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Abstract

Learning to capture text-table alignment is es-
sential for tasks like text-to-SQL. A model
needs to correctly recognize natural language
references to columns and values and to
ground them in the given database schema. In
this paper, we present a novel weakly super-
vised Structure-Grounded pretraining frame-
work (STRUG) for text-to-SQL that can ef-
fectively learn to capture text-table alignment
based on a parallel text-table corpus. We
identify a set of novel pretraining tasks: col-
umn grounding, value grounding and column-
value mapping, and leverage them to pretrain
a text-table encoder. Additionally, to eval-
uate different methods under more realistic
text-table alignment settings, we create a new
evaluation set Spider-Realistic based on Spi-
der dev set with explicit mentions of column
names removed, and adopt eight existing text-
to-SQL datasets for cross-database evaluation.
STRUG brings significant improvement over
BERTLARGE in all settings. Compared with ex-
isting pretraining methods such as GRAPPA,
STRUG achieves similar performance on Spi-
der, and outperforms all baselines on more re-
alistic sets. All the code and data used in this
work is public available at https://aka.ms/
strug.

1 Introduction

Semantic parsing is the task of mapping a nat-
ural language (NL) utterance to a machine-
understandable representation such as lambda cal-
culus, abstract meaning representation, or a struc-
tured query language (e.g., SQL). In this paper, we
focus on the task of translating NL questions to exe-
cutable SQL queries (text-to-SQL). This is a funda-
mental task for building natural language interfaces
for databases, which can enable non-expert users
to effortlessly query databases (Androutsopoulos
et al., 1995; Li and Jagadish, 2014a).

∗Work done during an internship at Microsoft Research.

Figure 1: Illustration of text-to-SQL text-table align-
ment (top half) and parallel text-table corpus (bottom
half). In both examples, the associations between to-
kens in the NL utterance and columns in the table are in-
dicated. In this paper, we aim to leverage the text-table
alignment knowledge in the parallel text-table corpus
to help text-to-SQL.

One of the key challenges in text-to-SQL is
text-table alignment, that is, to correctly recog-
nize natural language references to columns and
values and to ground them in the given database
schema. Consider the example in the top half of
Fig. 1. A model needs to first identify the column
mentions total credits, department, and value
mention History, and then ground them to the
given schema. This is challenging for three reasons.
First, the model needs to jointly understand the NL
utterance and the database schema, as the user may
refer to a column using various expressions which
usually differ from the original column name. Sec-
ond, the model needs to be able to generalize to
new database schemas and referential language that
is not seen in training. Finally, in the case that ac-
cessing cell values is not possible, the model still
needs to identify potential value mentions and link
them to the correct columns without exhaustively
searching and matching over the database.

https://aka.ms/strug
https://aka.ms/strug
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On the other hand, text-table alignment natu-
rally exists in parallel text-table corpora, e.g., web
tables with context (Lehmberg et al., 2016), table-
to-text generation datasets (Parikh et al., 2020;
Chen et al., 2020a), table-based question answer-
ing datasets (Pasupat and Liang, 2015; Chen et al.,
2020b). Such datasets can be collected from web
pages, documents, etc., and requires much less hu-
man effort to create compared with text-to-SQL
datasets. The bottom half of Fig. 1 gives an ex-
ample of such an alignment dataset. There are
three value mentions 11417, Pune Junction and
Nagpur Jnction, which can be grounded to the
train number, departure station and arrival

station columns respectively. Such alignment in-
formation can be easily obtained by leveraging the
table contents or using some human annotation.
In this work, we aim to incorporate the text-table
alignment knowledge contained in a parallel corpus
via pretraining and use it to help the downstream
text-to-SQL task.

We present a novel weakly supervised structure-
grounded pretraining framework (STRUG) for text-
to-SQL. We design a set of prediction tasks and op-
timize them leveraging a parallel corpus containing
both NL sentences and tabular data to encourage
the encoded representation to capture information
required to support tasks that require table ground-
ing. More specifically, we identify three critical
tasks for aligning text with table: column ground-
ing, value grounding and column-value mapping
(examples shown in Fig. 2). We re-purpose an ex-
isting large-scale table-to-text generation dataset
ToTTo (Parikh et al., 2020) for pretraining and gain
labels for the three tasks via weak supervision. We
experiment under two settings, with or without hu-
man assistance: (1) human assisted setting, using
ToTTo’s revised descriptions and cell annotations;
(2) automatic setting, using the raw sentences and
inferring the cell correspondences via string match-
ing with the table contents.

As pointed out by Suhr et al. (2020), existing
text-to-SQL benchmarks like Spider (Yu et al.,
2018b) render the text-table alignment challenge
easier than expected by explicitly mentioning ex-
act column names in the NL utterances. Contrast
this to more realistic settings where users may re-
fer to the columns using a variety of expressions.
Suhr et al. (2020) propose a new cross-database
setting that uses Spider for training and includes
eight other single-domain text-to-SQL datasets for

Figure 2: Overview of our model architecture and three
pretraining objectives.

evaluation. In addition to adopting their setting, we
create a new evaluation set called Spider-Realistic
from the original Spider dev set, by removing ex-
plicit mentions of column names from an utterance.

We pretrain STRUG using 120k text-table pairs
from ToTTo. Experiments show that our structure-
grounded pretraining objectives are very efficient
and usually converge with around 5 epochs in
less than 4 hours. This dramatically reduces the
pretraining cost compared to previous pretraining
methods (Herzig et al., 2020; Yin et al., 2020). We
adopt the same model architecture as BERT (De-
vlin et al., 2019), with simple classification lay-
ers on top for pretraining. For downstream tasks,
STRUG can be used as a text-table encoder and
easily integrated with any existing state-of-the-art
model. We conduct extensive experiments and
show that:

(1) Combined with state-of-the-art text-to-SQL
model RAT-SQL (Wang et al., 2020), using STRUG
as encoder significantly outperforms directly adopt-
ing pretrained BERTLARGE (RAT-SQL’s default en-
coder) and performs on par with other text-table
pretraining models like GRAPPA (Yu et al., 2020)
on the widely used Spider benchmark.

(2) On more realistic evaluation settings, includ-
ing Spider-Realistic and the Suhr et al. (2020)
datasets, our method outperforms all baselines.
This demonstrates the superiority of our pretrain-
ing framework in solving the text-table alignment
challenge, and its usefulness in practice.

(3) STRUG also helps reduce the need for large
amount of costly supervised training data. We ex-
periment with the WikiSQL benchmark (Zhong
et al., 2017) by limiting training data size, and show
that our pretraining method can boost the model
performance by a large margin and consistently
outperforms existing pretraining methods.
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2 Related Work

Cross-Database Text-to-SQL. Remarkable
progress has been made in text-to-SQL over the
past few years. With sufficient in-domain training
data, existing models already achieve over 80%
exact matching accuracy (Finegan-Dollak et al.,
2018; Wang et al., 2018) on single-domain bench-
marks like ATIS (Hemphill et al., 1990; Dahl et al.,
1994) and GeoQuery (Zelle and Mooney, 1996).
However, annotating NL questions with SQL
queries is expensive making it cost-prohibitive to
collect training examples for all possible databases.
A model that can generalize across domains
and databases is desired. In light of this, Yu
et al. (2018b) present Spider, a cross-database
text-to-SQL benchmark that trains and evaluates a
system using different databases. More recently,
Suhr et al. (2020) provide a holistic analysis
of the challenges introduced in cross-database
text-to-SQL and propose to include single-domain
datasets in evaluation. Their study uncovers the
limitations of current text-to-SQL models, and
demonstrates the need for models that can better
handle the generalization challenges.
Pretraining for Text-Table Data. Inspired by the
success of pretrained language models, some recent
work has tried to apply similar pretraining objec-
tives to text-table data. TaBERT (Yin et al., 2020)
and TAPAS (Herzig et al., 2020) jointly learn text-
table representations by leveraging a large amount
of web tables and their textual context. They flatten
the tables and use special embeddings to model
the structure information. A masked language
model (MLM) objective is then used to predict
the masked tokens in the text-table data. MLM
is good at modeling the contextualized semantic
representations of a token, but is weak at capturing
the alignment between a pair of sequences (e.g.,
text-table). More recently, GRAPPA (Yu et al.,
2020) explores a different direction for pretraining
which shares some similarity with existing work on
data augmentation for semantic parsing. GRAPPA
first constructs synthetic question-SQL pairs using
templates (a synchronous context free grammar)
induced from existing text-to-SQL datasets, a SQL
semantic prediction objective is then used to learn
compositional inductive bias from the synthetic
data. However, as the synthetic data is generated
using templates, and the column names and val-
ues are directly filled in the questions, it has the
same problem as existing text-to-SQL datasets that

eases the text-table alignment challenge. In con-
strast, STRUG aims to directly learn the text-table
alignment knowledge from parallel text-table cor-
pora via structure-grounded pretraining objectives.
We also note that existing pretraining methods and
STRUG can be complementary and combined to-
gether in the future.
Structure Grounding in Text-to-SQL. Structure
grounding has been proven to be crucial for text-
to-SQL, where a model needs to correctly identify
column and value mentions in an NL utterance and
link them to the given database schema (Guo et al.,
2019; Bogin et al., 2019; Wang et al., 2020; Lei
et al., 2020). Most existing text-to-SQL systems
have specially designed components for structure
grounding, which is also referred to as schema
linking. For example, Guo et al. (2019); Yu et al.
(2018a) explore using simple heuristics like string
matching for schema linking, and use the linking re-
sults as direct hints to their systems. However, such
heuristics may not generalize well in real world
scenarios where there are varied ways to refer to a
column, which usually differ from the original col-
umn name. More recently, Shi et al. (2020) and Lei
et al. (2020) take a step forward and manually anno-
tate WikiTableQuestions (Pasupat and Liang, 2015)
and Spider with fine-grained alignment labels for
supervised training (together with the text-to-SQL
objective), which brings significant improvements.
The main drawback of these models is that they
are limited to learn the alignment knowledge from
a relatively small training corpus, and cannot gen-
eralize well in a cross-domain setting. Moreover,
SQL annotations and fine-grained alignment labels
are both expensive to get manually. In contrast,
this paper aims to re-purpose an existing parallel
text-table corpus for pretraining models to learn
structure grounding, where we generate alignment
labels at large scale with low or no cost.

3 Structure-Grounded Pretraining

3.1 Motivation

One of the critical generalization challenges in
cross-database text-to-SQL is text-table alignment,
i.e., a model needs to understand NL utterances
and database schemas unseen in training, including
value mentions and novel columns, and to correctly
map between them. Similar generalization chal-
lenges have been studied for a long time in the
NLP field. Recently, pretrained language models
(Devlin et al., 2019; Liu et al., 2019; Lewis et al.,
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Figure 3: Illustration of the parallel corpus ToTTo (Parikh et al., 2020) and our two weakly supervised pretraining
settings. Cell highlighted with yellow are the cell annotations provided by ToTTo, and cell highlighted with dashed
lines are cell annotations obtained via string matching in automatic setting.

2020) have achieved great success in tackling the
challenges by learning contextualized representa-
tions of words from a large text corpus. Inspired by
this, in this work we aim to develop a pretraining
method that can directly learn the text-table align-
ment knowledge from a large parallel text-table
corpus.

Unlike previous text-table pretraining works
(Herzig et al., 2020; Yin et al., 2020) that opti-
mize unsupervised objectives like MLM during
pretraining, we carefully design three structure-
grounded tasks: column grounding, value ground-
ing and column-value mapping. These tasks are
related to text-to-SQL and can directly capture the
text-table alignment during pretraining. As a result,
the learned alignment knowledge can be effectively
transferred to the downstream task and improve the
final performance.

3.2 Pretraining Objectives

We use the same model architecture as BERT, and
add simple classification layers on top for the three
structure-grounded tasks. For downstream tasks,
our model can be easily integrated into existing
models as text-table encoder. Following previous
work (Hwang et al., 2019; Wang et al., 2020; Guo
et al., 2019), we linearize the input by concatenat-
ing the NL utterance and column headers, using
<sep> token as a separator.

Formally, given a pair of NL utterance {xi} and
table with a list of column headers (in case there
are multiple tables like in databases, we concate-
nate all the column names together) {cj}, we first
obtain the contextualized representation xi of each
token in the utterance and cj for each column using
the last layer output of the BERT encoder. Here

each column header cj may contain multiple tokens
cj,0, . . . , cj,|cj |. We obtain a single vector represen-
tation for each column using column pooling. More
specifically, we take the output of the first and last
token of the header, and calculate the column rep-
resentation as cj = (cj,0 + cj,|cj |)/2. {xi} and
{cj} are then used to compute losses for the three
tasks. An overview of our model architecture and
pretraining objectives are shown in Fig. 2.
Column grounding. An important task in text-
to-SQL is to identify grounded columns from the
schema and use them for the generated SQL query.
With a parallel text-table corpus, this is similar to
selecting the columns that are mentioned in the as-
sociated NL sentence. This task requires a model
to understand the semantic meaning of a column
based on its header alone, and to infer its relation
with the NL sentence based on the contextualized
representations. We formulate it as a binary clas-
sification task. For each column cj , we use a one-
layer feed forward network f(·) to get prediction
pcj = f(cj) of whether cj is mentioned in the sen-
tence or not. The column grounding loss Lc is then
calculated using the binary cross entropy loss w.r.t.
ground truth labels ycj ∈ {0, 1}. Note this task
requires the model to identify the meaning of a col-
umn without access to any of its values. Hence, it
is suitable for the typical text-to-SQL setting where
the model only has access to the database schema.
Value grounding. For clauses like WHERE and
HAVING, to generate an executable SQL query, a
model also needs to extract the value to be com-
pared with the grounded column from the NL utter-
ance. This can be transformed to the task of finding
cell mentions in the NL sentence with a parallel
text-table corpus. Since the contents of the table is
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Dataset # Examples
Exec Acc

(Suhr et al., 2020)
% Col Mentioned

ATIS (Hemphill et al., 1990; Dahl et al., 1994) 289 (486) 0.8 0.0
Restaurants (Tang and Mooney, 2000) 27 (378) 3.7 0.0
Academic(Li and Jagadish, 2014b) 180 (196) 8.2 11.4
Yelp(Yaghmazadeh et al., 2017) 54 (128) 19.8 8.0
Scholar(Iyer et al., 2017) 394 (599) 0.5 0.0
Advising(Finegan-Dollak et al., 2018) 309 (2858) 2.3 0.3
IMDB(Yaghmazadeh et al., 2017) 107 (131) 24.6 1.0
GeoQuery(Zelle and Mooney, 1996) 532 (598) 41.6 3.9

Spider (Yu et al., 2018b) 1034 69.0 39.2
Spider-Realistic 508 - 1.8

Table 1: Statistic of the datasets used in this work. Here we show the number of examples for evaluation after
filtering (sizes of the original datasets before any filtering are shown in parentheses), and the execution accuracy
reported in Suhr et al. (2020). For the detailed filtering process of Suhr et al. (2020), please check the original
paper or Appendix A.1. % Col Mentioned1measures the proportion of examples in the evaluation set where all
columns compared against entities in the gold query are explicitly mentioned in the NL utterance.

not available, it is necessary for the model to infer
the possible value mentions based on NL utterance
and the table schema only. Similarly to column
grounding, we also view this as a classification
task. For each token xi, we get prediction of xi
being part of a grounded value as pvi = f(xi). The
value grounding loss Lv is then calculated using
the binary cross entropy loss w.r.t. ground truth
labels yvi ∈ {0, 1}.

Column-Value mapping. As there may be mul-
tiple columns and values used in the SQL query,
a text-to-SQL model also needs to correctly map
the grounded columns and values. This is used to
further strengthen the model’s ability to capture
the correlation between the two input sequences
by learning to align the columns and values. We
formulate this as a matching task between the to-
kens in the NL sentence and the columns. For
every grounded token xi (i.e., yvi = 1), we pair
it with each column cj and calculate the probabil-
ity of xi matching cj as pcvi,j = f([xi, cj ]). Here
[·, ·] is the vector concatenation operation. We
then apply a softmax layer over the predictions for
each token pcvi = {pcvi,j}

|c|
j=1, and the final column-

value mapping loss Lcv is then calculated as Lcv =
CrossEntropy (softmax (pcvi ) , ycvi ), where ycvi ∈
{0, 1}|c| is the ground truth label.

The final loss L for pretraining is the sum of
all three losses. We experimented with different
weights for each term, but did not observe signif-
icant improvement on the results. Hence we only
report results with equally weighted losses.

L = Lc + Lv + Lcv (1)

3.3 Obtaining Pretraining Data via Weak
Supervision

We obtain ground truth labels ycj , yvi and ycvi from
a parallel text-table corpus based on a simple in-
tuition: given a column in the table, if any of its
cell values can be matched to a phrase in the sen-
tence, this column is likely mentioned in the sen-
tence, and the matched phrase is the value aligned
with the column. To ensure high quality text-table
alignment information in the pretraining corpus, un-
like previous work (Herzig et al., 2020; Yin et al.,
2020) that use loosely connected web tables and
their surrounding text, here we leverage an existing
large-scale table-to-text generation dataset ToTTo
(Parikh et al., 2020). ToTTo contains 120,761 NL
descriptions and corresponding web tables auto-
matically collected from Wikipedia using heuris-
tics. Additionally, it provides cell level annotation
that highlights cells mentioned in the description
and revised version of the NL descriptions with
irrelevant or ambiguous phrases removed.

We experiment with two pretraining settings,
with or without human assistance. In the human
assisted setting, we use the cell annotations along
with the revised description to infer the ground
truth labels. More specifically, we first label all the
columns cj that contain at least one highlighted cell
as positive (ycj = 1). We then iterate through all
the values of the highlighted cells and match them
with the NL description via exact string matching
to extract value mentions. If a phrase is matched
to a highlighted cell, we select all the tokens xi in
that phrase and align them with the corresponding

1Unlike Suhr et al. (2020), here we do not consider exam-
ples where there is no column compared against entity.
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columns cj (yvi = 1, ycvi,j = 1). In the automatic set-
ting, we use only the tables and the raw sentences,
and obtain cell annotations by comparing each cell
with the NL sentence using exact string matching.
Note that in both settings, the cell values are used
only for preparing supervision for the pretraining
objectives, not as inputs to the pretraining model.

To make the pretraining more effective and to
achieve a better generalization performance, we
also incorporate two data augmentation techniques.
First, since the original parallel corpus only con-
tains one table for each training example, we ran-
domly sample Kneg tables as negative samples and
append their column names to the input sequence.
This simulates a database with multiple tables and
potentially hundreds of columns, which is common
in text-to-SQL. Second, we randomly replace the
matched phrases in the NL sentences with values
of cells from the same column (the labels are kept
the same). This way we can better leverage the con-
tents of the table during pretraining and improve
the model’s generalization ability by exposing it to
more cell values.

4 Creating a More Realistic Evaluation
Set

As one of the first datasets to study cross-database
text-to-SQL, Spider has been a widely used bench-
mark in assessing a model’s ability to generalize
to unseen programs and databases. However, as
pointed out by Suhr et al. (2020), Spider eases the
task by using utterances that closely match their
paired SQL queries, for example by explicitly men-
tioning the column names in the question, while in
practice NL references to columns usually differ
from the original column name. To alleviate this
problem, Suhr et al. (2020) propose to train the
model with cross-domain dataset like Spider, and
add another eight single-domain datasets like ATIS
(Hemphill et al., 1990; Dahl et al., 1994) and Geo-
Query (Zelle and Mooney, 1996) for evaluation.
However, some of the datasets differ a lot from Spi-
der, introducing many novel query structures and
dataset conventions.2 As we can see from Table 1,
their model (Suhr et al., 2020) has very poor perfor-
mance in some datasets. In light of this, we present
a new realistic and challenging evaluation set based
on Spider. We first select a complex subset from

2Some of the datasets contain operators that are not cov-
ered by Spider grammar or novel query structure like self join
that does not exist in the training corpus.

Example Type

Show name, country, age for all singers ordered

by age from the oldest to the youngest.
Remove

Find the number of concerts happened in the

stadium with the highest capacity that can

accommodate the most people.
paraphrase

How many pets have a greater weight than 10

are over 10 lbs?

Table 2: Examples of how we create Spider-Realistic
from Spider. Phrases shown in italic exactly match with
column names.

the Spider dev set where there are columns com-
pared against values or used in clauses like ORDER
BY. We then manually modify the NL questions
in the subset ourselves to remove or paraphrase
explicit mentions of columns names, except for
the columns in SELECT clauses, while keeping
the SQL queries unchanged. Some examples are
shown in Table 2. This way we do not introduce ex-
tra challenges like adapting to new query structures
but make it possible to fairly assess the model’s ca-
pability in aligning text and tables. To make a more
comprehensive comparison, we will also report re-
sults on the original Suhr et al. (2020) datasets.

5 Experiments

5.1 Benchmarks and Base Models

Spider and the realistic evaluation sets. Spider
(Yu et al., 2018b) is a complex cross-database text-
to-SQL dataset. It contains 10k complex question-
query pairs grounded on 200 databases where mul-
tiple tables are joined via foreign keys. In addi-
tion, we create a new realistic evaluation set Spider-
Realistic as described in Section 4. We also include
the original Suhr et al. (2020) datasets, for a more
comprehensive comparison. For the base model,
we use RAT-SQL (Wang et al., 2020) which is
the state-of-the-art model according to the official
leaderboard as of the submission time. To gener-
ate executable SQL queries, we modify the pointer
generator in RAT-SQL to enable it to copy values
from the question. We use the same trained model
for evaluation on the Spider dev set and the realistic
evaluation sets. Yu et al. (2018b) includes some
single-domain text-to-SQL datasets like GeoQuery
as extra training data for Spider. Following Suhr
et al. (2020), we train the model with only the origi-
nal Spider data, and discard additional training data
used by some previous works like Yu et al. (2018b).
We use both the set match accuracy (exact match)
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Models Spider-Realistic ATIS GeoQuery Restaurants Academic IMDB Yelp Scholar Advising

# Examples 508 289 532 27 180 107 54 394 309
Sc

he
m

a
O

nl
y Suhr et al. (2020) - 0.8 (0.5) 41.6 (35.6) 3.7 (3.7) 8.2 (6.1) 24.6 (24.3) 19.8 (16.7) 0.5 (0.4) 2.3 (1.2)

RAT-SQL w/o value linking
w. BERTLARGE 52.4 ± 0.7 (46.9) 2.1 ± 0.6 41.2 ± 11.6 0.0 ± 0.0 5.9 ± 2.1 26.5 ± 5.0 12.3 ± 1.7 0.8 ± 0.4 1.6 ± 0.4
w. STRUG (Human Assisted) 57.8 ± 0.6 (53.3) 2.2 ± 0.2 45.5 ± 1.8 11.1 ± 9.1 14.8 ± 5.0 37.1 ± 1.8 15.4 ± 0.9 4.3 ± 1.7 2.2 ± 0.4
w. STRUG (Automatic) 60.3 ± 0.7 (54.9) 2.2 ± 0.2 50.9 ± 4.0 40.7 ± 5.2 12.4 ± 1.9 35.5 ± 2.0 13.0 ± 2.6 5.4 ± 0.7 1.0 ± 0.3

C
on

te
nt

U
se

d RAT-SQL
w. BERTLARGE 62.1 ± 1.3 (58.1) 2.3 ± 0.2 47.3 ± 3.7 37.0 ± 18.9 15.6 ± 2.0 21.8 ± 1.6 16.0 ± 3.1 3.4 ± 1.4 6.4 ± 2.3
w. GRAPPA - (59.3)
w. STRUG (Human Assisted) 65.7 ± 0.7 (62.2) 5.5 ± 1.1 59.5 ± 3.2 40.7 ± 13.9 18.7 ± 2.1 26.8 ± 2.9 21.6 ± 2.3 6.3 ± 1.8 6.9 ± 0.6
w. STRUG (Automatic) 65.3 ± 0.7 (62.2) 2.8 ± 0.7 57.5 ± 0.2 44.4 ± 32.7 20.2 ± 1.6 30.2 ± 5.8 18.5 ± 1.5 6.1 ± 0.5 5.2 ± 0.5

Table 3: Execution accuracy on the more realistic evaluation sets including Spider-Realistic and the Suhr et al.
(2020) evaluation sets. For Spider-Realistic, we also show exact match accuracy in parentheses. For the Suhr
et al. (2020) evaluation sets, we show results for the filtered set where examples with query returning empty set are
excluded. Suhr et al. (2020) uses the WikiSQL dataset as additional training data, and we also show their results
with only the Spider training data in parentheses.

Models Exact Exec Exact (Test)

Sc
he

m
a

O
nl

y

EditSQL (Zhang et al., 2019) w. BERT 57.6 - 53.4
IRNET (Guo et al., 2019) w. BERT 61.9 - 54.7
RYANSQL (Choi et al., 2020) w. BERT 70.6 - 60.6
Suhr et al. (2020) w. BERTLARGE+ 65.0 69.0 -
RAT-SQL (Wang et al., 2020) w/o value linking

w. BERTLARGE 67.0 ± 0.6 69.8 ± 0.3 -
w. STRUG (Human Assisted) 70.5 ± 0.6 73.3 ± 0.4 67.4
w. STRUG (Automatic) 69.8 ± 0.3 74.2 ± 0.8 -

C
on

te
nt

U
se

d

Global-GNN (Bogin et al., 2019) 52.7 - 47.4
TranX w. TaBERT (Yin et al., 2020) 64.5 - -
RAT-SQL

w. BERTLARGE 69.8 ± 0.8 72.3 ± 0.6 -
w. GRAPPA (Yu et al., 2020) 73.4 - 69.6
w. STRUG (Human Assisted) 72.7 ± 0.7 75.5 ± 0.8 68.4
w. STRUG (Automatic) 72.6 ± 0.1 74.9 ± 0.1 -

Table 4: Results on Spider. The top half shows mod-
els using only database schema, the bottom half shows
models using the database content. We train our model
three times with different random seeds and report the
mean and standard deviation here.

from the official Spider evaluation script and execu-
tion accuracy3 for evaluation on Spider and Spider-
Realistic. On the Suhr et al. (2020) datasets, we
use the official evaluation script4 released by the
authors and report execution accuracy.
WikiSQL. WikiSQL (Zhong et al., 2017) is a
large-scale text-to-SQL dataset consists of over
80k question-query pairs grounded on over 30k
Wikipedia tables. Although existing models are
already reaching the upper-bound performance on
this dataset (Hwang et al., 2019; Yavuz et al., 2018),
mainly because of the simplicity of the SQL queries
and large amount of data available for training, pre-
vious works have also used this dataset to demon-
strate the model’s generalization ability with lim-
ited training data (Yu et al., 2020; Yao et al., 2020).
For the base model, we use SQLova (Hwang et al.,
2019) without execution-guided decoding. Follow-

3We execute case insensitive SQL queries, and compare
the returned table.

4https://github.com/google-research/
language/tree/master/language/xsp

Models ACClf ACCex

HydraNet (Lyu et al., 2020) 83.8 89.2
X-SQL (He et al., 2019) 83.3 88.7
SQLova (Hwang et al., 2019)

w. BERTLARGE 82.1 87.3
w. TaBERT 82.5 87.9
w. STRUG (Human Assisted) 82.1 87.5
w. STRUG (Automatic) 82.4 87.8

SQLova (5%)
w. BERTLARGE 70.7 77.0
w. TaBERT 71.5 78.0
w. STRUG (Human Assisted) 75.6 81.6
w. STRUG (Automatic) 75.6 81.4

Table 5: Performance on WikiSQL. Here we show log-
ical form accuracy and execution accuracy on the test
set. (5%) means random sampling 5% of original train-
ing data for training.

ing the official leaderboard, we report both logical
form accuracy and execution accuracy.

5.2 Training Details
For all experiments, we use the BERT implementa-
tion from Huggingface (Wolf et al., 2020) and the
pretrained BERTLARGE model from Google 5. For
pretraining, we use Adam optimizer (Kingma and
Ba, 2015) with a initial learning rate of 2e-5 and
batch size of 48. In both settings, we use Kneg = 1
and pretrains our model for 5 epochs. We use 4
V100 GPUs for pretraining, which takes less than
4 hours.

For Spider and the realistic evaluation sets, we
use the official implementation of RAT-SQL 6 and
modify it to generate executable SQL queries. We
follow the original settings and do hyperparam-
eter search for learning rate (3e-4, 7.44e-4) and

5We use the BERT-Large, Uncased (Whole Word Mask-
ing) model from https://storage.googleapis.
com/bert_models/2019_05_30/wwm_uncased_
L-24_H-1024_A-16.zip

6https://github.com/microsoft/rat-sql

https://github.com/google-research/language/tree/master/language/xsp
https://github.com/google-research/language/tree/master/language/xsp
https://storage.googleapis.com/bert_models/2019_05_30/wwm_uncased_L-24_H-1024_A-16.zip
https://storage.googleapis.com/bert_models/2019_05_30/wwm_uncased_L-24_H-1024_A-16.zip
https://storage.googleapis.com/bert_models/2019_05_30/wwm_uncased_L-24_H-1024_A-16.zip
https://github.com/microsoft/rat-sql
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warmup step (5k, 10k). We use the same polyno-
mial learning rate scheduler with warmup and train
for 40,000 steps with batch size of 24. The learning
rate for the pretrained encoder (e.g. BERT) is 3e-6
and is frozen during warmup.

For WikiSQL, we use the official SQLova im-
plementation 7. We use the default setting with
learning rate of 1e-3 for the main model and learn-
ing rate of 1e-5 for the pretrained encoder. We train
the model for up to 50 epochs and select the best
model using the dev set.

5.3 Main Results

Spider. We first show results on Spider dev set in
Table 4. The original Spider setting assumes only
the schema information about the target database is
known in both training and evaluation phase, as the
content of the database may not be accessible to
the system due to privacy concern. More recently,
some works have tried to using the database con-
tent to help understand the columns and link with
the NL utterance. Here we show results for both
settings. In the first setting where only schema
information is known, we disable the value-based
linking module in RAT-SQL. As we can see from
Table 4, replacing BERTLARGE with STRUG con-
sistently improves the model performance in both
settings. Under the setting where content is avail-
able, using STRUG achieves similar performance
as GRAPPA and outperforms all other models.
GRAPPA uses both synthetic data and larger text-
table corpus for pretraining. However, it mainly
learns inductive bias from the synthetic data while
our model focuses on learning text-table associa-
tion knowledge from the parallel text-table data.
In error analysis on the Spider dev set, we notice
that our best model8 corrects 76 out of 270 wrong
predictions made by GRAPPA while GRAPPA cor-
rects 80 out of 274 wrong predictions made by our
model. This demonstrates that the two pretrain-
ing techniques are complementary and we expect
combining them can lead to further performance
improvement. For results on different difficulty
levels and components, please see Appendix B.1.
More realistic evaluation sets. Results on the re-
alistic evaluation sets are summarized in Table 3.
Firstly, we notice the performance of all models
drops significantly on Spider-Realistic, demonstrat-
ing that inferring columns without explicit hint is

7https://github.com/naver/sqlova
8RAT-SQL w. STRUG (Human Assisted)

Figure 4: Execution Accuracy on the WikiSQL test set
with different fractions of training data.

Figure 5: Execution Accuracy on the WikiSQL dev set
during training with 5% of training data.

a challenging task and there is much room for im-
provement. Secondly, using STRUG brings consis-
tent improvement over BERTLARGE in all realistic
evaluation sets. In the Spider-Realistic set, us-
ing STRUG also outperforms GRAPPA9 by 2.9%.
Under the original Suhr et al. (2020) setting, com-
bining RAT-SQL with STRUG significantly outper-
forms Suhr et al. (2020) in all datasets, despite that
we do not include WikiSQL as additional training
data as they did. Thirdly, comparing results in Ta-
ble 4 with Table 3, using STRUG brings larger im-
provement over BERTLARGE in the more realistic
evaluation sets. As shown in Table 1, the original
Spider dataset has a high column mention ratio, so
the models can use exact match for column ground-
ing without really understanding the utterance and
database schema. The more realistic evaluation
sets better simulate the real world scenario and
contain much less such explicit clues, making the
text-table alignment knowledge learned by STRUG
more valuable. For case studies on Spider-Realistic,
please check Section 5.4.
WikiSQL. Results on WikiSQL are summarized
in Table 5. When using the full training corpus, we
notice that using STRUG achieves similar perfor-
mance as BERTLARGE. This is probably because of

9We use the checkpoint provided by the author, which
achieves 73.8% exact match accuracy on the Spider dev set.
Here we only evaluate on Spider-Realistic with exact match
accuracy because their model does not generate values and
includes IMDB and Geo as extra training data.

https://github.com/naver/sqlova
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Sp
id

er
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ea
lis

tic

What are the names of tournaments that have
more than 10 matches?
w. STRUG (Automatic) 3

SELECT tourney_name FROM matches

GROUP BY tourney_name

HAVING Count(*) > 10

w. BERTLARGE 7

SELECT first_name FROM players JOIN

matches GROUPBY first_name

HAVING Count(*) > 10

IM
D

B

List " James Bond " directors
w. STRUG (Automatic) 3

SELECT name FROM director

JOIN directed_by JOIN MOVIE

WHERE movie.title = "james bond"

w. BERTLARGE 7

SELECT gender FROM director

WHERE director.name = "james bond"

Table 6: Case study.

the large size of training data and the simple SQL
structure of WikiSQL. To better demonstrate that
the knowledge learned in pretraining can be effec-
tively transferred to text-to-SQL task and reduce
the need for supervised training data, we also con-
duct experiments with randomly sampled training
examples. From Fig. 4 we can see that with only
1% of training data (around 500 examples), mod-
els using STRUG can achieve over 0.70 accuracy,
outperforming both BERTLARGE and TaBERT by a
large margin. STRUG brings consist improvement
over BERTLARGE until we use half of the training
data, where all models reach nearly the same perfor-
mance as using the full training data. We also show
the training progress using 5% of training data in
Fig. 5. We can see that STRUG also helps speed up
the training progress. For more break-down results
on several subtasks, please see Appendix B.2.
Comparison of human assisted and automatic
setting. In all benchmarks, we notice that STRUG
pretrained using the automatic setting actually per-
forms similarly as the setting where cell annota-
tions are used. This indicates the effectiveness of
our heuristic for cell annotation and the potential
to pretrain STRUG with more unannotated parallel
text-table data.

5.4 Case Study

We compare the predictions made by RAT-SQL w.
BERTLARGE and w. STRUG (Automatic). Some
examples are shown in Table 6. In the first example
from Spider-Realistic, we can see that the model
w. BERTLARGE fails to align tournaments with the
tourney_name column, because of string mismatch.

In the second example from IMDB, although the
model correctly recognizes James Bond as value
reference, it fails to ground it to the correct column
which is movie_title. This supports our hypothesis
that using STRUG helps to improve the structure
grounding ability of the model.

6 Conclusion
In this paper, we propose a novel and effective
structure-grounded pretraining technique for text-
to-SQL. Our approach to pretraining leverages a
set of novel prediction tasks using a parallel text-
table corpus to help solve the text-table alignment
challenge in text-to-SQL. We design two settings
to obtain pretraining labels without requiring com-
plex SQL query annotation: using human labeled
cell association, or leveraging the table contents.
In both settings, STRUG significantly outperforms
BERTLARGE in all the evaluation sets. Meanwhile,
although STRUG is surprisingly effective (using
only 120k text-table pairs for pretraining) and per-
forms on par with models like TaBERT (using 26m
tables and their English contexts) and GRAPPA
(using 475k synthetic examples and 391.5k exam-
ples from existing text-table datasets) on Spider,
we believe it is complementary with these existing
text-table pretraining methods. In the future, we
plan to further increase the size of the pretraining
corpus, and explore how to incorporate MLM and
synthetic data.

Ethical Considerations

Dataset. In this work, we re-purpose an exist-
ing table-to-text generation dataset ToTTo (Parikh
et al., 2020) for our pretraining. We obtain labels
for our three pretraining tasks via weak supervi-
sion, which uses only the raw sentence-table pairs,
or the cell annotations and revised descriptions that
are already included in ToTTo dataset. As a result,
no extra human effort is required for collecting our
pretraining corpus. We also curate a more realistic
evaluation dataset for text-to-SQL based on Spider
dev set. In particular, we first select a complex
subset from the Spider dev set and manually revise
the NL questions to remove the explicit mention
of column names. The detailed description of the
process can be found in Section 4. The first author
manually revised all the questions himself, which
results in 508 examples in total.
Application. We focus on the task of text-to-SQL,
which is a fundamental task for building natural
language interfaces for databases. Such interface
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can enable non-expert users to effortlessly query
databases. In particular, here we focus on improv-
ing the structure grounding ability of text-to-SQL
models, which is critical in real-world use cases.
We evaluate our model with the widely used Spi-
der benchmark and several more realistic datasets.
Experimental results show that our method brings
significant improvement over existing baselines,
especially on more realistic settings.
Computing cost. We use 4 V100 GPUs for pre-
training, and 1 V100 GPU for finetuning the model
for text-to-SQL on Spider and WikiSQL. One ad-
vantage of our method is its efficiency. In our ex-
periments, we pretrain the model for only 5 epochs,
which can finish within 4 hours. For comparison,
the largest TaBERT model (Yin et al., 2020) takes
6 days to train for 10 epochs on 128 Tesla V100
GPUs using mixed precision training.
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Models Easy Medium Hard Extra Hard All

# Examples 248 446 174 166 1034

RAT-SQL w/o value linking
w. BERTLARGE 82.9 72.7 65.7 46.6 69.8
w. STRUG (Human Assisted) 84.9 76.2 67.0 55.0 73.3
w. STRUG (Automatic) 87.8 75.6 69.5 55.0 74.2

RAT-SQL
w. BERTLARGE 84.1 74.9 67.4 52.8 72.3
w. STRUG (Human Assisted) 87.1 77.7 70.9 57.0 75.5
w. STRUG (Automatic) 88.7 77.4 69.2 53.6 74.9

Table 7: Execution accuracy on Spider dev set with dif-
ferent hardness levels.

Models SELECT WHERE GROUP BY ORDER BY

RAT-SQL w/o value linking
w. BERTLARGE 89.2 71.7 78.7 81.5
w. STRUG (Human Assisted) 91.2 74.8 79.0 84.0
w. STRUG (Automatic) 90.9 75.6 77.5 84.0

RAT-SQL
w. BERTLARGE 89.4 79.2 78.5 81.3
w. STRUG (Human Assisted) 91.3 80.8 80.6 85.7
w. STRUG (Automatic) 91.2 80.1 78.6 84.5

Table 8: F1 scores of Component Matching on Spider
dev set.

A Implementation Details

A.1 Filtering on the Suhr et al. (2020)
Datasets

We use the filtering scripts10 released by the au-
thors of Suhr et al. (2020). More specifically, they
remove examples that fall into the following cat-
egories: (1) a numeric or text value in the query
is not copiable from the utterance (except for the
numbers 0 and 1, which are often not copied from
the input), (2) the result of the query is a empty ta-
ble, or a query for count returns [1], (3) the query
requires selecting more than one final column.

B More Resutls

B.1 Detailed Results on Spider and
Spider-Realistic

We show more detailed results on the Spider dev set
and Spider-Realistic in Table 7, Table 8 and Table 9.
From Table 7 we can see that STRUG brings sig-
nificant improvements in all difficulty levels, and
is not biased towards certain subset. Since STRUG
mostly improves the structure grounding ability
of the model, from Table 8 and Table 9, we can
see that STRUG mainly increase the accuracy for
WHERE and ORDER BY clauses, especially when
database content is not available to the model. On
the Spider-Realistic set, as the model cannot rely
on simple string matching for structure grounding,

10https://github.com/google-research/
language/tree/master/language/xsp

Models SELECT WHERE GROUP BY ORDER BY

RAT-SQL w/o value linking
w. BERTLARGE 86.2 55.6 65.9 64.3
w. STRUG (Human Assisted) 88.9 61.9 70.4 64.1
w. STRUG (Automatic) 90.1 64.5 73.0 67.4

RAT-SQL
w. BERTLARGE 86.9 74.2 59.6 61.9
w. STRUG (Human Assisted) 89.0 76.8 69.9 63.5
w. STRUG (Automatic) 89.2 76.4 64.7 64.9

Table 9: F1 scores of Component Matching on Spider-
Realistic set.

Models ACCS-COL ACCS-AGG ACCW-COL ACCW-VAL

SQLova (5%)
w. BERTLARGE 95.2 88.4 89.6 88.3
w. TaBERT 95.4 88.4 90.8 88.0
w. STRUG (Human Assisted) 95.5 88.9 92.6 91.5
w. STRUG (Automatic) 95.8 88.9 92.3 91.7

Table 10: Subtask performance on WikiSQL. S-
COL, S-AGG, W-COL and W-VAL stands for tasks
of predicting SELECT column, aggregation operator,
WHERE columns and WHERE values, respectively.

we notice greater improvement using STRUG, es-
pecially for GROUP BY clauses.

B.2 Detailed Results on WikiSQL
We show subtask performance for WikiSQL in
Table 10, Fig. 7 and Fig. 4. Again, we can see
that STRUG mainly improves WHERE column and
WHERE value accuracy. From Fig. 6 we can see that
with only 1% of training data, model with STRUG
already has over 0.87 WHERE column accuracy and
nearly 0.85 WHERE value accuracy.

https://github.com/google-research/language/tree/master/language/xsp
https://github.com/google-research/language/tree/master/language/xsp
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(a) Where Column Accuracy (b) Where Value Accuracy

Figure 6: Model performance on the test set with different fractions of training data.

(a) Where Column Accuracy (b) Where Value Accuracy

Figure 7: Model performance on the dev set during training with 5% of training data.


