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Abstract

Named entity linking (NEL) or mapping
“strings" to “things" in a knowledge base is
a fundamental preprocessing step in systems
that require knowledge of entities such as in-
formation extraction and question answering.
In this work, we lay out and investigate two
challenges faced by individuals or organiza-
tions building NEL systems. Can they directly
use an off-the-shelf system? If not, how eas-
ily can such a system be repurposed for their
use case? First, we conduct a study of off-
the-shelf commercial and academic NEL sys-
tems. We find that most systems struggle to
link rare entities, with commercial solutions
lagging their academic counterparts by 10%-+.
Second, for a use case where the NEL model is
used in a sports question-answering (QA) sys-
tem, we investigate how to close the loop in our
analysis by repurposing the best off-the-shelf
model (BOOTLEG) to correct sport-related er-
rors. We show how tailoring a simple technique
for patching models using weak labeling can
provide a 25% absolute improvement in accu-
racy of sport-related errors.

1 Introduction

Named entity linking (NEL), the task of mapping
from “‘strings” to “things” in a knowledge base,
is a fundamental component of commercial sys-
tems such as information extraction and question
answering (Shen et al., 2015). Given some text,
NEL systems perform contextualized linking of
text phrases, called mentions, to a knowledge base.
If a user asks her personal assistant “How long
would it take to drive a Lincoln to Lincoln”, the
NEL system underlying the assistant should link
the first mention of “Lincoln” to the car company,
and the second “Lincoln” to Lincoln in Nebraska,
in order to answer correctly.

As NEL models have direct impact on the suc-
cess of downstream products (Peters et al., 2019),
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all major technology companies deploy large-scale
NEL systems; e.g., in Google Search, Apple Siri
and Salesforce Einstein. While these companies
can afford to build custom NEL systems at scale,
we consider how a smaller organization or individ-
ual could achieve the same objectives.

We start with a simple question: how would
someone, starting from scratch, build an NEL sys-
tem for their use case? Can existing NEL systems
be used off-the-shelf, and if not, can they be repur-
posed with minimal engineer effort? Our “protago-
nist" here must navigate two challenging problem:s,
as shown in Figure 1:

1. Off-the-shelf capabilities. Industrial NEL sys-
tems provide limited transparency into their per-
formance, and the majority of academic NEL
systems are measured on standard benchmarks
biased towards popular entities (Steinmetz et al.,
2013). However, prior works suggest that NEL
systems struggle on so-called “tail" entities that
appear infrequently in data (Jin et al., 2014; Orr
et al., 2020). As the majority of user queries
are over the tail (Bernstein et al., 2012; Gomes,
2017), it is critical to understand the extent to
which NEL systems struggle on the tail in off-
the-shelf academic and commercial systems.

Repurposing systems. If off-the-shelf systems
are inadequate on the tail or other relevant sub-
populations, how difficult is it for our protag-
onist to develop a customized solution with-
out building a system from scratch? Can they
treat an existing NEL model as a black box and
still modify its behavior? When faced with de-
signing a NEL system with desired capabili-
ties, prior work has largely focused on devel-
oping new systems (Sevgili et al., 2020; Shen
et al., 2014; Mudgal et al., 2018). The ques-
tion of how to guide or “patch” an existing NEL
system without changing its architecture, fea-
tures, or training strategy—what we call model
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izations in building NEL systems. (/eft) the fine-grained per-

formance of off-the-shelf NEL systems varies widely—struggling on tail entities and sports-relevant subpopulations—

making it likely that they must be repurposed for use;

(right) for a sports QA application where no off-the-shelf

system succeeds, the best-performing model (BOOTLEG) can be treated as a black box and successfully patched
using weak labeling. In the example, a simple rule re-labels training data to discourage the BOOTLEG model from
predicting a country entity (“Germany") when a clear sports-relevant contextual cue (“match against") is present.

engineering—remains unaddressed.

In response to these questions, we investigate the
limitations of existing systems and the possibility
of repurposing them:

1. Understanding failure modes (Section 3). We
conduct the first study of open-source academic
and commercially available NEL systems. We
compare commercial APIs from MICROSOFT,
GOOGLE and AMAZON to open-source systems
BOOTLEG (Orr et al., 2020), WAT (Piccinno
and Ferragina, 2014) and REL (van Hulst et al.,
2020) on subpopulations across 2 benchmark
datasets of WIKIPEDIA and AIDA (Hoffart
et al., 2011). Supporting prior work, we find
that most systems struggle to link rare entities,
are sensitive to entity capitalization and often ig-
nore contextual cues when making predictions.
On WIKIPEDIA, commercial systems lag their
academic counterparts by 10%+ recall, while
MICROSOFT outperforms other commercial sys-
tems by 16%+ recall. On AIDA, a heuristic
that relies on entity popularity (POP) outper-
forms all commercial systems by 1.5 F1. Over-
all, BOOTLEG is the most consistent system.

Patching models (Section 3.2). Consider a
scenario where our protagonist wants to use
a NEL system as part of a downstream QA
model answering sport-related queries; e.g.,

“When did England last win the FIFA world
cup?”’. All models underperform on sport-
relevant subpopulations of AIDA; e.g., BOOT-
LEG can fail to predict national sports teams
despite strong sport-relevant contextual cues,
favoring the country entity instead. We there-
fore take the best system, BOOTLEG, and show
how to correct undesired behavior using data
engineering solutions—model agnostic meth-
ods that modify or create training data. Drawing
on simple strategies from prior work in weak
labeling, which uses user-defined functions to
weakly label data (Ratner et al., 2017), we re-
label standard WIKIPEDIA training data to patch
these errors and finetune the model on this re-
labeled dataset. With this strategy, we achieve
a 25% absolute improvement in accuracy on
the mentions where a model predicts a country
rather than a sports team.

We believe these principles of understanding
fine-grained failure modes in the NEL system
and correcting them with data engineering apply
to large-scale industrial pipelines where the NEL
model or its embeddings are used in numerous
downstream products.

2 Named Entity Linking

Given some text, NEL involves two steps: the
identification of all entity mentions (mention ex-
206
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Figure 2: Subpopulations analyzed on the WIKIPEDIA dataset, along with their definitions and examples. We

consider five subpopulations inspired by Orr et al. (2020).

traction), and contextualized linking of these
mentions to their corresponding knowledge base
entries (mention disambiguation). For exam-
ple, in “What ingredients are in a Manhattan",
the mention “Manhattan” links to Manhattan
(cocktail), not Manhattan (borough)
or The Manhattan Project. Internally,
most systems have an intermediate step that gen-
erates a small set of possible candidates for each
mention (candidate generation) for the disambigua-
tion model to choose from.

Given the goal of building a NEL system for a
specific use case, we need to answer two questions:
(1) what are the failure modes of existing systems,
and (2) can they be repurposed, or “patched”, to
achieve desired performance.

3 Understanding Failure Modes

We begin by analyzing the fine-grained perfor-
mance of off-the-shelf academic and commercial
systems for NEL.

Setup. To perform this analysis, we use Robust-
ness Gym (Goel et al., 2021b), an open-source eval-
uation toolkit for analyzing natural language pro-
cessing models. We evaluate all NEL systems by
considering their performance on subpopulations,
or subsets of data that satisfy some condition.

Systems. We use 3 commercially available APIs:
(i) GOOGLE Cloud Natural Language API (Google)
, (i) MICROSOFT Text Analytics API (Microsoft)
, and (iii) AMAZON Comprehend API (Amazon)'.

'AMAZON performs named entity recognition (NER) to

We compare to 3 state-of-the-art systems: (i) BOOT-
LEG, a self-supervised system, (ii) REL, which
combines existing state-of-the-art approaches, (iii)
WAT an extension of the TAGME (Ferragina and
Scaiella, 2010) linker. We also compare to a simple
heuristic (iv) POP, which picks the most popular
entity among candidates provided by BOOTLEG.

Datasets. We compare methods on examples
drawn from two datasets: (i) WIKIPEDIA, which
contains 100,000 entity mentions mined from
gold anchor links across 37,492 sentences from a
November 2019 Wikipedia dataset, and (ii) AIDA,
the AIDA test-b benchmark dataset”.

Metrics. As WIKIPEDIA is sparsely labeled (Ghad-
dar and Langlais, 2017), we compare performance
on recall. For AIDA, we use Macro-F1, since
AIDA provides a more dense labeling of entities.

Results. Our results for WIKIPEDIA and AIDA
are reported in Figures 3, 4 respectively.

3.1 Analysis on WIKIPEDIA

Subpopulations. In line with Orr et al. (2020),
we consider 4 groups of examples — head, torso,
tail and toe — that are based on the popularity
of the entities being linked. Intuitively, head ex-
amples involve resolving popular entities that oc-
cur frequently in WIKIPEDIA, torso examples have
medium popularity while tail examples correspond
to entities that are seen rarely. Toe entities are a
subset of the tail that are almost never seen. We con-
identify entity mentions in text, So we use it in conjunction

with a simple string matching heuristic to resolve entity links.
2REL uses AIDA for training, so we exclude it.
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Figure 3: Robustness Report (Goel et al., 2021b) for NEL on Wikipedia, measuring recall.

sider 5 subpopulations inspired by Orr et al. (2020),
described in Figure 2 with examples. These sub-
populations require close attention to contextual
cues such as relations, affordances and types.

We also consider aggregate performance on the
entire dataset (everything), and globally popular
entities, which are examples where the entity men-
tion is in the top 800 most popular entity mentions.

BOOTLEG is best overall. Overall, BOOTLEG out-
performs other systems by a wide margin, with a
12-point gap to the next best system (MICROSOFT),
while MICROSOFT in turn outperforms other com-
mercial systems by more than 16 points.

Performance degrades on rare entities. For all
systems, performance on head slices is substan-
tially better than performance on tail/toe slices.
BOOTLEG is the most robust across the set of slices
that we consider. Among commercial systems,
GOOGLE and AMAZON struggle on tail and torso

entities e.g. GOOGLE from 73.3 points on head
to 21.6 points on fail, while MICROSOFT’s perfor-
mance degrades more gracefully. GOOGLE is adept
at globally popular entities, where it outperforms
MICROSOFT by more than 11 points.

3.2 Analysis on AIDA

Subpopulations. We consider subpopulations that
vary by: (i) fraction of capitalized entities, (ii) aver-
age popularity of mentioned entities, (iii) number
of mentioned entities; (iv) sports-related topic.

Overall performance. Similar to WIKIPEDIA,
BOOTLEG performs best, beating WAT by 1.3%,
with commercial systems lagging by 11%-+.

Sensitivity to capitalization. Both GOOGLE and
MICROSOFT are sensitive to whether the entity
mention is capitalized. GOOGLE’s performance
goes from 54.1% on sentences where all mentions
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Figure 4: Robustness Report (Goel et al., 2021b) for NEL on AIDA, measuring Macro-F1.

are capitalized to 38.2% on sentences where none
are capitalized. Similarly, MICROSOFT degrades
from 66.0% to 35.7%. This suggests that mention
extraction in these models is capitalization sensi-
tive. In contrast, AMAZON, BOOTLEG and WAT
appear insensitive to capitalization artifacts.

Performance on topical entities. Interestingly, all
models struggle on some topics, e.g. on NHL ex-
amples, all models degrade significantly, with WAT
outperforming others by 20%+. GOOGLE and MI-
CROSOFT display strong performance on some top-
ics, e.g., GOOGLE on alpine sports (83.8%) and
MICROSOFT on skating (91.6%).

Popularity heuristic outperforms commercial
systems. Somewhat surprisingly, POP outperforms
all commercial systems by 1.7%. In fact, we note
that the pattern of errors for POP is very similar to
those of the commercial systems, e.g., performing
poorly on NBA, NFL and NHL slices. This sug-
gests that commercial systems sidestep the difficult
problem of disambiguating ambiguous entities in
favor of returning the more popular answer. Simi-
lar to WIKIPEDIA, GOOGLE performs best among
commercial systems on examples with globally
popular entities (top 10% entity popularity).

Our results suggest that state-of-the-art academic
systems outperform commercial APIs for NEL.

Next, we explore whether it is possible to simply
“patch" an off-the-shelf NEL model for a specific
downstream use case. Standard methods for de-
signing models with desired capabilities require
technical expertise to engineer the architecture and
features. As these skills are out of reach for many
organizations and individuals, we consider patch-
ing models where they are treated as a black-box.

We provide a proof-of-concept that we can use
data engineering to patch a model. For our ground-
ing use case, we consider the scenario where the
NEL model will be used as part of a sports question-
answering (QA) system that uses a knowledge
graph (KG) to answer questions. For example,
given the question “When did England last win the
FIFA world cup?”’, we would want the NEL model
to resolve the metonymic mention “England” to the
English national football team, and not the country.
This makes it easy for the QA model to answer the
question using the “winner” KG-relationship to the
1966 FIFA World Cup, which applies only to the
team and not the country.
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3.3 Predicting the Wrong Granularity

Our off-the-shelf analysis revealed that all models
struggle on sport-related subpopulations of AIDA.
For instance, BOOTLEG is biased towards predict-
ing countries instead of sport teams, even with
strong contextual cues. For example, in the sen-
tence “...the years I spent as manager of the Repub-
lic of Ireland were the best years of my life”’, BOOT-
LEG predicts the country “Republic of Ireland” in-
stead of the national sports team. In general, this
makes it undesirable to directly use off-the-shelf in
our sports QA system scenario.

We explore repurposing in a controlled environ-
ment using BOOTLEG, the best-performing off-the-
shelf NEL model. We train a small model, called
BOOTLEGSPORT, over a WIKIPEDIA subset con-
sisting only of sentences with mentions referring
to both countries and national sport teams. We
define a subpopulation, strong-sport-cues, as men-
tions directly preceded by a highly correlated sport
team cue’. Examining strong-sport-cues reveals
two insights into BOOTLEGSPORT’s behavior:

1. BOOTLEGSPORT misses some strong sport-
relevant textual cues. In this subpopulation,
5.8% examples are mispredicted as countries.

2. In this supopulation, an estimated 5.6% of men-
tions are incorrectly labeled as countries in
WIKIPEDIA. As WIKIPEDIA is hand labeled
by users, it contains some label noise.

In our use case, we want to guide
BOOTLEGSPORT to always predict a sport
team over a country in sport-related sentences.

3.4 Repurposing with Weak Labeling

While there are some prior data engineering so-
lutions to “model patching”, including augmenta-
tion (Sennrich et al., 2015; Wei and Zou, 2019;
Kaushik et al., 2019; Goel et al., 2021a), weak
labeling (Ratner et al., 2017; Chen et al., 2020),
and synthetic data generation (Murty et al., 2020),
due to the noise in WIKIPEDIA, we repurpose
BOOTLEGSPORT using weak labeling to modify
training labels and correct for this noise. Our weak
labeling technique works as follows: any existing
mention from strong-sport-cues that is labeled as
a country is relabeled as a national sports team for

3We mine these textual cues by looking at the most com-
mmon two-grams proceeding a national sport team in the
training data. The result is phrases such as “scored against”,
“match against”, and “defending champion”.

Subpop. | Gold Label | Pred. Label | Size (Off-The-Shelf — Patched)
All Country Country 90885 — 90591 1)
Team 201 — 254 (@)

Team Country 216 — 161 1)

Team 4057 — 4120 (@)

Weak Country Country 15225 — 15139 )
Sport Cues Team 154 — 190 @)
Team Country 151 — 106 1)

Team 3393 — 3447 (@)

Table 1: BOOTLEGSPORT prediction matrix before and
after model patching. The weak sport cues subpopula-
tion contains sentences with more generic sport related
keywords.

that country. We choose the national sport team to
be consistent with other sport entities in the sen-
tence. If there are none, we choose a random na-
tional sport team. While this may introduce noise,
it allows us to guide BOOTLEGSPORT to prefer
sport teams over countries.

Results. After performing weak labeling, we fine-
tune BOOTLEGSPORT over this modified dataset.
As WIKIPEDIA ground truth labels are noisy and
do not reflect our goal of favoring sport teams in
sport sentences, we examine the distribution of pre-
dictions before and after guiding. In Table 1 we see
that our patched model shows an increased trend
in predicting sport teams. Further, the patched
BOOTLEGSPORT model now only predicts coun-
tries in 4.0% of the strong-sport-cues subpopula-
tion, a 30% relative reduction.

For examples where the gold entity is a sports
team that BOOTLEGSPORT predicts is a coun-
try, weak labeling improves absolute accuracy by
24.54%. Weak-labeling "shifts" probability mass
from countries towards teams by 20% on these
examples, and 1.8% overall across all examples
where the gold entity is a sports team. It does
so without "disturbing" probabilities on examples
where the true answer is indeed a country, where
the shift is only 0.07% towards teams.

4 Related Work

Identifying Errors. A key step in assessing off-
the-shelf systems is fine-grained evaluation, to
determine if a system exhibits undesirable be-
havior. Prior work on fine-grained evaluation in
NEL (Rosales-Méndez et al., 2019) characterizes
how to more consistently evaluate NEL models,
with an analysis that focuses on academic systems.
By contrast, we consider both academic and in-
dustrial off-the-shelf systems, and describe how
to assess them in the context of a downstream
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use-case. We use Robustness Gym (Goel et al.,
2021b), an open-source evaluation toolkit for per-
forming the analysis, although other evaluation
toolkits (Ribeiro et al., 2020; Morris et al., 2020)
are possible to use, depending on the objective of
the assessment.
Patching Errors. If a system is assessed to have
some undesirable behavior, the next step is to cor-
rect its errors and repurpose it for use. The key
challenge lies in how to correct these errors. Al-
though similar to the related fields of domain adap-
tation (Wang and Deng, 2018) and transfer learn-
ing (Zhuang et al., 2020) where the goal is to trans-
fer knowledge from a pretrained, source model to
a related task in a potentially different domain, our
work focuses on user-guided behavior correction
when using a pretrained model on the same task.
For industrial NEL applications, Orr et al. (2020)
describe how to use data management techniques
such as augmentation (Sennrich et al., 2015; Wei
and Zou, 2019; Kaushik et al., 2019; Goel et al.,
2021a), weak supervision (Ratner et al., 2017), and
slice-based learning (Chen et al., 2019) to correct
underperforming, user-defined sub-populations of
data. Focusing on image data Goel et al. (2021a)
use domain translation models to generate synthetic
augmentation data that improves underperforming
subpopulations.
NEL. NEL has been a long standing problem in
industrial and academic systems. Standard, pre-
deep-learning approaches to NEL have been rule-
based (Aberdeen et al., 1996), but in recent years,
deep learning systems have become the new stan-
dard (see Mudgal et al. (2018) for an overview of
deep learning approaches to NEL), often relying on
contextual knowledge from language models such
as BERT (Févry et al., 2020) for state-of-the-art
performance. Despite strong benchmark perfor-
mance, the long tail of NEL (Bernstein et al., 2012;
Gomes, 2017) in industrial workloads has remained
a challenge. Recent papers Orr et al. (2020); Wu
et al. (2019) have begun to measure and improve
performance on unseen entities, but it remains an
open problem.

5 Conclusion

We studied the performance of off-the-shelf NEL
models and how to repurpose them for a down-
stream use case. In line with prior work, we found
that off-the-shelf models struggle to disambiguate
rare entities. Using a sport QA system as a case

study, we showed how to use a data engineering so-
lution to patch a BOOTLEG model from mispredict-
ing countries instead of sports teams. We hope that
our study of data engineering to effectuate model
behavior inspires future work in this direction.
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