func-

tions (α equals 1 for Dense-Text IR and 0 for Dense-

Keyword IR).

All experiments are evaluated on the test set.

The IDF-recall scores for each IR method are as

follows: Classical IR (BM25) = 0.5112, Dense-

Text IR = 0.5476, Dense-Keyword IR = 0.5175, and

Dense-Mix IR = 0.5556.

The experiments indicate the dense IR model

outperforming the classical IR approach and an

α = 0.75-weighted mix dense IR model outper-

forming other dense IR models that rank exclu-

sively by text or keywords.

These results support the design decision of us-

ing embedding-based IR and re-ranking based on

both text snippets and keywords. We attribute the

success of the Dense-Mix IR model to increased

section header awareness. Header-awareness leads

to better retrieval in cases where the title corre-

sponds well with section headers. The drawback of

ranking solely on keywords is in the case when the

dense IR module cannot differentiate between pas-

sages with the same header. This leads us to find

the right balance (α = 0.75) between Dense-Text

IR and Dense-Keyword IR.

Results on Figure Selection We evaluate figure

selection based on the set of the testing slides which

contain figures/tables from the paired papers. The

results of the adaptive figure selection are promis-

ing. It achieves 0.38, 0.60, and 0.77 on p@1, p@3,

and p@5, respectively. This suggests our system

is holistic and capable of displaying figures and

tables for slides that the original author chose.

7 Evaluation on Slide Text Generation

7.1 Baselines and BARTKeyword

Below we describe the technical details of the two

baselines as well as our QA module (BARTKey-

word) for slide text generation.

BertSummExt From (Liu and Lapata, 2019), the

model is fine-tuned to the retrieved context on our

unfiltered training dataset. For a given title and the

retrieved context based on our IR model, the model

extracts important sentences from the context as the

slide text content. Note that performance was low-

ered with filtering, which differs from other models.

We suspect that the extractive model depends on

output text lengths. Filtering reduces the ground

truth token length, which in turn, makes the gen-

erated output also shorter, leading to a marginally

higher precision at greater cost in recall. Hyperpa-

rameters are reused from (Liu and Lapata, 2019)

and training continues from the best pre-trained

weights of the CNN/Daily-Mail task. This main-

tains consistency with the Bart models, which were

also pre-trained on CNN/DM.

BARTSumm A BART summarization model

fine-tuned on the filtered dataset. We use a batch

size of 4 with an initial learning rate of 5e-5. We

set the maximum input token length at 1024, which

is approximately the same length as the retrieved

context (10 paper snippets ≈ 40 sentences, each
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sentence ≈ 25 tokens). Min and max output token

lengths were found to be 50 and 128.

Our Method (BARTKeyword) This is our pro-

posed slide generation model as described in Sec-

tion 4.3. We fine-tune our QA model on the filtered

dataset with a batch size of 4 and an initial learning

rate of 5e-5. The maximum input token length was

also set to 1024. Dev set tuned min and max token

lengths were found to be 64 and 128.

7.2 Results and Discussion

7.2.1 Automated Evaluation

We use ROUGE scores to evaluate the generated

content with regard to the ground-truth slide con-

tent. Overall, our Dense-Mix IR approach provides

better context for the downstream summarization

models. In general, our BARTKeyword model

is superior to the abstractive and extractive sum-

marization models in all ROUGE metrics (1/2/L)

based on different IR approaches as shown in Ta-

ble 3. Additionally, the abstractive summarization

model performs better than the extractive model.

Altogether, this shows the importance of adopting

an abstractive approach as well as incorporating

the slide title and keywords as additional context

for better slide generation from scientific papers.

Human-Generated Slides (Non-Author) As

presentation generation is a highly subjective task,

we wanted to estimate the expected ROUGE score

that a non-author (but subject domain expert) hu-

man may be able to obtain by generating slides

from the paper. In total, three authors of this paper

each randomly selected and annotated one paper

(either from dev or test), and another common pa-

per (Paper ID: 960), thus in total four papers have

non-author human-generated slides.8 The proce-

dure we followed was: read the paper thoroughly,

and then for each slide’s original title, generate

high-quality slide content using the content from

the paper. The high quality of our non-author ex-

perts generated slides can be demonstrated through

the high scores given for the human-generated

slides in the human evaluation (Section 7.2.2).

Table 4 shows the results of ROUGE F-score for

non-author generated slides compared to our D2S

system. It is interesting to see that our model’s

performance is similar to or sometimes better than

the non-author generated ones. The task of gener-

ating slides from a given paper is indeed difficult

8Manually generated slides available on our GitHub.

even for subject domain experts, which is quite a

common task in “research paper reading groups”.

It is easy for humans to miss important phrases

and nuances, which may have resulted in the lower

score compared to the model.

In general, the low human annotator ROUGE

F-score shown in Table 4 reflects the difficulty and

subjectivity of the task. This result also provides a

reasonable performance ceiling for our dataset.

7.2.2 Human Evaluation

Four Models As suggested in the ACL’20 Best

Paper (Ribeiro et al., 2020), automatic evaluation

metrics alone cannot accurately estimate the per-

formance of an NLP model. In addition to the

automated evaluation, we also conducted a human

evaluation to ask raters to evaluate the slides gener-

ated by BARTKeyword (our model), by baseline

models (both BARTSumm and BertSummExt)

based on Dense-Mix IR, and by the non-author hu-

man experts (Human).

Participant The human evaluation task involves

reading and rating slides from the ACL Anthol-

ogy. We noted that some technical background

was required, so we recruited machine learning re-

searchers and students (N = 23) with snowball

sampling. These participants come from several IT

companies and universities. Among them: 10 have

more than 3 years of ML experience; 7 have more

than 1 year; 13 actively work on NLP projects; and

7 know the basic concepts of NLP.

Dataset In the human evaluation, we use 81 pa-

pers from the test set. We filter out papers with

fewer than 8 slides, as each rater will do 8 rounds

in an experiment, leaving 71 papers in the set.

Task We follow prior works’ practices of recruit-

ing human raters to evaluate model-generated con-

tents (Wang et al., 2021). For each rater, we ran-

domly select two papers, one from the former four

papers, and another one from the test set. For

each paper, we again randomly select four slides,

thus each participant complete eight rounds of eval-

uation (2 papers × 4 slides). In each round, a

participant rates one slide’s various versions from

different approaches with reference to the origi-

nal author’s slide and paper. The participants rate

along three dimensions with a 6-point Likert scale

(1 strongly disagree to 6 strongly agree):

• Readability: The generated slide content is

coherent, concise, and grammatically correct;
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Summarization Model
ROUGE-1 ROUGE-2 ROUGE-L

P R F P R F P R F

Classical IR (BM25)

BertSummExt 14.26 24.07 15.89 2.59 4.46 2.86 12.89 21.70 14.31

BARTSumm 15.75 23.40 16.92 2.94 4.12 3.11 14.18 20.99 15.55

BARTKeyword (ours) 17.15 27.98 19.06 4.08 6.52 4.52 16.29 24.88 18.12

Dense-Mix IR (ours)

BertSummExt 15.47 25.74 17.16 3.14 5.24 3.47 13.97 23.29 15.48

BARTSumm 16.62 26.10 18.15 3.35 5.16 3.63 15.00 23.28 16.73

BARTKeyword (ours) 18.30 30.31 20.47 4.73 7.79 5.26 16.86 27.21 19.08

Table 3: ROUGE scores of our BARTKeyword QA model compared to other summarization baselines based on

different IR approaches.

Generator R-1 R-2 R-L

Humans 26.41 8.66 24.68

D2S 27.75 8.30 24.69

Table 4: ROUGE F-scores for non-author generated

slides in comparison to our D2S system.

• Informativeness: The generated slide pro-

vides sufficient and necessary information that

corresponds to the given slide title, regardless

of its similarity to the original slide;

• Consistency: The generated slide content is

similar to the original author’s reference slide.

Result Ratings on the same model’s slides are ag-

gregated into an average, resulting in three scores

for each of the four models (three systems plus

Human). ANOVA tests are used for each dimen-

sion (Greenhouse-Geisser correction applied when

needed) to compare the models’ performances, and

a post hoc pairwise comparisons with Tukey’s hon-

est significance difference (HSD) test (Field, 2009).

Results show that for the Readability dimen-

sion (Figure 3), the BertSummExt model performs

significantly worse than the other three models

(F (1.77, 39.04) = 6.80, p = .004), and that be-

tween the three models there is no significant dif-

ference. This result suggests that even though the

extraction-based methods use grammatically cor-

rect sentences from the original paper, the human

raters do not think the content is coherent or con-

cise; however, it also indicates that summarization-

based models can achieve fairly high readability.

The most Informative slides were generated by

humans (F (1.59, 35.09) = 13.10, p < .001). But

BARTKeyword (our model) came in second and

outperformed BertSummExt significantly (t(66) =
3.171, p = .012) and BARTSumm insignificantly

readability informativeness consistency
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Figure 3: Average rating given by participants to each

method across three dimensions. Error bars represent

95% confidence intervals.

(t(66) = 2.171, p = .142). Our model is also

the only ML model rated above 3.5 (the midpoint

of the 6-point Likert scale), meaning on average,

participants agree that the model is informative.

Regarding the Consistency between the gener-

ated slide content and the author’s original slide,

there is a significant difference in ratings across

methods, F (1.68, 37.03) = 30.30, p < .001.

Human-generated slides outperformed the ML

models again in this metric, but BARTKeyword

also significantly outperformed the other two:

t(66) = 4.453, p < .001 vs BertSummExt, and

t(66) = 2.858, p = 0.028 vs BARTSumm. This

indicates that our model provides a SOTA perfor-

mance in the consistency dimension, but there is

space to improve to reach the human level.

8 System Analysis

In this section, we carry out additional experiments

to better understand the effectiveness of different

components in our system.
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R-1 R-2 R-L

BARTKeyword

Oracle-IR 36.32 16.99 36.59

Dense-Mix IR 20.47 5.26 19.08

Dense-Mix IR

BARTKeyword 20.47 5.26 19.08

BaseQA 20.19 5.04 18.81

Dense-Mix IR + BARTKeyword

Filter 20.47 5.26 19.08

Unfilter 20.02 4.94 18.64

Table 5: ROUGE F-scores of system variations.

IR-Oracle To estimate an upper-bound of the

ROUGE score, we design an IR model to locate

the best context possible for retrieval. For each line

in the ground-truth slide content, we retrieve the

most related sentence from the entire paper scored

by a weighted ROUGE score. This oracle model

sees information that would not be available in a

regular slide generation system, which only has the

title as input. Similar to what was shown in the hu-

man annotation experiment (Table 4), the F-score

in all ROUGE metrics remain below 40 (Table 5,

row Oracle-IR), demonstrating the subjectiveness

of the task and providing context for the level of

performance achieved by the D2S System.

Effect of keywords in Summarization Section

6 shows that our keywords aware Dense-Mix IR

model achieves the best IDF-recall score on the

test dataset. Here we test the effect of keywords in

the QA module. Table 5 shows that removing key-

words from BARTKeyword (BaseQA) leads to per-

formance degradation. It seems that the extracted

keywords for a given title can help our model to lo-

cate relevant context from all retrieved text snippets

and generate better content.

Effect of Dataset Filtering in Summarization

We also test the effect of filtering the training

dataset in the QA module. Table 5 shows that train-

ing BARTKeyword on the filtered training dataset

(described in Section 4.3) helps improve perfor-

mance in the unfiltered test set. This is likely due

to the reduction of noisy text that cannot be gen-

erated from the document, allowing the model to

learn to synthesize information from the text with-

out trying to hallucinate new information.

9 Error Analysis

To gain additional insights into our model’s perfor-

mance, we carried out a qualitative error analysis

to check the common errors in our best system

(Dense-Mix IR + BARTKeyword). We sampled 20

slides that received lower rating scores (rating score

< 3 in at least one dimension) in our human eval-

uation experiment (Section 7.2.2). One author of

this paper carefully checked each generated slide

content and compared it to the original paper/slide.

In general, we found that most errors are due to

off-topic content. For instance, given a slide title

“Future Work”, our model might generate sentences

that summarize the major contributions of the cor-

responding paper but do not discuss next steps.

We also observed that occasionally our model hal-

lucinates content which is not supported by the

corresponding paper. Normally, this happens after

the model selects an example sentence from the

paper and the sentence’s content is very different

from its surrounding context. For instance, a paper

uses an example sentence “Which cinemas screen

Star Wars tonight?” to illustrate a new approach to

capture intents/slots in conversations. Then for the

slide title “Reminder Q&A Data”, our model gen-

erates “Which cinemas screen Star Wars tonight?

Which movie theater plays Star Wars at 8 p.m. on

December 18?”. Here, the second sentence is a

hallucination error.

We use the novel n-grams to measure the “ab-

stractiveness” of the generated slide contents. On

the testing dataset, we found that the original slide

contents contain a much higher proportion of novel

n-grams compared to the automatically generated

ones (e.g., 24.2% vs. 3.1% for novel unigrams,

and 66.5% vs. 14.2% for novel bigrams). This

indicates that the generated slide contents from our

model are still mostly “extractive”.

10 Conclusion

This project aims to automatically generate presen-

tation slides from paper documents. The problem

is framed as a query-based single-document sum-

marization task. Inspired by recent work on open-

domain long-form QA, we design a keyword-aware

framework (D2S) to tackle this challenge. Both au-

tomated and human evaluations suggest that our

system outperforms a few strong baselines and can

be served as a benchmark for the document-to-slide

challenge. We release the dataset (SciDuet) and

code in hopes it can foster future work.
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A Appendices

A.1 Model Training and Parameters

The BART-based models converge between 0-10

epochs, depending on the learning rate, and take

around 5-10 hours. All learning rates are se-

lected from the following set: (1e-5, 2e-5, 5e-5, 1e-

4, 2e-4, 5e-4). Min-max token output lengths were

tuned from the following set: (32-128, 32-256, 50-

128, 50-256, 64-128, 64-200, 64-256). Batch sizes

of (2, 4) were explored and limited by GPU mem-

ory. Input token lengths explored were (800, 1024).
All hyperparameter searching was done on the dev

set.

The BERT-based models converge between 0-10

epochs as well and take from around 1-3 hours

to converge. Weighted average parameter α from

(0, 0.1, 0.2, 0.25, 0.5, 0.6, 0.7, 0.75, 0.8, 0.9, 1).
Combinations of learning rate and batch size

(1e-4, 2e-4)× (256, 512, 1024) were exhaustively

searched. Optimal learning rate, batch size pair

= (2e-4, 512).

A.2 Non-author Human Expert Generated

Slides

Table 6 reports mean ROUGE F-scores (standard

deviation in bracket) for non-author generated

slides in comparison to our keyword model. Pa-

per 960 was annotated by three human experts in

order to measure human performance similarity.

Although human experts outperform all systems

by a large margin in terms of readability, informa-

tiveness, and consistency (see Figure 3), it seems

that our model is comparable to and sometimes

surpasses human performance regarding finding

different pieces of relevant information.

A.3 Human Evaluation Survey System

We designed and implemented a web-based survey

system to support the human evaluation study, as

presented in the Human Evaluate section in the

main text. Figure 4 shows a screenshot of the sur-

vey. The original slide deck was displayed at the

top, along with a link to the original paper. This is

to make sure that participants have everything they

need to understand the slide content. In total, 14

participants said they referred to the original papers

a few times.

In each round, the participant was given one or

more original slides with the same title as refer-

ence and was asked to evaluate the corresponding

slides generated by the three models, as well as
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Paper(s) Generator ROUGE-1 ROUGE-2 ROUGE-L

960 Humans 23.91 (2.97) 6.55 (0.79) 24.23 (2.03)

960 Human-best 28.10 7.66 27.10

960 BARTKeyword (ours) 29.48 8.16 26.12

All Humans 26.41 (4.80) 8.66 (2.24) 24.68 (2.03)

All BARTKeyword (ours) 27.75 (1.62) 8.30 (0.36) 24.69 (1.18)

Table 6: ROUGE F-scores for non-author generated slides for four papers in comparison to our D2S system.

Figure 4: A screenshot of the web survey.

those from non-authors when available. The model

names were hidden from the participants and the

order of the methods were also randomized across

rounds to ensure each round is evaluated indepen-

dently without bias.

During the evaluation process, the participant

could use the three buttons below the slide image

to flip through the deck or go back to the slide

that was under inspection for the current round.

That slide was also shown at the beginning of each

round. Occasionally, multiple original slides had

the same title and they all need to be inspected. The

participant was notified about this situation via a

flashing highlighted message on top of the original

slide image, as shown in the screenshot.

The bottom section contains the two tasks that

the participants needed to complete. The first one

contains the rating tasks and the second one the

ranking task. The participant can only go to the

next round after all tasks were completed. Partici-

pants were told that the model numbers can change

from round to round, and that mentions of tables or

figures should be ignored.

A.4 Slides Generated From Different

Systems

Table 7 shows a few examples of slide content gen-

erated from different systems under the same title.

Colored text snippets indicate that the generated

contents are similar to the original slide contents.
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Slide Title: Motivations

Original Content [s1] Insufficient or even unavailable training data of emerging classes is a big challenge in
real-world text classification. [s2] Zero-shot text classification recognising text documents of
classes that have never been seen in the learning stage. [s3] In this paper, we propose a two-phase
framework together with data augmentation and feature augmentation to solve this problem.

BARTKeyword [s1] Zero-shot learning (ZSL) for text classification aims to classify documents of classes which
are absent from the learning stage. [s2] The number of topics on social media is growing
rapidly, and the classification models are required to recognise the text of the new topics using
only general information (e.g., descriptions of the topics) since labelled training instances are
unfeasible.

BARTSumm [s1] Zero-shot learning (ZSL) for text classification aims to classify documents of classes which
are absent from the learning stage. [s2] Humans are able to learn new concepts by transferring
knowledge from known to unknown domains based on high-level descriptions and semantic
representations (Thrun and Pratt, 1998). [s3] ZSL is expected to exploit supportive semantic
knowledge (e.g., class descriptions, relations among classes, and external domain knowledge) to
generally infer the features of unseen classes using patterns learned from seen classes.

BertSummExt [s1] The most widely used one is semantic attributes of classes such as visual concepts (e.g.,
colours, shapes) and semantic properties (e.g., behaviours, functions) (Lampert et al., 2009; Zhao
et al., 2018). [s2] Hence, when the names of unseen classes are known in the inference stage, we
try to introduce them to the classifiers in Phase 1 via augmented data so they can learn to reject
the instances likely from unseen classes. [s3] So far, three main types of semantic knowledge
have been employed in general zero-shot scenarios.

Slide Title: Our Proposed Framework Overview

Original Content [s1] We integrate four kinds of semantic knowledge into our framework. [s2] Data augmentation
technique helps the classifiers be aware of the existence of unseen classes without accessing their
real data. [s3] Feature augmentation provides additional information which relates the document
and the unseen classes to generalise the zero-shot reasoning.

BARTKeyword [s1] We propose a novel deep learning based Two phase framework to tackle the zero-shot text
classification problem. [s2] The first phase predicts whether an input document comes from seen
or unseen classes. [s3] We also apply a data augmentation technique in this phase to help the
classifiers be aware of the existence of unseen classes without accessing their real data. [s4] Then
the second phase, fine-grained classification, finally specifies the class of the input document.

BARTSumm [s1] We propose a novel feature augmentation technique called topic translation to detect
documents from unseen classes by topic-translation from the documents of seen classes in the
training dataset. [s2] In the document level, we follow Algorithm 1 to translate a document of
class c into the topic of another class c. [s3] To explain, we translate all nouns, verbs, adjectives,
and adverbs in the given document to the target class, word-by-word, using the word-level
analogy.

BertSummExt [s1] All notations are defined in section 2.1-2.2. [s2] For example, solving the analogy
c̈ompany:firm :: village:?[̈s3] The fine-grained phase finally decides the class yi.

Slide Title: Experiments data sets

Original Content [s1] Spanish and Dutch: CoNLL 2002 [s2] Russian: LDC2016E95 (Russian Representative
Language Pack) [s3] Chechen: TAC KBP 2017 10-Language EDL Pilot Evaluation Source
Corpus [s4] Part-of-speech Tagging: CoNLL 2017 (Universal Dependencies)

BARTKeyword [s1] We use the following data sets: Dutch (NLD) and Spanish (ESP) data from the CoNLL 2002
shared task (Tjong Kim Sang, 2002). [s2] English (ENG) and English (ENG), Russian (RUS)
Data from LDC2016E95 (Russian Representative Language Pack), and Chechen (CHE) Data
from TAC KBP 2017 10-Language EDL Pilot Evaluation Source Corpus 4.

BARTSumm [s1] LSTM-CRFs-based models are well-suited for multi-lingual multi-task learning for three
reasons: (1) They learn features from word and character embeddings and therefore require little
feature engineering; (2) As the input and output of each layer in a neural network are abstracted
as vectors, it is fairly straightforward to share components between neural models; (3) Character
Embeddings can serve as a bridge to transfer morphological and semantic information between
languages with identical or similar scripts, without requiring crosslingual dictionaries or parallel
sentences.

BertSummExt [s1] Experiments Data Sets For Name Tagging, we use the following data sets: Dutch (NLD) and
Spanish (ESP) data from the CoNLL 2002 shared task (Tjong Kim Sang, 2002), English (ENG)
data from the CoNLL 2003 shared task (Tjong Kim Sang and De Meulder, 2003), Russian (RUS)
data from LDC2016E95 (Russian Representative Language Pack), and Chechen (CHE) data from
TAC KBP 2017 10-Language EDL Pilot Evaluation Source Corpus 4. [s2] In this data set, each
token is annotated with two POS tags, UPOS (universal POS tag) and XPOS (language-specific
POS tag). [s3] English, Spanish, and Dutch embeddings are trained on corresponding Wikipedia
articles (2017-12-20 dumps).
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