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Abstract

Complex natural language understanding mod-
ules in dialog systems have a richer under-
standing of user utterances, and thus are criti-
cal in providing a better user experience. How-
ever, these models are often created from
scratch, for specific clients and use cases,
and require the annotation of large datasets.
This encourages the sharing of annotated data
across multiple clients. To facilitate this we
introduce the idea of intent features: domain
and topic agnostic properties of intents that
can be learned from the syntactic cues only,
and hence can be shared. We introduce a new
neural network architecture, the Global-Local
model, that shows significant improvement
over strong baselines for identifying these fea-
tures in a deployed, multi-intent natural lan-
guage understanding module, and, more gener-
ally, in a classification setting where a part of
an utterance has to be classified utilizing the
whole context.

1 Introduction

While generic dialog systems, or chatbots, such as
Amazon Alexa or Google Assistant, are increas-
ingly popular, to date, most industrial dialog sys-
tems are built for specific clients and use cases.
Typically, these systems have the following: 1. A
natural language understanding (NLU) module to
analyze the user utterance, 2. A dialog manager
module to reason over the analyzed utterance and
decide on an action, and 3. A natural language gen-
eration module to generate an appropriate response
based on the action.

Typically, an NLU module has two purposes:
understanding the intent or goal of an utterance
(classification) and identifying the entities in the
utterance (slot filling). As dialog managers have
evolved from simple flow-based systems to infor-
mation state update systems (Traum and Larsson,

*Now an Al Resident at Google
*Work done while at Interactions

src@di.ku.dk

2003), NLU modules have progressed past simple
single intent detection and flat slot filling to multi-
ple intents and nested entities (Chen et al., 2018).
As these dialog systems need to be rebuilt for each
client, the NLU module faces a significant data
bottleneck; it is time-consuming and expensive to
collect data, develop a domain-specific annotation
scheme, and annotate data. Therefore, it is impera-
tive that the data is shared across clients as much
as possible.

In a production dialogue system, there are of-
ten similar situations that require drastically dif-
ferent responses. For example, “I want to cancel
my subscription.” and “I am thinking about cancel-
ing my subscription.” are very similar. They are
both about the canceling of a subscription. How-
ever, they differ in the users conviction. The latter
user is much more likely to not cancel if offered a
discount. Making this distinction is critical for cre-
ating sophisticated and nuanced dialogue systems.
A common approach to solve this problem would
be to split the intent space so the dialogue manager
can differentiate between these examples, creating
a cancel and a think—-cancel intent. Using
intents to recognize specific situations leads to data
sparsity as each intent is broken into many sub-
categories like present vs. past tense, how certain a
user is in their actions, and if the user has tried an
action or not. There would be very few examples of
each intent. Additionally, the combinations of dif-
ferent sub-categories would cause a combinatorial
explosion of intents. Another short-coming of fine-
grained intents is the loss of compositionality. Fun-
damentally the cancel and think-cancel in-
tents are very similar, but because they are modeled
as independent output classes, there is not a shared
representation of these labels the model can lean
on.

In order to avoid these shortcomings, and allow
for many examples per intent, we factor out these
small differences in situations into what we call
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intent features. Intent features are a set of domain-
independent properties for intents that can primar-
ily be understood from the syntax of the utterance.
These intent features represent specifics of situa-
tion, such as tense, without having a massive intent
space. By decoupling these small differences, we
can keep the intent categories general, while still
providing the dialogue manager with the informa-
tion it needs for nuanced, human-like responses.

In a multi-intent setting where each clause in
the utterance has an intent, intent features reduce
to the problem of classification of a span embed-
ded within a larger utterance. We propose a new
model, the Global-Local model, for this problem
which shows significant improvement over strong
baselines.

2 Intent Features

Table 1 shows a sample utterance with its intents
and features. This is a multi-intent setting where
non-overlapping spans of an utterance have dif-
ferent intents. Each intent span has the following
features:

Communicative functions: The communica-
tive functions (cf) captures what kind of response
(or action) the user is trying to elicit from the sys-
tem. We define five such functions:

* inform: The user is informing the system about
something. Typically, these intents are a response
to a question or they represent background in-
formation surrounding the main purpose of the
utterance. For example, in the utterance, “I am
installing X but it keeps saying I have an error”,
the first clause has a communicative function of
inform. The user provides background infor-
mation about installing something on a device
and then presents a problem with the install pro-
cedure, which would have a communicative func-
tion of issue.

* issue: The user is saying that something has
gone against their expectations (see above for an
example).

* request-action: The user requests for
some action to be undertaken in response to the
request, or requests help with something. For
example, “I would like to install X.”

e request-confirm: The user is requesting
confirmation, or disconfirmation, of their belief.
Often this warrants a yes/no answer. For example,

one expects a yes or no from, “Was my installa-
tion successful?”

* request-info: The user is requesting some
information about something. These are typically
expressed as “wh/how” questions, such as: “How
can [ install X?”

All of our running examples above share the in-
tent of installing software; however, differences in
phrasing warrants different responses. An inform
does not typically require a targeted reply from the
system, whereas for an i ssue, the system should
start the response with “I am sorry you are having
trouble.”

Attribution: Attribution is concerned with
agency. There are two types of attribution. The
first type is the of attribution of the communica-
tive function (attr-cf) and it deals with who is the
primary source of the content of the topic. The
second type is the attribution of the event/action
(attr-ev) of a topic and describes who is the agent
of the event or action. This is perhaps best eluci-
dated by an example. In Table 2, we see multiple
utterances that all have the intent payment, but
we can see how the attribution features change as
both the payer and the informer of the payment
change. Both attr-cf and attr-ev take values self
(when the agent is the user) and other.

Negation: Topics of many intents are rep-
resented in their negated versions, as well.
For example, in the software domain, the
compatibility intent models whether a piece
of software is compatible with some device. A
negation feature would denote incompatibility.
The negation feature takes values positive and
negative.

Tense: Events and actions can occur in the
past, present, or future, which is modeled by the
tense feature using values of past, present, or
future. The steps to solve a problem as it occurs
are often quick-fixes, whereas the first step when
fixing a problem that occurred in the past is often
information gathering. The tense feature allows
the dialogue manager to distinguish between these
two possibilities. Tense information is common in
the annotation of event extraction, such as in ACE
2005 dataset (Consortium, 2005).

Modality: The real-world actions and events
represented by an intent can also be viewed in terms
of a modality of certainty, that is, whether or not the
event or action actually occurred, and to what de-
gree. We consider two types of modality. The first
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text topic/intent | attr-cf | attr-ev | cf modality | negation | tense

I am trying to install | install self self inform | modal-try | positive | present
and - - - - - -

I see a problem general self self issue other positive | present

Table 1: A sample utterance from our dataset with multiple intents and features. Each row represents an intent
span and the columns are the features that apply to that particular intent. We see that intents are general categories
of actions like “install”, while intent features yield specifics of the current state of the user. Given the “modality”
and “tense” features, we see that the user is currently in the middle of installing the program, rather than telling us
they installed it last week. “cf” stands for communicative function.

Utterance Attribution CF  Attribution Ev
I have paid $$ self self
I got an email confirming I paid $$ other self
I was charged $$ self other
I got an email confirming that I was charged $$ other other

Table 2: Different types of attribution with the same payment intent. The dialogue manager would react differ-
ently depending on whether the user paid voluntarily vs she was charged or if she was only informed that she was

charged.

is possibility—the expression of the event as hypo-
thetical, or being possible, rather than certain, as
in, “I am planning/going to install X on my laptop.’
We also consider attempts at action. An expression
can imply that it is unclear whether the action was
completed or is in the attempted stage. This is ex-
pressed with modifying verbs, such as, “try”, as
in, “T am #rying to install X.” This feature takes the
values modal-poss, modal-try, and other.
A version of Modality is present in event extrac-
tion datasets like ACE 2005 (Consortium, 2005),
but instead of just marking an event as “Asserted”
or “Other”, our version of Modality distinguishes
between different aspects of hypothetical events.

>

3 Modeling

There are four different model types we explored
for intent features that we detail below. However,
before we can annotate an intent with a feature, we
need to have an intent span. First, we describe our
intent span extraction model whose predictions are
used as intent spans.

3.1 Multi-Intent as Annotatable Spans

The intents in our system are often conditionally de-
pendent. Some intents even appear sequentially, for
example, the cancel intent is often followed by
the refund intent, as users tend to request a can-
cellation first and then ask for a refund. Therefore,
we modeled our multi-intent system as a sequence
tagging problem, where intent spans are encoded

as token level annotations with the IOBES tagging
scheme (Ratinov and Roth, 2009). We used a stan-
dard BiLSTM-CREF architecture following Ma and
Hovy (2016). Each input token is represented both
as a character composition, by running a small con-
volutional neural network with a filter size of 3
over the characters and doing max-over-time pool-
ing as in Dos Santos and Zadrozny (2014), and as a
word embedding. We use the concatenation of mul-
tiple word embeddings, GloVe embeddings (Pen-
nington et al., 2014), as well as 100 dimensional,
in-domain embeddings trained in-house, follow-
ing Lester et al. (2020a). The token sequence is
then fed into an bidirectional LSTM (Graves et al.,
2005), where the LSTM (Hochreiter and Schmid-
huber, 1997) in each direction has a size of 200,
and projected to the final label space. Finally a Con-
ditional Random Field (CRF) (Lafferty et al., 2001)
with constrained decoding (Lester et al., 2020b) is
used to produce the final sequence of intents. This
model was trained using SGD with momentum us-
ing 0.0015 as the learning rate, 0.9 for momentum,
and a batch size of 10. Model results were satis-
factory, but not the focus of this paper. Instead,
intent spans are the atomic unit of text that can be
annotated with intent features and can be used as
features for a downstream intent feature model.

3.1.1 Convolutional Baseline

The first approach was to assume that the feature
labels for an intent are local to that intent span, and,
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therefore, each intent span can be fed into a classi-
fier independently of the other intent spans. Under
this assumption, we used a convolutional neural
network with parallel filters (Kim, 2014), as it is a
strong baseline used in several of our production
systems. We used parallel filters of size 3, 4, and 5
with 100 filters each. Max-over-time pooling was
used to produce a final span representation, which
is projected into the label space. This model was
trained using Adadelta (Zeiler, 2012) with an initial
learning rate of 1.0 and a batch size of 50. How-
ever, this approach misses possible dependencies
across spans. Some features (such as “tense”) are
naturally co-dependent among spans; the use of a
past tense verb in one span dictates that all spans in
the utterance are past tense, even when there is no
explicit signal from the span itself. While less in-
tuitive, the “communicative function” features are
conditional as well: an utterance such as, “I would
like to order a pizza, but I am having a problem” (a
request—action followed by an i ssue) is far
more common than an utterance like “I am having a
problem, I would like to order a pizza” (an issue
followed by a request—action). It follows
that the “independence of intent spans” assumption
will become problematic and a contextual model
that takes other spans into account will be needed.

3.1.2 Contextual Features with a
BILSTM-CRF

This motivated us to reuse the BILSTM-CREF archi-
tecture we used for intents for the intent features, as
well. This model takes the utterance as input, just
like the intent model. This approach has a poten-
tial pitfall, the intent model and the feature model
may produce different boundaries which need to be
heuristically merged. A small modification to this
approach is to use a cascading tagger where the
output of the intent tagger is used in the input to the
feature tagger. This is done by creating an embed-
ding that represents the span each token is within
and concatenating it to the token representation.
This gives the feature tagger information about the
span boundaries and should keep the spans synced
between the intent and feature models. However,
the actual intent labels need to be masked. Instead
of seeing intent=1issue as a feature, the fea-
ture model will just see intent. This is required
because we want the feature labels to be reusable
and therefore unconditioned on exact intent label.
Intent features are applied to intent spans within an
utterance, meaning our BILSTM-CREF tagger is a

natural baseline that considers the global context
of an utterance.

3.1.3 Global-Local Model

Our fourth approach is a new model architecture
we call the Global-Local model. This model aims
to create a targeted representation for a subsection
of an utterance while also infusing information de-
rived from the whole utterance. An utterance U
of n tokens and a subsequence of k tokens from
U, are first encoded into matrices of dimension
n X e and k x e, respectively, where e is the di-
mension of some shared embedding space. This
encoding can be as simple as word embeddings or
more complex like a BILSTM encoder. A “global”
pooling function g : R™*¢ +— R€ then collapses
the global sentence matrix to a sentence vector and
another “local” pooling function [ : R¥*¢ — Re
reduces the span matrix to a span vector (both with
dimension e). The local vector is a representation
based solely on the span, while the global vector
is a representation of the span that takes the whole
utterance into account. These vectors are concate-
nated to create the final representation for the span
S. This representation is then projected into the
output space. The pooling functions can be as sim-
ple as max or mean pooling, or as complicated as
self-attention (Vaswani et al., 2017). Each example
is represented as a sequence of tokens and a mask.
The mask is a sequence of zeros and ones, aligned
to the tokens, that marks a token as part of the lo-
cal span (a one) or not (a zero). A diagram of the
model architecture can be found in Figure 1.

Our implementation uses lookup-table based
word embeddings, the same embeddings used in
our convolutional baseline, to create a sequence
of vectors representing the input. Then a convolu-
tional neural network with multiple parallel filters,
followed by max-over-time pooling, is used as both
the local and global pooling functions. We found
that when ¢ and [ share parameters, results were a
bit worse compared to when they are learned sep-
arately. Like our convolutional baseline, we use
filter sizes of 3, 4, and 5 with 100 filters each. This
model was trained with a cross-entropy loss using
the Adadelta optimizer with an initial learning rate
of 1.0 and a batch size of 50.

4 Dataset

The data consists of customer utterances. They
were collected from the first customer turn in web-
chat conversations between customers and agents
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Figure 1: The architecture of our Global-Local model.
There are four distinct phases of the model. First, the
input is encoded into a sequence of vector representa-
tions. This can be as simple as word embeddings or
it can use a more complex encoding like a BiLSTM.
Then, the local span is extracted from the sequence us-
ing the input mask. Global and Local pooling functions
are applied to create two vectors, which are joined by
concatenation. The local vector encodes the features of
the span while the global vector encodes the features of
the span as contextualized by the whole input. Finally,
this joint representation is used for classification.

from a software company after filtering out low con-
tent first turns such as “Hi”, “Hello”, and “Hey”.
Our training, validation, and testing datasets have
36,725; 9,256; and 4,993 examples respectively.
The data was annotated by a team of six (non-
overlapping) commercial annotators over a period
of a month and then corrected by an expert anno-
tator. A small subset of the data was annotated
(before the error correction) by two expert annota-
tors. The agreement was 53% between two expert
annotators and 42% between one expert and the
other non-expert annotators.

5 Experiments

The F1 scores for these models are reported in Ta-
ble 3. The BiLSTM-CREF tagger without any infor-
mation about the intent boundaries has the lowest
performance. Our analysis suggests that it is diffi-
cult for the tagger to learn the span boundaries for
the features. When that information is supplied—
as seen in the cascaded tagger column—the results
improve by a large margin. The span-level con-
volutional model, which is agnostic to the tokens
of the other spans, performs much worse than the
Global-Local model, which clearly validates our
hypothesis that global information is valuable.

We further ablate the Global-Local model to un-
derstand the reasons for the performance gain in
Table 4. To test if the performance improvement
is only due to the larger parameter count, and not
the global cues, we use only the span as the input
(as opposed to both the utterance and the span),
but the same Global-Local Model. If the Global-
Local model is only stronger because it is larger,
we should not see a drop in performance. As we
can see in the “— Global Context” row, limiting
the model to only see the span causes large perfor-
mance drops across the board. This model is even
worse than the simple convolutional model. This
implies that the global context is critical.

The current implementation has a shared encoder
step where the entire utterance in encoded into a
sequence of vectors before the span is extracted and
processed by the local pooling function separately.
Doing this efficiently in a batched computing en-
vironment, like TensorFlow (Abadi et al., 2015),
is slightly tricky to implement. A much simpler
model would feed the global utterance and the span
separately, to be encoded and processed indepen-
dently. Our ablations in the “~ Shared Embedding”
row of Table 4 shows that using a shared embed-
ding space does yield performance gains, but it can
be removed for the sake of easier model deploy-
ment and still maintain superior performance over
the span-level model.

All models were trained with Mead-Baseline
(Pressel et al., 2018), an open-source library for the
development, training, and export for deep neural
networks for NLP.

6 Deployment

We have deployed a NLU component of a task-
oriented, production dialogue system that produces
intent features. The dialogue system deals with cus-
tomer service in the retail software domain. The
dialogue manager currently makes use of several
intent features. The easier feature to use is nega-
tion and it is critical to understand user intent. It
also uses the tense feature to understand if it needs
to wait because a user is currently performing an
action or if it can ask about the result because
the action had already been performed. The next
feature the dialogue manager plans to leverage is
the modality features. Understanding the user’s
convection in an action, like canceling, can help
make decisions about whether an upsale or discount
would be effective.
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BiLSTM-CRF Span-level
Feature BiLSTM-CRF Cascaded Tagger Convolutional Global-Local
Attribution CF 78.63 91.90 95.37 97.69
Attribution EV 80.06 92.27 95.86 98.16
Communicative Function 69.07 89.22 90.12 91.92
Modality 79.31 92.61 96.60 99.36
Tense 73.49 86.01 89.31 92.59
Negation 78.47 94.45 95.86 98.73

Table 3: F1 score of intent features using various models. BILSTM-CRF is the feature tagger that was not given
intent boundaries. Cascaded Tagger is the same BiLSTM-CRF model, except the intent boundaries are fed into the
model. Span-level Convolutional is our model that classifies each intent span independently, and Global-Local is
our new model that encodes both the span and a global view of the sentence. We see that our Global-Local model

shows consistent improvements over other model types.

Model Attribution CF  Attribution Ev CF Modality Tense Negation
Global-Local 97.69 98.16 91.91 99.36 92.59 98.73
— Global Context 93.55 95.47 90.14 96.74 87.18 95.74
— Shared Embedding 97.65 96.63 9143 98.34 90.17 96.36

Table 4: Ablation of the Global-Local model. We see that removing the global context causes a large degradation
in F1 score, implying that the strong performance of the Global-Local model is due to the global feature, not just
the increased parameter count. We also see the removing the shared embedding hurts model performance but to a

much smaller degree.

In designing these intent features, we hoped they
would be general enough to be transferable across
domains without retraining a model on the new do-
main. Recent work with a new client in the general
retail domain gave the opportunity for a small scale
test. We were given approximately 500 sample
utterances that had been annotated with general la-
bels like, “Is this utterance equivalent to an FAQ?”
This is very similar to our request-info in-
tent feature. We ran our intent feature model on
this new data and compared how many FAQ ques-
tions were labeled with request—-info. We
found that our model had high precision, 83.3%
of request-info utterances were in fact FAQ
questions, but had low recall, only 40.5%. This
small scale experiment suggests that our intent fea-
tures are general, but the low recall means our spe-
cific model is probably overfit to the lexical features
in our original domain.

7 Previous Work

Most popular intent taxonomies such as ATIS
(Price, 1990) are domain-specific. Dialog Acts
(DA) (Stolcke et al., 2000) are more formalized
and generalized versions of intents. The interna-
tional standard for DA annotations (Bunt et al.,
2010, 2012, 2016) defined the concept of commu-

nicative functions in a dialog act. However, these
functions are defined for a wide range of use cases.
We note that a very restrictive and reworked subset
of these suffices for our use cases. We believe the
other features in the annotation scheme are novel
or have an expanded range of possible values.

The Global-Local model draws inspiration from
the Lee et al. (2017) model for end-to-end neural
coreference resolution. Like us, they have regions
on interest embedded in a larger context. How-
ever, our models differ in several key ways: their
span representation is a hand-crafted combination
of token features while ours is a learned pooling
of token representations. Also, their model is re-
stricted to operating on contiguous spans (possibly
due to unavailability of spans a priori, or that non-
contiguous spans would lead to a combinatorial
explosion), while our model has no such restric-
tion.

8 Conclusion

Improvements in the complexity of conversations
that a dialogue system can handle have put tremen-
dous pressure on NLU systems to capture fine-
grained and domain-specific information. Diffi-
culty in the data generation process means the abil-
ity to share data across clients is critical. We define
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intent features, a core set of general annotations, on
intents that provide context and clarity on the exact
nature of the user requests, and allow for a more
natural and intelligent response from the dialogue
manager. A NLU system that produces these intent
features has been deployed in a production system
with a dialogue manager that makes use of them.

To extract these intent features from an utterance,
we propose a new neural network architecture, the
Global-Local model, that fuses the representation
of the content of a span of text and its global con-
text through learned pooling functions. This model
shows large improvements over several strong base-
lines.

9 [Ethical Considerations

The largest ethical concern about our work stems
from our goal to share these intent features, and
the models that identify them, across clients. It is
critical to ensure that models trained for one client
do not leak private user information to other clients.
Given that our model is a simple classifier, opposed
to a generative model, we do not believe informa-
tion is leaking, but we are working on verifying
this fact.

In addition to user privacy concerns, it is also
important that our models do not underperform on
a specific population of people. An internal tech
report has investigated differences in performance
based on user gender and has found none. This
method will be applied to future models, as well
as our currently deployed feature intent models, to
make sure our models remain un-biased.
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