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Abstract

Recent work (Feng et al., 2018) establishes the
presence of short, uninterpretable input frag-
ments that yield high confidence and accuracy
in neural models. We refer to these as Min-
imal Prediction Preserving Inputs (MPPIs).
In the context of question answering, we in-
vestigate competing hypotheses for the exis-
tence of MPPIs, including poor posterior cal-
ibration of neural models, lack of pretrain-
ing, and “dataset bias" (where a model learns
to attend to spurious, non-generalizable cues
in the training data). We discover a per-
plexing invariance of MPPIs to random train-
ing seed, model architecture, pretraining, and
training domain. MPPIs demonstrate remark-
able transferability across domains — achiev-
ing significantly higher performance than com-
parably short queries. Additionally, penalizing
over-confidence on MPPIs fails to improve ei-
ther generalization or adversarial robustness.
These results suggest the interpretability of
MPPIs is insufficient to characterize general-
ization capacity of these models. We hope this
focused investigation encourages more system-
atic analysis of model behavior outside of the
human interpretable distribution of examples.

1 Introduction
Feng et al. (2018) establish the presence of short-
ened input sequences that yield high confidence and
accuracy for non-pretrained neural models. These
Minimal Prediction Preserving Inputs (MPPIs) are
constructed by iteratively removing the least im-
portant word from the query to obtain the shortest
sequence for which the model’s prediction remains
unchanged (example shown in Figure 1).1 Humans
are unable to make either confident or accurate pre-
dictions on these inputs. Follow up work treats

∗ equal contribution
1For question answering we construct MPPIs by only

removing words from the query. Modifying the context para-
graph is poorly defined in MPPI generation as it perturbs the
output space, rendering an answer impossible or trivial.

SQUAD
Context ... The site currently houses three cinemas,

including the restored Classic the United
Kingdom’s last surviving news cinema still
in full-time operation—alongside two new
screens ...

Original What’s the name of the United Kingdom ’s
sole remaining news cinema ?

Reduced news
Confidence 0.57→ 0.51

Figure 1: A SQUAD dev set example. Given the orig-
inal Context, the model makes the same correct predic-
tion (“Classic”) on the Reduced question (MPPI) as the
Original, with almost the same score. For humans, the
reduced question, “news”, is nonsensical.

strong model performance on such partial-inputs
as equivalent with models improperly learning the
task (Feng et al., 2019; Kaushik and Lipton, 2018;
He et al., 2019). Accordingly, we evaluate this
proposition in question answering (QA), investigat-
ing the properties of MPPIs and how their exis-
tence relates to “dataset bias", out-of-domain gen-
eralization, and adversarial robustness.

First we examine the hypothesis that MPPIs are
a symptom of poor neural calibration. Feng et al.
(2018) propose we can “attribute [these neural]
pathologies primarily to the lack of accurate un-
certainty estimates in neural models.” As neural
models tend to overfit the log-likelihood objective
by predicting low-entropy distributions (Guo et al.,
2017) this can manifest in over-confidence on gib-
berish examples outside of the training distribution
(Goodfellow et al., 2014). We test this hypothe-
sis using pretrained models, shown to have better
posterior calibration and out-of-distribution robust-
ness (Hendrycks et al., 2020; Desai and Durrett,
2020). Contrary to expectations, we find large-
scale pretraining does not produce more human
interpretable MPPIs.

Second we examine the hypothesis that MPPIs
are the symptom of “dataset bias" — where a
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flawed annotation procedure results in hidden lin-
guistic cues or “annotation artifacts" (Gururangan
et al., 2018; Niven and Kao, 2019). Models trained
on such data distribution can rely on simple heuris-
tics rather than learning the task. As such, input
fragments or “partial inputs" are often sufficient for
a model to achieve strong performance on flawed
datasets. This explanation has been considered
for both Natural Language Inference tasks (the
“hypothesis-only" input for Poliak et al. (2018);
Gururangan et al. (2018)) and for Visual Question
Answering (the “question-only" model for Goyal
et al. (2017)). We expect models which rely on
these spurious cues would fail to generalize well
to other “domains" (datasets with different collec-
tion and annotation procedures). We discover even
models trained in different domains perform nearly
as well on MPPIs as on full inputs, contradicting
this hypothesis. Further, we test their transferability
across a number of other factors, including random
training seed, model size, and pretraining strategy,
and confirm their invariance to each of these.

Third we examine the hypothesis that MPPIs
inhibit generalization. This intuition is based on
MPPI’s poor human interpretability, which could
suggest models should not attend to these signals.
To test this hypothesis, we regularize this phe-
nomenon directly to promote more human under-
standable MPPIs, and measure the impact on out-
domain generalization and adversarial robustness.
Interestingly, out-domain generalization and robust-
ness on Adversarial SQUAD (Jia and Liang, 2017)
vary significantly by domain, with both declining
slightly on average due to regularization.

In conjunction, these results suggest MPPIs may
represent an unique phenomenon from what previ-
ous work has observed and analyzed. The per-
formance of these inputs is not well explained
by domain-specific biases, or posterior over-
confidence on out-of-distribution inputs. Instead,
this behavior may correspond to relevant signals
as the impact of their partial mitigation suggests.
We hope these results encourage researchers to not
assume MPPIs, or other uninterpretable model be-
haviour, are dataset artifacts that require mitigation
a priori. Before presenting mitigation solutions,
we propose they follow a more systematic analysis
proposed by our actionable framework by (a) rig-
orously testing the alleged causes of the observed
behaviour, (b) confirming the bias does not general-
ize/transfer, and (c) ensuring the solution provides

Dataset ORIGINAL BERT-B XLNET-L

SQUAD (Rajpurkar et al., 2016) 11.54 2.32 2.65
HOTPOTQA (Yang et al., 2018) 18.96 2.07 2.55
NEWSQA (Trischler et al., 2016) 7.59 2.08 1.80
NATURALQ (Kwiatkowski et al., 2019) 9.17 1.22 1.26
TRIVIAQA (Joshi et al., 2017) 15.68 2.33 1.80
SEARCHQA (Dunn et al., 2017) 17.43 1.81 1.05

Table 1: Number of MPPI query tokens, for different
datasets and models.

consistent improvements across domains within a
task.

2 Experimental Methodology
All models trained, including DRQA (Chen et al.,
2017), BERT (Devlin et al., 2019), and XLNET

(Yang et al., 2019), employ setup and parameter
choices from Longpre et al. (2019).2 We generate
MPPIs by iteratively removing the least important
word from the question, while keeping the original
prediction unchanged. The least important word is
given as that for which the model’s confidence in
its prediction remains highest in its absence.3

To examine how MPPIs transfer across Question
Answering domains we employ 6 diverse QA train-
ing sets and 12 evaluation sets.4 The datasets were
selected for annotation variety, differing on: ques-
tion type, document source, annotation instructions,
whether the question was collected independently
of the passage, and skills required to answer the
question. This set represents a realistic spectrum
of domains for evaluating generalization.

We set aside 2k examples from each domain’s
validation sets in order to generate MPPIs for
model evaluation. For each experiment we also
generate a set of randomly shortened queries to
compare against the MPPIs — we refer to this as
the “Random MPPI" baseline. For each of the
original examples, we generate this baseline by ran-
domly removing words until the length matches
that of the corresponding MPPI.

3 Experiments
3.1 Invariance of MPPIs

Feng et al. (2018) establish the “human-
insufficiency" property of MPPIs for non-
pretrained, LSTM and attention-based models, in-

2For DRQA, we borrowed the hyper-parameters from
hitvoice (https://github.com/hitvoice/DrQA))

3Details of model training and examples of MPPI genera-
tion are described in Appendix A.

4Refer to Appendix A.3 for details, or the MRQA
2019 workshop: https://mrqa.github.io/shared.
Fisch et al. (2019) normalized these datasets into purely an-
swerable, extractive format.

https://github.com/hitvoice/DrQA
https://mrqa.github.io/shared
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DRQA BERT-B XLNET-L

BERT-B 32.1 / 9.9 - / - 29.8 / 9.9
XLNET-L 26.0 / 7.2 29.8 / 9.9 - / -

RANDOM 13.0 / 1.8 12.6 / 0.9 14.2 / 1.3

Table 2: The mean similarity, measured in Jaccard Sim-
ilarity / Exact Match (%), between the MPPIs from dif-
ferent model types and the random baseline.

cluding DRQA, and BIMPM (Wang et al., 2017).
We extend this investigation for modern, pre-
trained Transformers, and assess the “invariance"
of MPPIs: measuring whether they are random,
or are affected by model architecture, pretraining
strategy, or training dataset (domain).

In subsequent experiments we compare sets of
MPPIs using the mean Exact Match or General-
ized Jaccard Similarity (GJS), a variant of Jaccard
Similarity, which accounts for the possibility of
repeated tokens in either of the sequences being
compared. Generalized Jaccard Similarity is de-
fined between two token sequences X and Y in
Equation 1. Here, n is the index of every element
that appears in X ∪ Y .

GJS(X,Y ) =

∑n
i=1min(Xi, Yi)∑n
i=1max(Xi, Yi)

(1)

We will refer to this as “Jaccard Similarity" for
simplicity.

3.1.1 Random Seed
First, we investigate whether MPPIs are “random",
or influenced by weight initialization and train-
ing data order. Measuring the Jaccard Similar-
ity between MPPI sequences produced by mod-
els with different training seeds we find JSMPPI =
57.1%±1.2, as compared to JSR = 13.8%±0.8 on
the Random MPPI baseline. This suggests MPPIs
are not simply the side-effect of randomness in the
training procedure.

3.1.2 Pretraining and Architecture
One hypothesis is that traditional LSTM-based
models, such as DRQA, do not have sufficient
pretraining or “world knowledge" to rely on the
entire sequence, and overfit to subsets of the in-
put. If this were the primary source of MPPIs, we
might expect models that are better calibrated and
more robust to out-of-distribution examples to have
longer and more interpretable MPPIs. Accord-
ingly, we test this hypothesis with large pretrained
transformers, which recent work demonstrates have

Train Dataset Reduction Dataset
SQUAD HOTPOTQA NEWSQA NATRUALQ

SQUAD - (-) 31.4 (8.8) 41.0 (21.6) 29.2 (12.5)
HOTPOTQA 39.7 (12.8) - (-) 39.6 (18.8) 33.8 (13.5)
NEWSQA 41.1 (13.0) 31.6 (7.2) - (-) 35.2 (12.5)
NATRUALQ 37.5 (12.7) 28.7 (7.1) 40.2 (17.9) - (-)

Average 39.4 (12.8) 30.6 (7.7) 40.3 (19.4) 32.7 (12.8)

Table 3: The Jaccard Similarity (%) between BERT
generated MPPIs, across domains. In parentheses
are the Jaccard Similarity scores between the Random
MPPI baseline and Train Dataset MPPIs.

better posterior calibration and robustness to out-
of-distribution inputs.

Specifically, Desai and Durrett (2020) examine
3 separate NLP tasks, using “challenging out-of-
domain settings, where models face more exam-
ples they should be uncertain about", and find
that “when used out-of-the-box, pretrained models
are calibrated in-domain, and compared to base-
lines, their calibration error out-of-domain can be
as much as 3.5× lower". Similarly Hendrycks et al.
(2020) systematically show “Pretrained transform-
ers are also more effective at detecting anomalous
or [out-of-distribution] examples". These findings
suggest pretrained transformers should produce
more interpretable MPPIs than non-pretrained
models.

However, in Table 1 we show MPPIs remain
incomprehensibly short for all 6 domains and even
for pretrained transformer models (DRQA pro-
duces MPPIs on SQUAD of mean length 2.04).
In Table 2 we show MPPIs produced by different
model architectures and pretraining strategies are
similar, significantly exceeding the Jaccard Similar-
ity of the Random MPPI baseline (JSR = 13.8%).
This would not be problematic if pretrained mod-
els produced lower confidences for MPPIs than
the original examples (demonstrating some form
of calibration). However, we find the opposite is
true. Taking SQuAD for instance we see in 85%
of cases the BERT model is more confident on the
MPPI than the original example.

Lastly, we verify with manual grading tasks that
the MPPIs for BERT and XLNet are no more inter-
pretable to humans than DrQA’s MPPIs, as shown
in Table 5. This suggests that short, uninterpretable
MPPIs are ubiquitous in modern neural question
answering models and unmitigated by large scale
pretraining, or improved out-of-distribution robust-
ness.
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3.1.3 Cross-Domain Similarity
Next, we investigate the extent to which MPPIs
are domain-specific. We do this by measuring their
similarity when produced by models trained in dif-
ferent domains. If MPPIs are the product of bias
in the training data, such as annotation artifacts,
we would expect them to be relatively domain spe-
cific, as different datasets carry different biases. In
Table 3 a model trained from each domain (Train
Dataset) generates MPPIs for each other domain
(Reduction Dataset). For each Reduction Dataset,
we measure the mean Jaccard Similarity between
MPPIs produced by the Train Dataset model and
MPPIs produced by the Reduction Dataset (in-
domain) model. In parentheses we show the mean
Jaccard Similarity between the Random MPPIs
and the Train Dataset MPPIs. In all cases, MPPIs
demonstrate higher similarity than the random base-
line, indicating that they are not domain specific.

3.2 Cross-Domain Transferability of MPPIs
Even when models generate different MPPIs, they
may still transfer to the other domain. We would
like to measure MPPI transferability, independent
of their similarity between models. If QA models
perform well on MPPIs generated from a range
of domains then this would suggest they are not a
product of bias in the training data. Instead, they
may retain information important to question an-
swering, rather than annotation artifacts. To better
measure the extent of MPPI transferability, we (a)
train one model on SQuAD (Train Dataset), and
another on NewsQA (Reduction Dataset), (b) use
the NewsQA-model to generate 2k MPPIs on the
NewsQA evaluation set, and (c) measure the F1
performance of the SQuAD-model evaluated on
both the original NewsQA evaluation set and the
MPPI queries as generated in part (b).

Figure 2 shows performance on out-domain
MPPIs are 46.6% closer to original performance
than on Random MPPIs. This evidence suggests
MPPIs are highly transferable across domains.
Consequently, MPPIs may relate to generalization,
despite their poor human interpretability.

3.3 Human-Sufficient MPPIs do not
Improve Generalization

Even though MPPIs are highly transferable be-
tween domains, their presence may be associated
with poor generalization. To evaluate this possibil-
ity, we examine whether the penalization of MPPIs
improves generalization, or adversarial robustness.
While penalizing over-confidence on MPPIs has

Train Dataset F1 Score (%)

4ID OD 4OD AR 4AR

SQUAD -0.8 52.9 -1.5 ± 2.3 72.1 +3.1
HOTPOTQA +0.6 48.5 -0.6 ± 1.2 45.5 +1.0
NEWSQA -0.9 53.0 -0.9 ± 0.6 62.9 -1.8
NATURALQ +0.9 51.6 -2.9 ± 3.5 54.9 -0.9
TRIVIAQA -0.6 42.3 -4.1 ± 2.8 38.9 -1.1
SEARCHQA -0.5 38.0 -5.9 ± 2.9 32.3 -4.0

OVERALL AVG -0.2 47.7 -2.7 ± 1.1 51.1 -0.6

Table 4: The impact of MPPI regularization on in-
domain (ID) performance, macro-average out-domain
(OD) generalization over 12 evaluation datasets, and
adversarial robustness (AR) on Adversarial SQUAD.
4X = F1 of MPPI regularized model minus F1 of reg-
ular model on target X (any of ID, OD, or AR).

been shown to maintain equivalent in-domain per-
formance, and yield subsequently longer and more
human interpretable MPPI queries (Feng et al.,
2018), its impact on generalization or robustness
has not yet been examined.
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Reduction Dataset

SQuAD

HotpotQA

NewsQA

NaturalQ

TriviaQA

SearchQA

SQuAD HotpotQA NewsQA NaturalQ TriviaQA SearchQA

0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100%

Original MPPI Random MPPIquery

Figure 2: Cross-Domain Transferability: BERT ques-
tion answering performance (F1) with different train-
ing sets (y-axis), and 2k evaluation sets (x-axis). Bars
are colored by input type. On average, MPPI queries
close the gap between models’ performance on Ran-
dom MPPIs and original queries by 46.6%.

We employ a simplified version of the MPPI
penalization used by Feng et al. (2018), training a
model with equal quantities of regular and MPPI
examples — maintaining normal QA loss terms
for the regular examples, and applying an entropy
penalty to MPPI examples.5 When penalizing over-
confidence on MPPIs, we confirm the new MPPI
length is significantly longer (Appendix sections
B), and more human interpretable (Table 5).

In Table 4 we show the difference in F1 scores
(4) between the regularized and original models.
Results demonstrate that in-domain F1 (ID), macro-
average out-domain F1 over 12 datasets (OD), and

5See Appendix section A.4 for details.
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HUMAN F1 (EM)

ORIGINAL QUERY 91.2 (82.3)
DRQA† MPPI - (31.7)
BERT-B MPPI 41.6 (32.0)
XLNET-L MPPI 37.6 (26.0)

BERT-B* MPPI 60.7 (43.5)

RANDOM MPPI 26.5 (17.0)

Table 5: The mean human performance (in F1 and Ex-
act Match over 100 examples) on different variants of
MPPIs for SQUAD.
† Human performance cited from Feng et al. (2018)
∗ Indicates a model trained with MPPI regularization.

adversarial robustness F1 on Adversarial SQUAD
(AR) all decline slightly on average with MPPI
regularization — by 0.2%, 2.7%, and 0.6% respec-
tively. These results suggest a model’s ability to
make predictions on MPPIs is not strongly corre-
lated with either generalization or robustness across
13 total QA datasets. However, the relative stabil-
ity of in-domain performance as compared to out-
domain performance suggests mitigating MPPIs is
more harmful when crossing domain boundaries.

Certain train datasets exhibit greater sensitivity
to MPPI regularization than others. For instance
SearchQA is drastically affected in all measures,
HotpotQA hardly at all, and SQuAD actually im-
proves by 3.1% in adversarial robustness. Addition-
ally, Table 4 shows the 95% confidence intervals
for out-domain generalization are often as large as
the mean change in performance. Empirically, this
demonstrates the effect of MPPI regularization is
not consistent, having both positive and negative
impacts on performance, depending on which of
the 12 out-domain datasets is in question.6

4 Discussion

In SQUAD, the most common MPPI is the empty
string (40%). Among non-empty strings, the most
common MPPI tokens are: “what", “?", “who",
“how", “when". Despite the pattern of interrogative
words, these tokens are already among the most
frequent in SQUAD questions, so it’s challenging
to measure the unique information they convey.

A more direct approach to understand the in-
formative signal of MPPIs is to measure their
“human insufficiency" property directly. We con-
duct a grading task, comparing human ability to
answer real, MPPI, and random MPPI queries.
Table 5 shows that humans could only correctly

6See Figure 9 in Appendix A.4 for details.

answer BERT and XLNet MPPIs slightly more
often than random MPPIs (32% and 26% exact
match compared to 17%), but could answer 43.5%
of MPPIs produced by MPPI-regularized BERT.
Although this confirms MPPI-regularization par-
tially resolves over-confident behaviour for these
human non-interpretable inputs, we’ve observed
the resulting model fares slightly worse in domain
generalization and robustness.

We find no evidence that MPPIs are explained
by poorly calibrated neural models, lack of pre-
training knowledge, or dataset-specific bias. Alter-
natively they may relate, at least in part, to useful
and transferable signals. While practitioners, espe-
cially in model debiasing tasks, have focused on hu-
man understandable and generalizable features, this
work would encourage them to also consider the
presence of generalizable features which are not hu-
man interpretable. This observation closely relates
to prior work in computer vision suggesting hu-
man uninterpretable, adversarial examples can be
the result of “features", not “bugs", in which Ilyas
et al. (2019) observe “a misalignment between the
(human-specified) notion of robustness and the in-
herent geometry of the data." We hope this work
provides a framework to rigorously evaluate the im-
pact of bias mitigation methods on robustness and
generalization, and encourages ML practitioners to
examine assumptions regarding unexpected model
behaviour on out-of-distribution inputs.

5 Conclusion
We empirically verify the surprising invariance of
MPPIs to random seed, model architecture, and
pretraining, as well as their wide transferability
across domains. These results suggest that MPPIs
may not be best explained by poorly calibrated neu-
ral estimates of confidence or dataset-specific bias.
Examining their relationship to generalization and
adversarial robustness, we highlight the ability to
maintain in-domain performance but significantly
alter out-domain performance and robustness. We
hope our results encourage a more systematic analy-
sis of hypotheses regarding model behavior outside
the human interpretable distribution of examples.
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Appendices
A Reproducibility

A.1 Question Answering Models
For reproducibility, we share our hyper-parameter
selection in Table 6. We borrow our hyper-
parameters from Longpre et al. (2019) for train-
ing all Question Answering (QA) models. Their
parameters are tuned for the same datasets in the
MRQA Shared Task. We found these choices to
provide stable and strong results across all datasets.

Our BERT and XLNet question answering mod-
ules build upon the standard PyTorch (Paszke et al.,
2019) implementations from HuggingFace, and are
trained on 8 NVIDIA Tesla V100 GPUs.7 For
DRQA, by Chen et al. (2017), we borrowed the im-
plementation and hyper-parameters from hitvoice
(https://github.com/hitvoice/DrQA) and train
on 1 NVIDIA Tesla V100 GPU.8

A.2 Dataset
We employ 6 diverse QA training sets and 12 evalu-
ation sets from the MRQA 2019 workshop (https:
//github.com/mrqa/MRQA-Shared-Task-2019)
(Fisch et al., 2019). These datasets have been
normalized into purely extractive format and all
questions are answerable. The 6 training datasets
are SQuAD (Rajpurkar et al., 2016), NewsQA
(Trischler et al., 2016), TriviaQA (Joshi et al.,
2017), SearchQA (Dunn et al., 2017), HotpotQA
(Yang et al., 2018), and Natural Questions
(Kwiatkowski et al., 2019). Six other evaluation
datasets are included: BioASQ (Tsatsaronis
et al., 2012), DROP (Dua et al., 2019), DuoRC
(Saha et al., 2018), RACE (Lai et al., 2017),
RelationsExtraction (Levy et al., 2017) , and
TextbookQA (Kembhavi et al., 2017). Table 7
shows their statistics.

We use the hyperparameters described in Table 6
for training on each dataset. We use all the training
data provided for each by MRQA.

A.3 Generating MPPIs
The process for generating MPPIs closely follows
the procedure described by Feng et al. (2018). We
operate with a beam size of k = 3, finding that
larger beam sizes exhibit diminishing returns, and

7https://github.com/huggingface/
transformers

8We used the open source version available at https:
//github.com/hitvoice/drqa.

Model Parameter Value

DRQA

Model Size (# params) 31.5M
Avg. Train Time 10h 30m

Learning Rate 0.1
Optimizer Adamax
Num Epochs 35
Batch size 32
Dropout 0.4
Hidden size 128

BERT-BASE

Model Size (# params) 108.3M
Avg. Train Time 2h 20m

Learning Rate 5e− 5
Optimizer Adam
Num Epochs 2
Batch Size 25
Gradient Accumulation 1
Dropout 0.1
Lower Case False
Max Query Length 64
Max Sequence Length 512

XLNet-LARGE

Model Size (# params) 364.5M
Avg. Train Time 4h 45m

Learning Rate 2e− 5
Optimizer Adam
Num Epochs 2
Batch Size 6
Gradient Accumulation 3
Dropout 0.1
Lower Case False
Max Query Length 64
Max Sequence Length 512

Table 6: Hyperparameter selection for each model
type.

rarely produce different results. The procedure
involves iteratively removing the token which is
“least important" to the model. The least impor-
tant token is defined as the one that when removed
provides the smallest decrease in confidence in the
originally predicted span. Note that in some cases
confidence in the originally predicted span can even
increase with the removal of a token. In any case,
the least important token is always designated by
the lowest confidence in the original prediction.
The stop condition is when removing any addi-
tional token would change the model’s prediction.

Note that we follow previous work in only re-
moving words from the query in extractive question
answering. The reason for this is the MPPI can be
poorly defined when context tokens are removed.
Since the output predictions are over the context to-
kens for extractive question answering, its possible
to warp the answer space, or remove the answer

https://github.com/hitvoice/DrQA
https://github.com/mrqa/MRQA-Shared-Task-2019
https://github.com/mrqa/MRQA-Shared-Task-2019
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/hitvoice/drqa
https://github.com/hitvoice/drqa


1296

Dataset Question (Q) Context (C) Avg. Q Len Avg. C Len Train Dev
SQuAD Crowdsourced Wikipedia 11 137 86,588 10,507
NewsQA Crowdsourced News articles 8 599 74,160 4,212
TriviaQA Trivia Web snippets 16 784 61,688 7,785
SearchQA Jeopardy Web snippets 17 749 117,384 16,980
HotpotQA Crowdsourced Wikipedia 22 232 72,928 5,904
Natural Questions Search logs Wikipedia 9 153 104,071 12,836

BioASQ Domain experts Science articles 11 248 - 1,504
DROP Crowdsourced Wikipedia 11 243 - 1,503
DuoRC Crowdsourced Movie plots 9 681 - 1,501
RACE Domain experts Examinations 12 349 - 674
RelationExtraction Synthetic Wikipedia 9 30 - 2,948
TextbookQA Domain experts Textbook 11 657 - 1,503

Table 7: Statistics about datasets used: The first block presents six domains used for training, the second block
presents six additional domains used for model evaluation and generating MPPIs.

altogether. Additionally, if we do not permit any
alterations to the original prediction tokens, then
there exists a trivial solution: remove all tokens
except for the predicted answer. In this case an
extractive question answering model is forced to
predict that answer, with no alternative options.
Consequently, MPPIs that allow modifications to
the context, or output space, can be poorly defined.
Since in question answering the query is an essen-
tial input to provide confident answers, we believe
this is the most reasonable setup for the task.

pij = max(softmax(Si + Ej)) (2)

For completeness, we describe our method of
computing span confidence for question answering,
given that there are many variations. Let S ∈ RN

be the vector of start logits and E ∈ RN be the
vector of end logits, both of sequence length N .
For every combination of i, j ∈ [0, N ] where j ≥
i ≤ min(j +C, N), and C = 30 is the maximum
answer span length, we compute the confidence
for that span of answer text as the sum of their
respective logits Si + Ej . The final confidence
probability pij for a given span is as shown in
Equation 2.

The model, on the other hand, can still make the
same prediction as it did on the full input, and with
a similar degree of confidence.

A.4 Regularizing MPPIs

There are a couple differences between the MPPI
entropy-regularization strategy employed in this
work and in Feng et al. (2018). While Feng et al.
(2018) fine-tune an a model already trained for the
question answering task, we regularize MPPIs in
the initial fine-tuning stage (starting from BERT
and XLNet’s pre-trained weights). Secondly, they

alternate updates between two optimizers, one
batch of maximum likelihood, two for MPPI en-
tropy maximization, whereas we use the same opti-
mizer and shuffle together equal numbers of MPPI
and regular inputs. We find our method (without
rigorous comparison) to be slightly more effective
on BERT at mitigating the MPPI phenomenon
(measured by subsequent MPPI length). We sus-
pect, if there is an advantage, it is due to the reg-
ularization beginning with the start of fine-tuning,
rather than on a subsequent stage of fine-tuning.

LMPPI = C − λ
∑
x̃∈X̃

H (f(y|x̃)) (3)

L = LQA + LMPPI (4)

For completeness, we provide our entropy regu-
larization loss term in Equation 3. Let X̃ denote the
set of inputs that have been reduced to their MPPI,
H (·) denote the entropy and f(y|x) denote the pre-
dicted confidence for y given x. We then represent
the loss term for MPPIs as LMPPI , where the
constant C = 10 is chosen such that maximizing
the entropy will minimize the loss. We use λ = 0.1
as the most effective choice in our limited set of
trials. The full loss term, for all inter-mixed regu-
lar question answering, and MPPI examples is the
sum of standard QA loss LQA, and the MPPI loss
term LMPPI , as shown in Equation 4.

In Figure 3 we display the full comparison
between the performances of the MPPI regular-
ized models and the regular models on 13 QA
datasets, including Adversarial SQuAD (Jia and
Liang, 2017).
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SQuAD (*)
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Figure 3: The generalization and robustness of BERT models evaluated on 12 datasets, as well as Adversarial
SQuAD. The “(*)" indicates MPPI-regularization during training.

B How do MPPI Lengths Compare?

In the main paper we describe the differences in
length distributions between original and MPPI
queries. To provide more detail into the length
distributions we plot histograms of the query word
lengths, for the original queries, MPPI queries,
and MPPI queries after the MPPI regularization
procedure. These lengths are plotted below for
SQuAD (Figure 4), HotpotQA (Figure 5), NewsQA
(Figure 6), Natural Questions (Figure 7), TriviaQA
(Figure 8), and SearchQA (Figure 9).
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Figure 4: SQUAD question length generated by differ-
ent MPPI reduction methods
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Figure 5: HOTPOTQA question length generated by
different MPPI reduction methods
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Figure 6: NEWSQA question length generated by dif-
ferent MPPI reduction methods

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Question length

0

100

200

300

400

500

600

700

800

900

1,000

C
o
u

n
t

MPPI
Original
Regularized

reduction

NaturalQuestions Question Length

Figure 7: NATRUALQUESTION question length gener-
ated by different MPPI reduction methods
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Figure 8: TRIVIAQA question length generated by dif-
ferent MPPI reduction methods
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Figure 9: SEARCHQA question length generated by
different MPPI reduction methods

The query length distributions show that MPPIs
are significantly shorter than original queries, with
the MPPIs of regularized models somewhere in be-
tween. These length distributions may be sufficient
to explain why humans find the non-regularized
MPPIs completely uninterpretable, and the regu-
larized MPPIs somewhat more interpretable.

C Are MPPIs Invariant to Random
Seed?

One of the preliminary questions in our investi-
gation was whether changing the random training
seed significantly altered the MPPI produced by
a model. If it were the case that this had a dras-
tic effect, we might suspect MPPIs were some-
what random, or the product of meangingless over-
confidence on out-of-distribution inputs. Table 8 il-
lustrates the random seed experiment in full. Train-
ing 10 SQuAD models, each with different random
seeds, we generate MPPIs on the 2k SQuAD eval-
uation set, and compare 5 pairs. We measure the
mean Generalized Jaccard Similarity of MPPIs
produced by 2 models trained with different seeds.

We see the similarity between MPPIs trained
with different seeds far exceed those of Rand-A,
and Rand-B, which are akin to a “random" sim-
ulation of MPPIs. As with our previous random
baselines these are generated by randomly sam-
pling tokens from the original query, preserving
word order, and ensuring that the length distribu-
tion matches that of the actual MPPIs to which
they are being compared.

D Are MPPIs Invariant to Training
Domain?

We discussed the invariance of MPPIs to training
domain at length in the paper for BERT. For com-
pleteness, we provide the raw results for BERT in
Table 9 and for XLNet in Table 10. These results
show that MPPIs are far more similar to one an-

Seed A Seed B JS / EM
0 1 55.0 / 31.7
2 3 56.8 / 33.2
4 5 58.3 / 34.7
6 7 57.4 / 33.2
8 9 58.1 / 35.2

Overall 57.1 / 33.6
Rand-A Rand-B 13.8 / 0.9

Table 8: Observing the Jaccard Similarity and Exact
Match between MPPIs on the SQuAD 2k evaluation
set, we see significant token overlap despite seed differ-
ences. In contrast, the randomly generated sequences,
preserving the length distribution of MPPIs, produces
far less similar token sequences.

other, even when training domain is different. The
random baseline, in parenthesis, once again shows
the Jaccard Similarity we would expect if MPPIs
were purely random.

E Do QA Models Generalize to different
MPPI Domains?

Expanding on the MPPI generalization analysis in
Section 3.2, we provide the raw results. The cross-
domain generalization of BERT and XLNet models
on MPPIs sourced from different training domains
is available in Table 11 and Table 12 respectively.
Figure 10 visualizes how well XLNET generalizes
to different MPPI domains. The results mirror
those of BERT shown in the main paper.
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Reduction Dataset

SQuAD

HotpotQA

NewsQA

NaturalQ

TriviaQA

SearchQA

SQuAD HotpotQA NewsQA NaturalQ TriviaQA SearchQA

0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100%

Original MPPI Random MPPIquery

Figure 10: XLNET performance with different training
sets (y-axis), and evaluation sets (x-axis). Bars measure
the F1 score on the 2k evaluation set, colored by input
type.
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Train Dataset Reduction Dataset
SQUAD HOTPOTQA NEWSQA NATRUALQ TRIVIAQA SEARCHQA

SQUAD - (-) 31.4 (8.8) 41.0 (21.6) 29.2 (12.5) 24.9 (10.9) 11.9 (9.6)
HOTPOTQA 39.7 (12.8) - (-) 39.6 (18.8) 33.8 (13.5) 25.8 (10.7) 16.6 (12.6)
NEWSQA 41.1 (13.0) 31.6 (7.2) - (-) 35.2 (12.5) 25.8 (10.8) 13.3 (9.4)
NATRUALQ 37.5 (12.7) 28.7 (7.1) 40.2 (17.9) - (-) 25 (10.7) 15.0 (11.0)
TRIVIAQA 33.3 (13.0) 27.7 (8.0) 34.8 (18.1) 29.2 (15.4) - (-) 23.1 (15.2)
SEARCHQA 23.4 (12.3) 16.8 (7.8) 24.7 (17.2) 24.4 (14.6) 23.4 (11.9) - (-)
Average 35.0 (12.8) 27.2 (7.5) 36.1 (18.7) 30.4 (13.7) 25.0 (11.0) 16.0 (11.6)

Table 9: The Jaccard Similarity (%) between BERT generated MPPIs, across domains. The Random baseline
MPPIs are in parentheses.

Train Dataset Reduction Dataset
SQUAD HOTPOTQA NEWSQA NATRUALQ TRIVIAQA SEARCHQA

SQUAD - (-) 25.8 (9.0) 37.7 (19.7) 30.9 (11.1) 18.1 (10.5) 22.7 (26.3)
HOTPOTQA 28.4 (15.3) - (-) 31.2 (17.6) 31.5 (12.4) 17.8 (12.0) 27.1 (25.5)
NEWSQA 31.8 (13.1) 25.3 (8.2) - (-) 36.6 (11.9) 20.6 (9.0) 13.3 (11.7)
NATRUALQ 29.9 (12.9) 24.2 (8.4) 40.2 (16.8) - (-) 22.3 (11.0) 19.2 (16.3)
TRIVIAQA 25.6 (14.8) 19.0 (8.0) 29.8 (17.4) 29.2 (13.7) - (-) 31.2 (20.6)
SEARCHQA 21.6 (13.8) 15.5 (7.7) 25.2 (15.1) 24.6 (14.1) 28.3 (13.4) - (-)
Average 27.5 (14.0) 22.0 (8.3) 32.8 (17.3) 30.6 (12.6) 21.4 (11.2) 22.7 (20.1)

Table 10: The Jaccard Similarity (%) between XLNET generated MPPIs, across domains. The Random baseline
MPPIs are in parentheses.

Train
Dataset

Query
Type SQuAD HotpotQA NewsQA NaturalQ TriviaQA SearchQA

SQuAD Original 87.74 56.31 48.81 21.53 56.74 52.62
SQuAD MPPI 87.74 28.84 31.68 13.52 43.02 30.93
SQuAD Random MPPI 26.42 16.19 19.69 9.55 13.01 17.46
TriviaQA Original 54.64 71.04 42.27 47.53 51.85 34.45
TriviaQA MPPI 34.25 71.04 24.67 32.28 33.85 18.91
TriviaQA Random MPPI 15.21 32.23 15.92 25.49 14.12 12.67
NaturalQ Original 75.28 58.18 77.78 37.84 54.08 51.16
NaturalQ MPPI 55.15 40.43 77.78 24.32 44.52 34.25
NaturalQ Random MPPI 23.28 23.94 38.43 18.39 16.32 17.34
SearchQA Original 40.25 59.44 32.58 78.11 35.93 20.61
SearchQA MPPI 24.84 41.67 21.24 78.11 24.96 15.9
SearchQA Random MPPI 11.92 24.69 14.73 45.7 12.34 9.7
HotpotQA Original 71.52 53.4 52.51 38.9 75.09 47.03
HotpotQA MPPI 49.52 34.56 37.23 20.66 75.09 30.38
HotpotQA Random MPPI 21.09 19.28 24.92 15.2 17.76 17.88
NewsQA Original 78.16 60.91 59.94 33.79 56.53 68.19
NewsQA MPPI 61.32 39.17 42.48 19.44 48.58 68.19
NewsQA Random MPPI 22.78 20.4 22.74 15.05 14.49 24.83

Table 11: Cross-Domain Generalization of BERT Base models on different types of inputs. Values correspond to
F1 scores on the question answering 2k evaluation set specified by the column.
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Train
Dataset

Query
Type SQuAD HotpotQA NewsQA NaturalQ TriviaQA SearchQA

SQuAD Original 93.92 64.97 66.62 15.13 70.51 65.06
SQuAD MPPI 93.95 17.75 39.95 6.37 41.36 35.27
SQuAD Random MPPI 31.0 12.86 21.12 7.3 16.19 17.85
TriviaQA Original 67.55 78.15 51.7 67.69 57.85 44.97
TriviaQA MPPI 31.77 78.18 27.8 43.63 32.34 22.24
TriviaQA Random MPPI 17.01 34.03 16.03 33.18 14.54 13.27
NaturalQ Original 85.61 67.84 82.06 42.92 67.43 60.82
NaturalQ MPPI 63.02 35.73 82.06 20.44 46.19 42.95
NaturalQ Random MPPI 31.74 23.31 36.07 18.05 19.98 22.45
SearchQA Original 55.25 74.37 45.43 84.08 45.33 32.82
SearchQA MPPI 25.6 47.5 26.33 84.08 29.41 18.57
SearchQA Random MPPI 15.92 33.29 16.81 53.58 15.57 12.13
HotpotQA Original 82.85 61.03 61.93 23.98 80.28 54.19
HotpotQA MPPI 51.11 14.57 40.95 9.08 80.3 23.66
HotpotQA Random MPPI 27.83 14.0 23.89 14.03 21.33 15.25
NewsQA Original 88.56 69.32 67.61 30.74 69.14 73.17
NewsQA MPPI 65.64 29.66 48.56 11.0 45.15 73.12
NewsQA Random MPPI 30.47 16.29 20.27 6.64 15.71 25.35

Table 12: Cross-Domain Generalization of XLNET Large models on different types of inputs. Values correspond
to F1 scores on the question answering 2k evaluation set specified by the column.


