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Abstract

Pre-trained language models have achieved
huge success on a wide range of NLP tasks.
However, contextual representations from pre-
trained models contain entangled semantic and
syntactic information, and therefore cannot be
directly used to derive useful semantic sen-
tence embeddings for some tasks. Paraphrase
pairs offer an effective way of learning the
distinction between semantics and syntax, as
they naturally share semantics and often vary
in syntax. In this work, we present ParaBART,
a semantic sentence embedding model that
learns to disentangle semantics and syntax in
sentence embeddings obtained by pre-trained
language models. ParaBART is trained to per-
form syntax-guided paraphrasing, based on a
source sentence that shares semantics with the
target paraphrase, and a parse tree that speci-
fies the target syntax. In this way, ParaBART
learns disentangled semantic and syntactic rep-
resentations from their respective inputs with
separate encoders. Experiments in English
show that ParaBART outperforms state-of-the-
art sentence embedding models on unsuper-
vised semantic similarity tasks. Additionally,
we show that our approach can effectively re-
move syntactic information from semantic sen-
tence embeddings, leading to better robustness
against syntactic variation on downstream se-
mantic tasks.

1 Introduction

Semantic sentence embedding models encode sen-
tences into fixed-length vectors based on their se-
mantic relatedness with each other. If two sen-
tences are more semantically related, their corre-
sponding sentence embeddings are closer. As sen-
tence embeddings can be used to measures seman-
tic relatedness without requiring supervised data,
they have been used in many applications, such as
semantic textual similarity (Agirre et al., 2016a),
question answering (Nakov et al., 2017), and nat-
ural language inference (Artetxe and Schwenk,

2019a).

Recent years have seen huge success of pre-
trained language models across a wide range of
NLP tasks (Devlin et al., 2019; Lewis et al., 2020).
However, several studies (Reimers and Gurevych,
2019; Li et al., 2020) have found that sentence
embeddings from pre-trained language models per-
form poorly on semantic similarity tasks when the
models are not fine-tuned on task-specific data.
Meanwhile, Goldberg (2019) shows that BERT
without fine-tuning performs surprisingly well on
syntactic tasks. Hence, we posit that these con-
textual representations from pre-trained language
models without fine-tuning capture entangled se-
mantic and syntactic information, and therefore are
not suitable for sentence-level semantic tasks.

Ideally, the semantic embedding of a sentence
should not encode its syntax, and two semantically
similar sentences should have close semantic em-
beddings regardless of their syntactic differences.
While various models (Conneau et al., 2017; Cer
et al., 2018; Reimers and Gurevych, 2019) have
been proposed to improve the performance of sen-
tence embeddings on downstream semantic tasks,
most of these approaches do not attempt to separate
syntactic information from sentence embeddings.

To this end, we propose ParaBART, a semantic
sentence embedding model that learns to disen-
tangle semantics and syntax in sentence embed-
dings. Our model is built upon BART (Lewis
et al., 2020), a sequence-to-sequence Transformer
(Vaswani et al., 2017) model pre-trained with self-
denoising objectives. Parallel paraphrase data is
a good source of learning the distinction between
semantics and syntax, as paraphrase pairs naturally
share the same meaning but often differ in syntax.
Taking advantage of this fact, ParaBART is trained
to perform syntax-guided paraphrasing, where a
source sentence containing the desired semantics
and a parse tree specifying the desired syntax are
given as inputs. In order to generate a paraphrase
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that follows the given syntax, ParaBART uses sep-
arate encoders to learn disentangled semantic and
syntactic representations from their respective in-
puts. In this way, the disentangled representations
capture sufficient semantic and syntactic informa-
tion needed for paraphrase generation. The seman-
tic encoder is also encouraged to ignore the syntax
of the source sentence, as the desired syntax is
already provided by the syntax input.

ParaBART achieves strong performance across
unsupervised semantic textual similarity tasks.
Furthermore, semantic embeddings learned by
ParaBART contain significantly less syntactic infor-
mation as suggested by probing results, and yield
robust performance on datasets with syntactic vari-
ation.

Our source code is available at https://
github.com/uclanlp/ParaBART.

2 Related Work

Various sentence embedding models have been pro-
posed in recent years. Most of these models uti-
lize supervision from parallel data (Wieting and
Gimpel, 2018; Artetxe and Schwenk, 2019b; Wi-
eting et al., 2019, 2020), natural language infer-
ence data (Conneau et al., 2017; Cer et al., 2018;
Reimers and Gurevych, 2019), or a combination of
both (Subramanian et al., 2018).

Many efforts towards controlled text generation
have been focused on learning disentangled sen-
tence representations (Hu et al., 2017; Fu et al.,
2018; John et al., 2019). In the context of disen-
tangling semantics and syntax, Bao et al. (2019)
and Chen et al. (2019) utilize variational autoen-
coders to learn two latent variables for semantics
and syntax. In contrast, we use the outputs of a
constituency parser to learn purely syntactic rep-
resentations, and facilitate the usage of powerful
pre-trained language models as semantic encoders.

Our approach is also related to prior work
on syntax-controlled paraphrase generation (Iyyer
et al., 2018; Kumar et al., 2020; Goyal and Dur-
rett, 2020; Huang and Chang, 2021). While these
approaches focus on generating high-quality para-
phrases that conform to the desired syntax, we are
interested in how semantic and syntactic informa-
tion can be disentangled and how to obtain good
semantic sentence embeddings.

Source Syntax Bow Target Paraphrase

t t

Syntax Discriminator Decoder

Semantic Sentence
Embedding ‘

Semantic Representations Syntactic Representations

f f

Semantic Encoder Syntactic Encoder

| |

Source Sentence Target Parse

Figure 1: An overview of ParaBART. The model ex-
tracts semantic and syntactic representations from a
source sentence and a target parse respectively, and
uses both the semantic sentence embedding and the tar-
get syntactic representations to generate the target para-
phrase. ParaBART is trained in an adversarial setting,
with the syntax discriminator (red) trying to decode
the source syntax from the semantic embedding, and
the paraphrasing model (blue) trying to fool the syntax
discriminator and generate the target paraphrase at the
same time.

3 Proposed Model - ParaBART

Our goal is to build a semantic sentence embedding
model that learns to separate syntax from seman-
tic embeddings. ParaBART is trained to generate
syntax-guided paraphrases, where the model at-
tempts to only extract the semantic part from the
input sentence, and combine it with a different syn-
tax specified by the additional syntax input in the
form of a constituency parse tree.

Figure 1 outlines the proposed model, which
consists of a semantic encoder that learns the se-
mantics of a source sentence, a syntactic encoder
that encodes the desired syntax of a paraphrase,
and a decoder that generates a corresponding para-
phrase. Additionally, we add a syntax discriminator
to adversarially remove syntactic information from
the semantic embeddings.

Given a source sentence S; and a target con-
stituency parse tree P>, ParaBART is trained to
generate a paraphrase So that shares the semantics
of S and conforms to the syntax specified by P».
Semantics and syntax are two key aspects that de-
termine how a sentence is generated. Our model
learns purely syntactic representations from the out-
put trees generated by a constituency parser, and
extracts the semantic embedding directly from the
source sentence. The syntax discriminator and the
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syntactic encoder are designed to remove source
syntax and provide target syntax, thus encourag-
ing the semantic encoder to only capture source
semantics.

Semantic Encoder The semantic encoder Fp,
is a Transformer encoder that embeds a sentence
S = (s, ..., s(™) into contextual semantic repre-
sentations:

U= (u(l)a ’u(m)) = Esem ((5(1), ,S(m))> .

Then, we take the mean of these contextual repre-
sentations u®) to get a fixed-length semantic sen-
tence embedding

_ I )

Syntactic Encoder The syntactic encoder Ey,
is a Transformer encoder that takes a linearized
constituency parse tree P = (p(), ..., p(")) and
converts it into contextual syntactic representations

V= (v(l), ...,v(”)) = Eoyn ((p(l), ...,p(”))) )

For example, the linearized parse tree of the sen-
tence “This book is good.” is “(S (NP (DT) (NN))
(VP (VBZ) (ADJP)) (.))”. Such input sequence
preserves the tree structure, allowing the syntac-
tic encoder to capture the exact syntax needed for
decoding.

Decoder The decoder D, .. uses the semantic
sentence embedding t and the contextual syntac-
tic representations V' to generate a paraphrase that
shares semantics with the source sentence while
following the syntax of the given parse tree. In
other words,

(y(1)7 ey y(l)) = Dgec (Concat(ﬁ’ V)) ’

During training, given a source sentence S, a tar-
get parse tree P» and a target paraphrase So =
(sd, ..., s5), we minimize the following paraphrase
generation loss:

!
Lpara = — Zlog Py = sg)|51, Py).
i=1

Since the syntactic representations do not contain
semantics, the semantic encoder needs to accu-
rately capture the semantics of the source sentence
for a paraphrase to be generated. Meanwhile, the
full syntactic structure of the target is provided by
the syntactic encoder, thus encouraging the seman-
tic encoder to ignore the source syntax.

Syntax Discriminator To further encourage the
disentanglement of semantics and syntax, we em-
ploy a syntax discriminator to adversarially remove
syntactic information from semantic embeddings.
We first train the syntax discriminator to predict
the syntax from its semantic embedding, and then
train the semantic encoder to “fool” the syntax dis-
criminator such that the source syntax cannot be
predicted from the semantic embedding.

More specifically, we adopt a simplified ap-
proach similar to John et al. (2019) by encoding
source syntax as a Bag-of-Words vector h of its
constituency parse tree. For any given source parse
tree, this vector contains the count of occurrences
of every constituent tag, divided by the total num-
ber of constituents in the parse tree. Given the
semantic sentence embedding w4, our linear syntax
discriminator Dg;, predicts h by

vr = Dg;is(@) = softmax(W1a + b)

with the following adversarial loss:

Loy = — Z h(t) log(yh(t))v

teT

where 71" denotes the set of all constituent tags.
Training We adversarially train Esepm, Foyn,
Dgec, and Dy, with the following objective:

Aadv [fadv )) )

L, (B35 G
where \,4, is a hyperparameter to balance loss
terms. In each iteration, we update the Dgy;; by
considering the inner optimization, and then up-
date Esern, Egyn and Dge. by considering the outer
optimization.

4 Experiments

In this section, we demonstrate that ParaBART is
capable of learning semantic sentence embeddings
that capture semantic similarity, contain less syn-
tactic information, and yield robust performance
against syntactic variation on semantic tasks.

4.1 Setup

We sample 1 million English paraphrase pairs from
ParaNMT-50M (Wieting and Gimpel, 2018), and
split this dataset into 5,000 pairs as the validation
set and the rest as our training set. The constituency
parse trees of all sentences are obtained from Stan-
ford CoreNLP (Manning et al., 2014). We fine-
tune a 6-layer BARTp,s encoder as the semantic
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Model STS12 STS13 STS14 STS15 STS16  STS-B | Avg.
Avg. BERT embeddings (Devlin et al., 2019) 46.9 52.8 57.2 63.5 64.5 479 55.5
Avg. BART embeddings (Lewis et al., 2020) 50.8 42.8 56.1 63.9 59.5 52.0 54.2
InferSent (Conneau et al., 2017) 59.3 59.0 70.0 71.5 71.5 70.0 66.9
VGVAE (Chen et al., 2019) 61.8 62.2 69.2 72.5 67.8 74.2 68.0
USE (Cer et al., 2018) 61.4 63.5 70.6 74.3 73.9 74.2 69.7
Sentence-BERT (Reimers and Gurevych, 2019) 64.6 67.5 73.2 74.3 70.1 74.1 70.6
BGT (Wieting et al., 2020) 68.9 622" 75.9 79.4 79.3 - -

ParaBART 68.4 71.1 76.4 80.7 80.1 78.5 75.9
- w/o adversarial loss 67.5 70.0 75.8 80.9 80.0 78.7 75.5
- w/o adversarial loss and syntactic guidance 66.4 65.3 73.6 80.0 78.6 75.4 73.2

Table 1: Pearson’s r (in percentage) between cosine similarity of sentence embeddings and gold labels on STS
tasks from 2012 to 2016 and STS Benchmark test set. BGT results are taken from Wieting et al. (2020). *BGT is
evaluated on an additional dataset from STS13, which is not included in the standard SentEval toolkit.

encoder and the first BART},,5 decoder layer as the
decoder for our model.

We train ParaBART on a GTX 1080Ti GPU us-
ing AdamW (Loshchilov and Hutter, 2019) opti-
mizer with a learning rate of 2 x 107> for the en-
coder and syntax discriminator, and 1 x 10~ for
the rest of the model. The batch size is set to 64.
All models are trained for 10 epochs, which takes
about 2 days to complete. The maximum length of
input sentences and linearized parse trees are set
to 40 and 160 respectively. We set the weight of
adversarial loss to 0.1. Appendix A shows more
implementation details.

Baselines We compare our model with other
sentence embeddings models, including InferSent
(Conneau et al., 2017), Universal Sentence En-
coder (USE) (Cer et al., 2018), Sentence-BERT ¢
(Reimers and Gurevych, 2019), VGVAE (Chen
et al., 2019), and BGT (Wieting et al., 2020). We
also include mean-pooled BERT},,5. and BARTp,e
embeddings. In addition to ParaBART, we consider
two model ablations: ParaBART without adversar-
ial loss, and ParaBART without syntactic guidance
and adversarial loss.

4.2 Semantic Textual Similarity

We evaluate our semantic sentence embeddings
on the unsupervised Semantic Textual Similarity
(STS) tasks from SemEval 2012 to 2016 (Agirre
et al., 2012; 2013; 2014; 2015; 2016b) and STS
Benchmark test set (Cer et al., 2017), where the
goal is to predict a continuous-valued score be-
tween 0 and 5 indicating how similar the meanings
of a sentence pair are. For all models, we compute
the cosine similarity of embedding vectors as the
semantic similarity measure. We use the standard
SentEval toolkit (Conneau and Kiela, 2018) for
evaluation and report average Pearson correlation
over all domains.

Model BShift TreeDepth TopConst
Avg. BART embed. 90.5 47.8 80.1
ParaBART 72.4 33.9 67.2
-w/o AL 75.4 36.6 71.7
- w/o AL and SG 83.3 46.5 83.1

Table 2: Results on syntactic probing tasks. Semantic
embeddings with lower accuracy on downstream syn-
tactic tasks contain less syntactic information, suggest-
ing better disentanglement of semantics and syntax. AL
and SG denote adversarial loss and syntactic guidance,
respectively.

As shown in Table 1, both average BERT em-
beddings and average BART embeddings perform
poorly on STS tasks, as the entanglement of seman-
tic and syntactic information leads to low correla-
tion with semantic similarity. Training ParaBART
on paraphrase data substantially improves the cor-
relation. With the addition of syntactic guidance
and adversarial loss, ParaBART achieves the best
overall performance across STS tasks, showing the
effectiveness of our approach.

4.3 Syntactic Probing

To better understand how well our model learns
to disentangle syntactic information from seman-
tic embeddings, we probe our semantic sentence
embeddings with downstream syntactic tasks. Fol-
lowing Conneau et al. (2018), we investigate to
what degree our semantic sentence embeddings
can be used to identify bigram word reordering
(BShift), estimate parse tree depth (TreeDepth),
and predict parse tree top-level constituents (Top-
Const). Top-level constituents are defined as the
group of constituency parse tree nodes immediately
below the sentence (S) node. We use the datasets
provided by SentEval (Conneau and Kiela, 2018)
to train a Multi-Layer Perceptron classifier with a
single 50-neuron hidden layer on top of semantic
sentence embeddings, and report accuracy on all
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QQP-Easy

What are the essential skills of the project management?
What are the essential skills of a project manager?
QQP-Hard

Is there a reason why we should travel alone?

What are some reasons to travel alone?

Table 3: Examples of paraphrase pairs from QQP-Easy
and QQP-Hard.

tasks.

As shown in Table 2, sentence embeddings
pooled from pre-trained BART model contain rich
syntactic information that can be used to accurately
predict syntactic properties including word order
and top-level constituents. The disentanglement
induced by ParaBART is evident, lowering the ac-
curacy of downstream syntactic tasks by more than
10 points compared to pre-trained BART embed-
dings and ParaBART without adversarial loss and
syntactic guidance. The results suggest that the se-
mantic sentence embeddings learned by ParaBART
indeed contain less syntactic information.

4.4 Robustness Against Syntactic Variation

Intuitively, semantic sentence embedding models
that learn to disentangle semantics and syntax are
expected to yield more robust performance on
datasets with high syntactic variation. We consider
the task of paraphrase detection on Quora Ques-
tion Pairs (Iyer et al., 2017) dev set as a testbed for
evaluating model robustness. We categorize para-
phrase pairs based on whether they share the same
top-level constituents. We randomly sample 1,000
paraphrase pairs from each of the two classes, com-
bined with a common set of 1,000 randomly sam-
pled non-paraphrase pairs, to create two datasets
QQP-Easy and QQP-Hard. Paraphrase pairs from
QQP-Hard are generally harder to identify as they
are much more syntactically different compared
to those from QQP-Easy. Table 3 shows some
examples from these two datasets. We evaluate
semantic sentence embeddings on these datasets in
an unsupervised manner by computing the cosine
similarity as the semantic similarity measure. We
search for the best threshold between -1 and 1 with
a step size of 0.01 on each dataset, and report the
highest accuracy. The results are shown in Table 4.

While Universal Sentence Encoder scores much
higher than other models on QQP-FEasy, its perfor-
mance degrades significantly on QQP-Hard. In
comparison, ParaBART demonstrates better robust-
ness against syntactic variation, and surpasses USE
to become the best model on the more syntactically

Model QQP-Easy QQP-Hard
Avg. BART embed. 72.3 64.1
InferSent 72.1 67.5
VGVAE 71.5 67.1
USE 80.7 72.4
Sentence-BERT 74.3 70.7
ParaBART 76.5 72.7
-w/o AL 76.8 72.1
- w/o AL and SG 76.1 69.9

Table 4: Results on QQP-Easy and QQP-Hard. For ev-
ery model we report the highest accuracy after finding
the best threshold. AL and SG denote adversarial loss
and syntactic guidance, respectively.

diverse QQP-Hard. 1t is worth mentioning that
even pre-trained BART embeddings give decent
results on QQP-Easy, suggesting large overlaps
between paraphrase pairs from QQP-Easy. On the
other hand, the poor performance of pre-trained
BART embeddings on a more syntactically diverse
dataset like QQP-Hard clearly shows its incompe-
tence as semantic sentence embeddings.

5 Conclusion

In this paper, we present ParaBART, a semantic
sentence embedding model that learns to disentan-
gle semantics and syntax in sentence embeddings
from pre-trained language models. Experiments
show that our semantic sentence embeddings yield
strong performance on unsupervised semantic sim-
ilarity tasks. Further investigation demonstrates
the effectiveness of disentanglement, and robust-
ness of our semantic sentence embeddings against
syntactic variation on downstream semantic tasks.
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A Implementation Details

Datasets We use the ParaNMT-50M dataset re-
leased by Wieting and Gimpel (2018), which
can be obtained from https://github.com/
jwieting/para-nmt-50m. We sample 1 mil-
lion English paraphrase pairs from ParaNMT-
50M, and split this dataset into 5000 pairs as
the validation set and the rest as our train-
ing set. STS and syntactic probing datasets
are directly taken from SentEval, which can
be accessed from https://github.com/
facebookresearch/SentEval. Quora
Question Pairs are downloaded from the of-
ficial GLUE Benchmark website (https://
gluebenchmark.com/).

Word Dropout We observe that some para-
phrase pairs in our training set contain many over-
lapping words, which means our model can learn
to generate the target paraphrase by just copying
words from a source sentence without fully under-
standing the semantics of the sentence. To alleviate
this issue, we apply word dropout (Iyyer et al.,
2015) that randomly masks a portion of the input
tokens. We don’t apply word dropout to syntactic
inputs, as these inputs are designed to provide the
exact syntactic structure of the paraphrase and en-
courage disentanglement of syntactic and semantic
representations. We set the word dropout probabil-
ity to 0.2 for all our models.

Hyperparameter Search Hyperparameters of
ParaBART are tuned manually based on the para-
phrase generation loss on the validation set. Specif-
ically, the weight of adversarial loss is tuned within
{0.1, 0.2, 0.5, 1.0}. Word dropout is selected from
{0.0, 0.1, 0.2, 0.4}. Learning rate is tuned within
{1,2,5,10} x1075.

None of the previous models we compare
in this work involves any hyperparameter
search. The results for BGT are taken from
Wieting et al. (2020). For all other sentence
embedding models, we use the trained model
provided by their respective authors. These

models include InferSent (https://github.

com/facebookresearch/InferSent,
USE (https://tfhub.dev/google/
universal-sentence—encoder—large/

2), Sentence-BERT 50 (https:
//github.com/UKPLab/
sentence-transformers) and VGVAE

(https://github.com/mingdachen/

syntactic-template—generation).

Performance on STS and QQP are evaluated un-
der unsupervised settings. For syntactic probing
tasks that involve training classifiers, we report the
accuracy on the validation set provided by SentEval
in Table 5.

Model BShift TreeDepth TopConst
Avg. BART embed. | 90.4 475 80.2
ParaBART 73.0 34.8 67.6
- w/o AL 754 36.7 72.1
- w/o AL and SG 84.0 46.7 82.7

Table 5: Validation accuracy on syntactic probing
tasks.
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