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Abstract

Negation is a core construction in natural
language. Despite being very successful on
many tasks, state-of-the-art pre-trained lan-
guage models often handle negation incor-
rectly. To improve language models in this
regard, we propose to augment the language
modeling objective with an unlikelihood objec-
tive that is based on negated generic sentences
from a raw text corpus. By training BERT with
the resulting combined objective we reduce the
mean top 1 error rate to 4% on the negated
LAMA dataset. We also see some improve-
ments on the negated NLI benchmarks.

1 Introduction

Negation is an important property in many lan-
guage understanding tasks, such as sentiment anal-
ysis, question answering, knowledge base com-
pletion and natural language inference (Kassner
and Schütze, 2019; Naik et al., 2018). While Pre-
trained Language Models (PLMs) such as BERT
pushed the state-of-the-art on these tasks (Devlin
et al., 2019; Petroni et al., 2019), they fail dra-
matically on instances that require understanding
negation.

Kassner and Schütze (2019) show that current
PLMs cannot correctly distinguish between the
negated and non-negated forms of fill-in-the-blank
tests. For instance, when asked to predict the
[MASK] token in sentences such as “The capi-
tal of Cuba is [MASK]” and “The capital of Cuba
is not [MASK]”, BERT often generate the same
answer “Havana”, indicating that it may not be
appropriately modeling the distribution of negative
sentences. Additional evidence is given by the fact
that, when fine-tuned on natural language inference
tasks, PLMs tend to mis-classify examples which

Figure 1: An overview of the unlikelihood objective.
A generic sentence is negated using our data aug-
mentation method and an unlikelihood token is cho-
sen and replaced with [MASK]. This new sentence is
concatenated with the original sentence and fed into
the model. The unlikelihood loss is computed using
p(improvements) from the language modeling head of
BERT.

contain not or no as contradiction when the true
label is neutral or entailment (Naik et al., 2018). Re-
cently, Hossain et al. (2020b) proposed new natural
language inference test sets to specifically target
the model’s understanding of negation and show
that current state-of-the-art models perform poorly
on these test sets.

In this work, we investigate whether we can
alleviate the modeling bias of PLMs on negated
sentences. Our approach is composed of two
core contributions: i) a syntactic data augmenta-
tion scheme to automatically generate negated sen-
tences; ii) a new training paradigm, dubbed unlike-
lihood training with reference (Fig. 1), based on the
recently proposed unlikelihood training (Welleck
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et al., 2020).
At first, we generate a large number of negated

sentences by negating sentences mined from an
openly available text corpus (Wikipedia). Our sen-
tence negator uses the dependency parse of the
sentence, part of speech tags, and morphological
features of each word in the sentence and deter-
ministically negates the sentence. Given a negated
version of a sentence, we replace its object with
the [MASK] token and use unlikelihood training
to make the object unlikely under the PLM distri-
bution (e.g. we minimize the probability of “im-
provements” as depicted in Fig. 1). Importantly, in
order to ensure that the negated sentence is factu-
ally false, we use the positive sentence as context
(i.e., as a reference) for the unlikelihood prediction
task. Concretely, we provide the concatenation of
the positive and the masked negated sentence as
input to the PLM. Our method can be thought of a
type data augmentation, which has be shown to be
effective at improving robustness across many tasks
in language, such as text classification (Wei and
Zou, 2019), natural language inference (Min et al.,
2020; McCoy et al., 2019) and semantic parsing
(Andreas, 2019).

For our negation experiments, we fine-tune pre-
trained BERT with our new objective and a knowl-
edge distillation objective. We test our model on
the negated LAMA dataset (Kassner and Schütze,
2019), which is the negated version of knowledge
probing dataset LAMA, introduced in Petroni et al.
(2019). Our model achieves a mean error rate of 4%
(a improvement of 5 points) on the negated LAMA
dataset while maintaining the performance on the
original LAMA dataset without any direct training
on the negated LAMA sentences. We also fine-
tune BERT on RTE (Dagan et al., 2005; Bar-Haim
et al., 2006; Giampiccolo et al., 2007; Bentivogli
et al., 2009), SNLI (Bowman et al., 2015) and
MNLI (Williams et al., 2018) tasks and achieve
better results on the language inference benchmark
including negation from (Hossain et al., 2020b).

2 Related Work

Pre-trained language models have shown impres-
sive results across many tasks, such as question an-
swering (Alberti et al., 2019) and natural language
inference (Liu et al., 2019). These models are also
known to encode factual and common-sense knowl-
edge (Radford et al., 2019; Petroni et al., 2019;
Bosselut et al., 2019). Despite these abilities, Kass-

ner and Schütze (2019) found that these models
fail at understanding negation through analysing
negated factual statements.

Extensive literature looks at the linguistic knowl-
edge learned by language models (McCoy et al.,
2019; Jumelet and Hupkes, 2018; Gulordava et al.,
2018; Marvin and Linzen, 2018; Tenney et al.,
2019; Warstadt and Bowman, 2019; Talmor et al.,
2019). Recent work has also studied the short-
comings in negation scope detection (Jumelet and
Hupkes, 2018; Fancellu et al., 2016, 2017; Morante
and Daelemans, 2009; Li and Lu, 2018; Zhao and
Bethard, 2020; Chen, 2019) and focus detection
(Shen et al., 2019; Zou et al., 2014, 2015; Hossain
et al., 2020a). Naik et al. (2018) and McCoy et al.
(2019) systematically study the linguistic abilities
of these models using NLI, and show that these
models rely on erroneous syntactic heuristics. Our
work is in this spirit for negations.

Noji and Takamura (2020) propose taking advan-
tage of negative examples and unlikelihood in the
training of language models to increase their syn-
tactic abilities. Similarly, Min et al. (2020) show
the effectiveness of syntactic data augmentation
in the case of robustness in NLI. Neither of these
works focus on negations.

3 Syntactic Negation Augmentation

We generate the negated versions of sentences us-
ing a syntactic augmentation method. The method
gets as input the dependency parse of the sentence,
POS tags and morphological information of each
word and negates the sentence using a set of rules.
Each rule has a dependency tree regular expres-
sion pattern (Semgrex; Chambers et al. 2007). We
use Semgrex patterns to identify different syntactic
templates, and then transform the sentence based
on a list of actions defined in the rule. These ac-
tions can be move, replace, insert and lemmatize.
The unlikelihood token which will be discussed
later is also chosen using Semgrex patterns (see
Appendix C for some examples).

We use Stanza (Qi et al., 2020) to get the de-
pendency parse of the sentences, parts of speech
tags, lemma, and morphological features of the
words. We also filter out sentences with more than
20 words.

To test the coverage of our Semgrex patterns, we
randomly sampled 930 sentences from Wikipedia.
Only 31 of them did not match any of our Semgrex
patterns (See table 8 in Appendix B for the number
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Model SQuAD ConceptNet T-REx Google-RE
BERT 13.53 15.65 29.10 10.24
BERT + KL 13.64 15.64 29.28 10.27
BERTNOT 13.97 15.49 29.25 10.31

Table 1: Mean precision at k = 1 (p @ 1) for original LAMA queries (higher is better) of pre-trained BERT,
BERT trained with distillation objective, and BERT with unlikelihood and distillation objectives (BERTNOT, sec
4.2). The scores are averaged across 3 runs.

Model SQuAD ConceptNet T-REx Google-RE
BERT 8.61 2.24 21.42 3.76
BERT + KL 4.97 1.19 21.77 3.99
BERTNOT 2.10 0.73 11.86 1.10

Table 2: Mean top 1 error rate for negated LAMA queries (lower is better) of pre-trained BERT, BERT trained with
distillation objective, and BERT with unlikelihood and distillation objectives (BERTNOT, sec 4.2). The scores are
averaged across 3 runs.

of matches for each rule in our rule set for these 930
sentences). In addition, to get a better sense of the
correctness of our method, 100 random sentences
(from Wikipedia) were negated and reviewed by
a native English speaker. The precision for these
negations is 94.00%. Table 7 in Appendix B shows
examples of original and negated sentences.

4 Unlikelihood Training With Reference

4.1 Reference setup

Applying unlikelihood to a word in any random sen-
tence is problematic, unless the sentence is a factual
statement (e.g. unlikelihood on improvements in
“He did not advocate navigational improvements
on the Sangamon River.” in Fig 1 is problematic as
this sentence is not grounded in reality). Moreover,
using solely factual sentences limits the application
of this method.1 To be able to use any generic (not
necessarily factual) sentence and pick an unlike-
lihood token in it, there needs to be some sort of
grounding or context. In this setup, each training
example is of the form <sentence A, sentence B>
where sentence A is the reference for sentence B,
and provides the grounding or context for it.

4.2 Unlikelihood and knowledge distillation

The unlikelihood loss has recently been proposed
by Welleck et al. (2020) to mitigate the problem
of repetition in neural text generation. Noji and
Takamura (2020) also adopted this loss to penalize
the desirability of an incorrect token in a sentence.

1We did try to apply unlikelihood without any context or
reference, but as expected it performed poorly for both LAMA
and negated LAMA. See appendix E.

We adopt this method to penalize the likelihood
of a token in sentence B that makes this sentence
contradictory with the reference sentence A.

(1) A Humans have a rational soul.
B Humans do not have a rational soul.

In the example 1, assuming that sentence A is true,
we want the model to avoid assigning “soul” in
sentence B a high probability. To this end, the
probability of the unlikelihood token xu = “soul”
is penalized with the unlikelihood loss LUL as:

LUL(xu) = − log(1− p(xu|x1:T )), (1)

where x1:T is the whole input sequence (sentence A
concatenated with sentence B which is the negated
version of sentence A as illustrated in Fig 1). To
have a balanced augmentation data set, we also
include examples where sentence B is the copy of
sentence A and therefore not contradictory with it.
In this context, we want the model to perform as it
was untouched (before any fine-tuning). The KL
divergence knowledge distillation loss is used for
these examples on the same token:

(2) A Humans have a rational soul.
B Humans have a rational [MASK].

The loss LKL for token xl = “[MASK]” is written
as:

LKL(xl) = DKL(pLM || p) (2)

where pLM is the probability distribution over the
vocabulary for the masked token xl under the LM
before any fine-tuning.

In our experiments, we use the BERT-base model
and further train it with two objectives, the un-
likelihood objective (Eq. 1) and the knowledge
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Query Top 3 words with log probs from BERT Top 3 words with log probs from BERTNOT

iOS is developed by [MASK]. Apple (-1.8), Google (-2.6), Microsoft (-2.8) Apple (-1.8), Google (-2.5), Microsoft (-2.7)
iOS is not developed by [MASK]. Apple (-1.8), Google (-2.6), Microsoft (-2.8) Microsoft (-1.8), Google (-2.4), Apple (-3.1)

The majority of the amazon forest is in [MASK]. Brazil (-2.6), Bolivia (-2.7), Madagascar (-3.1) Brazil (-2.9), Bolivia (-3.1), Mexico (-3.2)
The majority of the amazon forest is not in [MASK]. cultivation (-1.0), Brazil (-3.5), Mexico (-3.5) cultivation (-2.0), Mexico (-4.1), France (-4.3)

Charles Nodier died in [MASK]. Paris (-1.35), Rome (-3.2), office (-3.4) Paris (-1.5), Rome (-3.3), France (-3.6)
Charles Nodier did not die in [MASK]. Paris (-2.4), office (-2.7), France (-2.8) vain (-3.5), error (-4.0), doubt (-4.5)

Mac OS is developed by [MASK]. Apple (-1.9), Microsoft (-2.0), Intel (-2.0) Apple (-2.0), Microsoft (-2.0), Intel (-2.1)
Mac OS is not developed by [MASK]. Apple (-1.3), Microsoft (-1.5), IBM (-2.3) Microsoft (-2.1), IBM (-2.7), itself (-3.4)

Table 3: Examples from BERT base before and after training it with the unlikelihood (UL) and KL divergence
knowledge distillation (KL) objectives (BERTNOT). Queries are from LAMA and negated LAMA.

distillation objective (Eq. 2). We also use origi-
nal Wikipedia sentences for the latter to prevent
catastrophic forgetting of language modeling. The
probability of the unlikelihood token p(xu|x1:T )
and the distribution for masked token xl are com-
puted using the language modeling head of the
BERT model by replacing xu and xl in the input
sequences with the [MASK] token. Examples for
each objective are sampled uniformly. We will
refer to our model as BERTNOT.

5 Experiments

We report our main results on LAMA and Negated
LAMA for knowledge base completion. The cloze
statements from LAMA are facts or commonsense
knowledge generated from either subject-relation-
object triples (X, rel, Y) or question-answers pairs.
The cloze statements for the triples are generated
using a template for each relation which includes
the placeholders X and Y (e.g. “X is located in
Y”). X is replaced for the subject and Y is re-
placed with the [MASK] token to be predicted by
the model. In the question-answer pairs, the an-
swer is replaced with [MASK] token. The facts
in the LAMA dataset are from multiple sources:
1) Google-RE relations, namely “place of birth”,
“date of birth” and “place of death”; 2) T-REx, a
subset of Wikidata triples with 41 relations (ElSa-
har et al., 2018); 3) ConceptNet with 16 relations
(Li et al., 2016); 4) SQuAD, a subset of 305 context-
insensitive questions manually rephrased as cloze-
style questions (Rajpurkar et al., 2016). Negated
LAMA was created by manually negating the tem-
plates or questions (Kassner and Schütze, 2019).
Following Petroni et al. (2019) we use mean preci-
sion at k (P @ k) for LAMA. For negated LAMA
we report mean top 1 error rate.

5.1 Knowledge Base Completion

As discussed in section 4.2, we train a pre-trained
BERT base cased model for 5 epochs, with 20k
examples for each objective, a maximum sequence
length of 128 and a learning rate of 1e-5. To see the
effects of the unlikelihood objective more clearly,
we also train a pre-trained BERT base cased model
with only the KL knowledge distillation objective
with the same data and hyper-parameters.

Tables 1 and 2 respectively show the mean pre-
cision at rank 1 (averaged over all the relations)
for LAMA, and mean top 1 error rate for negated
LAMA queries.2 The mean error rate on the
negated LAMA queries decreases to below 4%
while the results on original LAMA stay the same.
These results are achieved without any direct train-
ing on LAMA queries (negated or non-negated).
Table 3 shows the top 3 predicted words for a pre-
trained BERT model and the model trained with
our method. Pre-trained BERT seems to ignore
negation and mostly predict based on the subject
of the query, but the prediction probability in the
negated queries seems to be generally lower. Our
method is as good as the vanilla model (BERT)
on original queries. For the negated queries, our
model predictions are far-superior than the vanilla
model. We also tried out method on BERT-large.
See appendix E for results and discussion.

5.2 Natural Language Inference

We fine-tune our model with a language inference
objective on RTE, SNLI and MNLI tasks. Table 4
shows the accuracies on the original development
splits and the new splits from Hossain et al. (2020b)
containing negation for each task. We used the
hyper-parameters from Hossain et al. (2020b) to
fine-tune all of our models.

2Baseline scores differ slightly from Petroni et al. (2019).
We were unable to get the same results with their code.
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Model RTE SNLI MNLI
dev w/neg dev w/neg dev w/neg

BERT 70.04±1.57 65.47±3.63 89.47±0.18 44.18±0.67 82.95±0.18 60.62±1.32

BERTNOT 69.68±1.88 74.47±0.29 89.00±0.10 45.96±0.41 84.31±2.29 60.89±0.31

Table 4: Accuracies on original development splits (dev) and new splits containing negation from Hossain et al.
(2020b) (w/neg) for RTE, SNLI and MNLI (matched genres) tasks. Results are averaged across 3 runs.

Premise Hypothesis T B BN
1 It does not use the first day of the first month of

the Lunar Year as the start of the Chinese New
Year.

The Chinese New Year’s Day falls on the first day
of the first month of the Lunar Year.

N E N

2 The prosecutor told the court that the incident had
caused "distress" to one of the children.

The prosecutor did not tell the court that "distress"
in one of the children is associated with the inci-
dent.

N E N

3 Green cards are not becoming more difficult to
obtain.

Green card is now difficult to receive. N E N

4 Moog’s synthesiser, which bears his name, revolu-
tionised music from the 1960s onwards, and was
used by bands like The Beatles and The Doors.

Moog’s instruments were not used by The Beatles
and The Doors among others.

N N E

5 The board of Marks & Spencer will not take an-
other look at Philip Green’s increased takeover
offer.

Philip Green does not try to take over Marks &
Spencer.

E E N

6 Albert Sabin developed an oral, attenuated (live)
vaccine, which, with Salk’s discovery, did not
bring polio under control.

Polio is not under control in the world. E E N

Table 5: Examples from the new split from Hossain et al. (2020b) containing negation for RTE. T, B and BN
denote true label, BERT’s prediction and BERTNOT’s prediction respectively. E and N are used for entailment
and not entailment labels.

Our model achieves superior results on RTE
(low-resource setting) and slightly better accuracies
on SNLI and MNLI (high-resource setting) on all
the new splits containing negation, while keeping
roughly the same scores on the original dev splits.
We conjecture that fine-tuning on large-amounts
of data (SNLI and MNLI) may have resulted in
catastrophic forgetting of the negation knowledge,
decreasing the gap between BERT and BERTNOT.
We tried to alleviate the catastrophic forgetting by
mixing in some unlikelihood training and knowl-
edge distillation along the NLI training, but that
did not help. You can see these results for MNLI
in appendix D. We leave further exploration of
better fine-tuning objectives while preserving the
pretrained knowledge for future work.

Table 5 shows some of the examples of the new
RTE split containing negation from Hossain et al.
(2020b), along with the predictions from BERT
and BERTNOT. Examples 4 and 6 show the failure
cases of BERTNOT. As it can be seen, for the fifth
example, the true label is incorrect, but BERTNOT
predicts the correct label for this pair of premise
and hypothesis.

6 Conclusion

In this work, we propose a combination of the un-
likelihood objective with a reference based setup
for input sentences to model negation. This al-
lows us to utilize generic sentences, and negate
them with our data augmentation method to be
used as examples for the unlikelihood objective.
Our method notably improves the error rate on the
negated LAMA dataset while keeping the same
performance on the original LAMA queries.

We also test our method on the original devel-
opment sets and new splits containing negation
from Hossain et al. (2020b) of RTE, SNLI and
MNLI tasks. We see large improvements on the
negated splits in low-resource setting (RTE) and
slight improvements in high-resource setting (SNLI
and MNLI), while also maintaining similar results
as BERT on original splits.
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A Training details

Here are the hyper-parameters used in our fine-tunings.

Task Epochs Batch Size Learning Rate Weight Decay
Unlikelihood training 5 32 1e-5 N\A

RTE 50 32 2e-5 N\A
SNLI 3 32 1e-5 0.1
MNLI 3 32 2e-5 N\A

Table 6: Hyper-parameters

Algorithm 1 shows the details of further training the BERT base cased model with the unlikelihood and
knowledge distillation objectives.

number of training steps :T
for i← 1 to T do

LUL ← compute unlikelihood loss with contradictory <sentence A, sentence B> pairs;
LKL ← compute knowledge distillation loss with non-contradictory <sentence A, sentence B> pairs;
g1 ← compute gradient of γLUL + (1− γ)LKL;
update the parameters with g1;
LKL ← compute knowledge distillation loss with sentences from Wikipedia;
g2 ← compute gradient of LKL;
update the parameters with g2;

end
Algorithm 1: Details of the training procedure of BERTNOT. The unlikelihood loss and knowledge
distillation loss are first computed with the <sentence A, sentence B> inputs. These inputs are
contradictory for the UL loss, and non-contradictory for knowledge distillation (sec 4.2). We use
γ = 0.4 in our experiments to sum these losses and compute the gradient g1. Then, we compute the
knowledge distillation loss for inputs sampled from Wikipedia. These inputs do not have our reference
based format. The parameters are updated again using the gradient from this knowledge distillation
loss (g2).
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B Examples of negated sentences

Here are some examples and details of our syntactic negation method.

Original Negated Unlikelihood Token
1 That tournament helped demon-

strate the high caliber of play in
women’s soccer.

That tournament did not help
demonstrate the high caliber of
play in women’s soccer.

tournament

2 The attributes of this vector (length
and direction) characterize the ro-
tation at that point.

The attributes of this vector (length
and direction) do not characterize
the rotation at that point.

rotation

3 This was broadcast live on Nor-
way's main national TV carrier
NRK.

This was not broadcast live on
Norway's main national TV carrier
NRK.

Norway

4 The latter may occur implicitly
through the use of a construct like
DEFVAR or DEFPARAMETER.

The latter may not occur implicitly
through the use of a construct like
DEFVAR or DEFPARAMETER.

latter

5 When Arjuna was fighting Karna,
the latter's chariot's wheels sank
into the ground.

When Arjuna was fighting Karna,
the latter's chariot's wheels did not
sank into the ground.

wheels

6 It also prohibits or restricts the use
of certain accounts held at financial
institutions.

It also does not prohibit or restricts
the use of certain accounts held at
financial institutions.

use

Table 7: Examples of original and negated sentences with the chosen unlikelihood token. Examples 5 and 6 are
incorrect negations since sank in example 5 and restricts in example 6 are incorrect word forms in the negated
context.

Rule Name # of Sentences Matched
simple past 315

simple present 295
Imperative 93

present with auxiliary verb 37
past perfect 35

copula statements 34
present with modal 24

already negated with not 14
NPI words (anywhere, anyone, etc) 5

negative words (no, nobody, etc) 4
other 13

Table 8: Number of matches for each rule in our rule set over 930 sentences used to analyze the syntactic negation.
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C Example rules for transforming a sentence into its negation

Original Sentence Rule Negated Sentence
Nowhere in his confession did
he mention the Monteagle letter. {

" name " : " aux b e f o r e s u b j " ,
" p a t t e r n " : " {$ ; t a g : /VB . * / }=A >/

advmod | cc / { word : / n e v e r | nobody |
no | n o t h i n g | nowhere | n e i t h e r |
Never | Nobody | No | Noth ing | Nowhere
| N e i t h e r / }=npiword >/ aux . * / ( {}=
B $++ {}= s u b j e c t ) >/ n s u b j . * / {

}= s u b j e c t ?> o b j { t a g : /NN. * / }=
object" ,

" a c t i o n s " : [
{

" t y p e " : " move " ,
" to_move " : "B" ,
" an ch o r " : "A" ,
" p o s i t i o n " : " b e f o r e "

} ,
{

" t y p e " : " r e p l a c e " ,
" t o k e n " : " " ,
" t o _ r e p l a c e " : "npiword"

}
]

}

in his confession he did mention
the Monteagle letter.

Many fonts then made the right
leg vertical. {

" name " : " s i m p l e p a s t " ,
" p a t t e r n " : " {$ ; cpos : / . * Tense= P a s t . * /

}=A >/ n s u b j | c s u b j /=E {}= s u b j e c t
?> o b j { t a g : /NN. * / }=object" ,

" a c t i o n s " : [
{

" t y p e " : " i n s e r t " ,
" t o k e n " : " d i d " ,
" r e l " : "AUX" ,
" an ch o r " : "A" ,
" p o s i t i o n " : " b e f o r e "

} ,
{

" t y p e " : " i n s e r t " ,
" t o k e n " : " n o t " ,
" r e l " : "ADV" ,
" an ch o r " : "A" ,
" p o s i t i o n " : " b e f o r e "

} ,
{

" t y p e " : " l emmat i ze "
}

]
}

Many fonts then did not make
the right leg vertical.

Table 9: Examples of how the syntactic negation augmentation method works. For the first sentence, the matched
rule has two actions, move and replace. The move action has moved the token B = did before token A = mention.
The replace action has replaced npiword = Nowhere with an empty token, which means removing this token. The
token object = letter is chosen as the unlikelihood token in this sentence.
In the second sentence, the matched rule has three actions, two inserts and one lemmatize action. The insert actions,
add the tokens “did not” before A = made, and the token A = made is replaced with its lemma by the lemmatize
action. The token object = leg is chosen as the unlikelihood token in the negated sentence.
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D Mixing negation unlikelihood training and knowledge distillation with NLI training

In order to reduce the catastrophic forgetting behavior of the model during NLI training, we added the
unlikelihood, knowledge distillation and MLM objectives to the original NLI classification objective and
trained the model with the same hyper-parameters for the MNLI task. We also trained one version with
only the original NLI classification objective and the MLM objective. As the results in table 10 show,
this method did not improve the scores for development split and the new split containing negation from
Hossain et al. (2020b) for MNLI.

Model MNLI
dev w/neg

BERTNOT + UL + KL + MLM + NLI obj 81.17 60.20
BERTNOT + MLM + NLI obj 81.42 62.00

Table 10: Accuracies on original development split (dev) and new split containing negation from Hossain et al.
(2020b) (w/neg) for MNLI (matched genres) task.

E Supplementary Results

Model lr SQuAD ConceptNet T-REx Google-RE
BERTNOT without reference setup 1e-5 13.86 15.65 29.54 10.29
BERT-large 1e-5 16.83 19.26 30.76 10.93
BERTNOT-large 1e-5 14.19 19.14 32.09 11.02
BERTNOT-large 5e-5 15.18 16.97 30.71 10.62
BERTNOT-large 1e-4 11.55 13.58 28.41 9.25

Table 11: Mean precision at k = 1 (p @ 1) for original LAMA queries (higher is better) of BERT with unlikelihood
and distillation objectives without references for sentences, BERT-large, and BERT-large with unlikelihood and
distillation objectives with different learning rates.

Model lr SQuAD ConceptNet T-REx Google-RE
BERTNOT without reference setup 1e-5 5.96 1.34 21.54 3.73
BERT-large 1e-5 7.95 1.67 22.97 4.13
BERTNOT-large 1e-5 8.28 1.87 23.49 4.22
BERTNOT-large 5e-5 8.28 2.20 24.05 4.09
BERTNOT-large 1e-4 4.97 1.47 20.86 3.60

Table 12: Mean top 1 error rate for negated LAMA queries (lower is better) of BERT with unlikelihood and distil-
lation objectives without references for sentences, BERT-large, and BERT-large with unlikelihood and distillation
objectives with different learning rates.

As the results in table 12 show, pre-trained BERT-large performs worse than pre-trained BERT-base on
negated LAMA queries. We decreased the batch-size to be able to fine-tune BERT-large. As the scores for
negated LAMA queries from table 12 show, fine-tuning BERT-large with our method using the same or
slightly larger learning rate does not improve the results. We observe a decrease in the mean top 1 error
rates for negated LAMA queries when we use a larger learning rate (1e − 5), but this also hinders the
performance of the model on the original LAMA queries (table 11). This requires some hyper-parameter
tuning and further investigation.


