
Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 187–195
June 6–11, 2021. ©2021 Association for Computational Linguistics

187

Cost-effective Deployment of BERT Models in a Serverless Environment

Katarína Benešová ∗

Slido
kbenesova@slido.com

Andrej Švec ∗

Slido
asvec@slido.com

Marek Šuppa ∗

Slido
msuppa@slido.com

Abstract

In this study we demonstrate the viability of
deploying BERT-style models to serverless en-
vironments in a production setting. Since
the freely available pre-trained models are too
large to be deployed in this way, we utilize
knowledge distillation and fine-tune the mod-
els on proprietary datasets for two real-world
tasks: sentiment analysis and semantic textual
similarity. As a result, we obtain models that
are tuned for a specific domain and deployable
in serverless environments. The subsequent
performance analysis shows that this solution
results in latency levels acceptable for produc-
tion use and that it is also a cost-effective ap-
proach for small-to-medium size deployments
of BERT models, all without any infrastructure
overhead.

1 Introduction

Machine learning models are notoriously hard to
bring to production environments. One of the rea-
sons behind is the large upfront infrastructure in-
vestment it usually requires. This is particularly
the case with large pre-trained language models,
such as BERT (Devlin et al., 2018) or GPT (Rad-
ford et al., 2019) whose size requirements make
them difficult to deploy even when infrastructure
investment is not of concern.

At the same time, the serverless architecture with
minimal maintenance requirements, automatic scal-
ing and attractive cost, is becoming more and more
popular in the industry. It is very well suited for
stateless applications such as model predictions,
especially in cases when the prediction load is un-
evenly distributed. Since the serverless platforms
have strict limits, especially on the size of the de-
ployment package, it is not immediately obvious it
may be a viable platform for deployment of models
based on large pre-trained language models.

∗Equal contribution

In this paper we describe our experience with
deploying BERT-based models to serverless envi-
ronments in a production setting. We consider two
tasks: sentiment analysis and semantic textual sim-
ilarity. While the standard approach would be to
fine-tune the pre-trained models, this would not
be possible in our case, as the resulting models
would be too large to fit within the limits imposed
by serverless environments. Instead, we adopt a
knowledge distillation approach in combination
with smaller BERT-based models. We show that
for some of the tasks we are able to train models
that are an order of magnitude smaller while re-
porting performance similar to that of the larger
ones.

Finally, we also evaluate the performance of the
deployed models. Our experiments show that their
latency is acceptable for production environments.
Furthermore, the reported costs suggest it is a very
cost-effective option, especially when the expected
traffic is small-to-medium in size (a few requests
per second) and potentially unevenly distributed.

2 Related work

Despite a number of significant advances in var-
ious NLP approaches over the recent years, one
of the limiting factors hampering their adoption is
the large number of parameters that these models
have, which leads to large model size and increased
inference time. This may limit their use in resource-
constrained mobile devices or any other environ-
ment in which model size and inference time is the
limiting factor, while negatively affecting the envi-
ronmental costs of their use (Strubell et al., 2019)
.

This has led to a significant body of work fo-
cusing on lowering both the model size and infer-
ence time, while incurring minimal performance
penalty. One of the most prominent approaches in-
clude Knowledge Distillation (Buciluǎ et al., 2006;
Hinton et al., 2015), in which a smaller model (the

188

”student”) is trained to reproduce the behavior of a
larger model (the ”teacher”). It was used to produce
smaller BERT alternatives, such as:

• TinyBERT (Jiao et al., 2019), which appro-
priates the knowledge transfer method to the
Transformer architecture and applies it in both
the pretraining and downstream fine-tuning
stage. The resulting model is more than 7x
smaller and 9x faster in terms of inference.

• MobileBERT (Sun et al., 2020), which only
uses knowledge distilation in the pre-training
stage and reduces the model’s width (layer
size) as opposed to decreasing the number of
layers it consists of. The final task-agnostic
model is more than 3x smaller and 5x faster
than the original BERTBASE.

When decreasing the model size leads to de-
creased latency, it can also have direct business im-
pact. This has been demonstrated by Google, which
found out that increasing web search latency from
100 ms to 400 ms reduced the number of searches
per user by 0.2 % to 0.6 % (Brutlag, 2009). A sim-
ilar experiment done by Booking.com has shown
that an increase in latency of about 30 % results in
about 0.5 percentage points decrease in conversion
rates, which the authors report as a ”relevant cost
for our business” (Bernardi et al., 2019).

Each serverless platform has its specifics, which
can have different impact on different use cases.
Various works, such as (Back and Andrikopoulos,
2018; Wang et al., 2018; Lee et al., 2018), provide
a comparison of performance differences between
the available platforms. In order to evaluate spe-
cific use cases, various benchmark suites have been
introduced such as FunctionBench (Kim and Lee,
2019), which includes language generation as well
as sentiment analysis test case.

Possibly the closest published work compara-
ble to ours is (Tu et al., 2018), in which the au-
thors demonstrate the deployment of neural net-
work models, trained for short text classification
and similarity tasks in a serverless context. Since
at the time of its publication the PyTorch deploy-
ment ecosystem has been in its nascent stages, the
authors had to build it from source, which compli-
cates practical deployment.

To the best of our knowledge, our work is the
first to show the viability of deploying large pre-
trained language models (such as BERT and its
derivatives) in the serverless environment.

AWS Azure GCP
Function size 250MB1 - 500MB
Execution time 15min - 9min
Memory 10GB 14GB 8GB
Request size 6MB 100MB 10MB

Table 1: Limitations of the three main serverless
providers: Amazon Web Services (AWS), Microsoft
Azure (Azure) and Google Cloud Platform (GCP).

3 Serverless environments

Serverless environments offer a convenient and af-
fordable way of deploying a small piece of code.
A survey by O’Reilly Media (O’Reilly Media, Inc,
2019) shows that the adoption of serverless was
successful for the majority of the respondents’ com-
panies. They recognize reduced operational costs,
automatic scaling with demand and elimination of
concerns for server maintenance as the main bene-
fits.

Since the functions deployed in a serverless en-
vironment share underlying hardware, OS and run-
time (Lynn et al., 2017), there are naturally numer-
ous limitations to what can be run in such environ-
ment. The most pronounced ones include:

• Maximum function size, mostly limited to
a few hundreds of MBs (although some
providers do not have this limitation). In the
context of deployment of a machine learning
model, this can significantly limit the model
size as well as the selection of libraries to be
used to execute the model.

• Maximum memory of a few GBs slows
down or makes it impossible to run larger
models.

• No acceleration. Serverless environments do
not support GPU or TPU acceleration which
can significantly increase the inference time
for larger models.

A more detailed list of the main limitations of
the three most common serverless providers can
be found in Table 1. It suggests that any model
deployed in this environment will need to be small
in size and have minimal memory requirements.
These requirements significantly limit the choice
of models appropriate for this environment and war-
rants a specific training regimen, which we describe
in the next section.

1Recently, a new way of deployment was added, allowing

189

Figure 1: Schema of the distillation pipeline of BERTBASE for sentiment analysis. BERTBASE_CLS is fine-tuned on
the gold dataset and then used for labelling a large amount of data (silver dataset) that serves as a training set for
distillation to TinyBERT. The distilled model is exported to the ONNX format and deployed to AWS Lambda (see
Section 5). The same pipeline was executed for MobileBERT.

4 Model training

In the two case studies presented in this section, we
first consider BERT-provided classification token
([CLS] token) an aggregate representation of a
short text (up to 300 characters) for the sentiment
analysis task. Secondly, we utilize the embeddings
produced by Sentence-BERT (SBERT) (Reimers
and Gurevych, 2019) for estimating the semantic
similarity of a pair of short texts.

Since deploying even the smaller BERTBASE
with over 400MB in size is not possible in our
setup, in the following cases studies we explore
several alternative approaches, such as knowledge
distillation into smaller models or training a smaller
model directly. To do so, we use TinyBERT (Jiao
et al., 2019) and MobileBERT (Sun et al., 2020)
having about 56 MB and 98 MB in size, respec-
tively.

4.1 BERT for sentiment analysis

One of the direct applications of the special [CLS]
token of BERT is the analysis of sentiment (Li et al.,
2019). We formulate this problem as classification
into three categories: Positive, Negative and Neu-
tral.

The task is divided into two stages: first, we fine-
tune BERTBASE using a labelled domain-specific
dataset of 68K training examples and 9K exam-

to deploy a container of size up to 10 GB.

ples for validation. Then we proceed with knowl-
edge distillation into a smaller model with faster
inference: we label a large amount of data by the
fine-tuned BERTBASE and use the dataset to train a
smaller model with a BERT-like architecture. The
distillation pipeline is illustrated in Figure 1.

4.1.1 Fine-tuning BERTBASE

To utilize BERTBASE for a classification task, an
additional head must be added on top of the Trans-
former blocks, i.e. a linear layer on top of the
pooled output. The additional layer typically re-
ceives only the representation of the special [CLS]
token as its input. To obtain the final prediction,
the output of this layer is passed through a Softmax
layer producing the probability distribution over
the predicted classes.

We fine-tuned BERTBASE for sequence classifi-
cation (BERTBASE_CLS) with this adjusted architec-
ture for our task using a labelled dataset of size 68K
consisting of domain-specific data. We trained the
model for 8 epochs using AdamW optimizer with
small learning rate 3× 10−5, L2 weight decay of
0.01 and batch size 128.

To cope with the significant class imbalance2 and
to speed up the training, we sampled class-balanced
batches in an under-sampling fashion, while putting
the examples of similar length together (for the sake
of a more effective processing of similarly padded

2About 82% of the dataset were Neutral examples, 10%
Negative and 8% Positive.

190

data). Using this method, we were able to at least
partially avoid over-fitting on the largest class and
reduce the training time about 2.5 times.

We also tried an alternative fine-tuning approach
by freezing BERTBASE layers and attaching a small
trainable network on top of it. For the trainable part,
we experimented with 1-layer bidirectional GRU
of size 128 with dropout of 0.25 plus a linear layer
and Softmax output. BERTBASE_CLS outperformed
this approach significantly.

The accuracy evaluation of both fine-tuned
BERTBASE models on the validation dataset can
be found in Table 2. In order to meet the function
size requirements of the target serverless environ-
ments, we proceed to the knowledge distillation
stage.

4.1.2 Knowledge distillation to smaller BERT
models

Having access to virtually unlimited supply
of unlabelled domain-specific examples, we la-
belled almost 900K of them by the fine-tuned
BERTBASE_CLS "teacher" model and used them as
ground truth labels for training a smaller "student"
model. We experimented with MobileBERT and
even smaller TinyBERT as the student models since
these are, in comparison to BERTBASE, 3 and 7
times smaller in size, respectively.

During training, we sampled the batches in the
same way as in Section 4.1.1, except for a smaller
batch size of 64. We trained the model for a small
number of epochs using AdamW optimizer with
learning rate 2 × 10−5, weight decay 0.01 and
early stopping after 3 epochs in case of TinyBERT
and one epoch for MobileBERT (in the following
epochs the models no longer improved on the vali-
dation set).

For evaluation we used the same validation
dataset as for the fine-tuned BERTBASE_CLS de-
scribed in 4.1. The performance comparison is
summarized in Table 2. We managed to dis-
till the model knowledge into the significantly
smaller TinyBERT with only 0.02 points decrease
in F1 score (macro-averaged). In case of Mobile-
BERT we were able to match the performance of
BERTBASE_CLS. These results suggest that the large
language models might not be necessary for classi-
fication tasks in a real-life scenario.

Model Size (MB) F1
BERTBASE + GRU 426 0.75
BERTBASE_CLS 420 0.84
TinyBERT (distilled) 56 0.82
MobileBERT (distilled) 98 0.84

Table 2: Comparison of fine-tuned BERT models
and smaller distilled models on the validation dataset
(macro-averaged F1 score). The slight decrease in Tiny-
BERT’s performance is an acceptable trade-off for the
significant size reduction.

4.2 Sentence-BERT for semantic textual
similarity

The goal of our second case study was to train a
model that would generate dense vectors usable for
semantic textual similarity (STS) task in our spe-
cific domain and be small enough to be deployed
in a serverless environment. The generated vec-
tors would then be indexed and queried as part of
a duplicate text detection feature of a real-world
web application. To facilitate this use-case, we use
Sentence-BERT (SBERT) (Reimers and Gurevych,
2019).

While the SBERT architecture currently reports
state-of-the-art performance on the sentence simi-
larity task, all publicly available pre-trained SBERT
models are too large for serverless deployment.
The smallest one available is SDistilBERTBASE
with on-disk size of 255 MB. We therefore had
to train our own SBERT model based on smaller
BERT alternatives. We created the smaller SBERT
models by employing the TinyBERT and Mobile-
BERT into the SBERT architecture, i.e. by adding
an embedding averaging layer on top of the BERT
model.

In order to make the smaller SBERT models
perform on the STS task, we fine-tune them in
two stages. Firstly, we fine-tune them on standard
datasets to obtain a smaller version of the generic
SBERT model and then we fine-tune them further
on the target domain data. The fine-tuning pipeline
is visualized in Figure 2.

4.2.1 Generic SBERT fine-tuning
To obtain a smaller version of SBERT, we fol-
lowed the the SBERT training method as outlined
in (Reimers and Gurevych, 2019). We first fine-
tuned a smaller SBERT alternative on a combi-
nation of SNLI (Bowman et al., 2015) (dataset of
sentence pairs labeled for entailment, contradiction,
and semantic independence) and Multi-Genre NLI

191

Figure 2: Schema of the fine-tuning pipeline of STinyBERT for STS task. In the first stage, STinyBERT is fine-
tuned on NLI and STSb datasets to obtain Generic STinyBERT. In the second phase, the model is trained further
on the target-domain dataset, exported to the ONNX format and deployed to AWS Lambda (see Section 5). The
same pipeline was executed for SMobileBERT. SBERTBASE was only fine-tuned on target domain dataset.

(Williams et al., 2018) (dataset of both written and
spoken speech in a wide range of styles, degrees of
formality, and topics) datasets.

We observed the best results when fine-tuning
the model for 4 epochs with early stopping based
on validation set performance, batch size 16, using
Adam optimizer with learning rate 2× 10−5 and a
linear learning rate warm-up over 10 % of the total
training batches.

Next, we continued fine-tuning the model on
the STSbenchark (STSb) dataset (Cer et al., 2017)
using the same approach, except for early stopping
based on STSb development set performance and a
batch size of 128.

4.2.2 Target domain fine-tuning
Once we obtained a small enough generic SBERT
model, we proceeded to fine-tune it on examples
from the target domain. We experimented with two
approaches: fine-tuning the model on a small gold
dataset and generating a larger silver dataset.

Dataset. We worked with a balanced training set
of 2856 pairs. Each pair was assigned to one of
three classes: duplicate (target cosine similarity 1),
related (0.5) or unrelated (0). The classes were
assigned semi-automatically. Duplicate pairs were
created by back-translation (Sennrich et al., 2016)

using the translation models released as part of
the OPUS-MT project (Tiedemann and Thottingal,
2020). Related pairs were pre-selected and expertly
annotated and unrelated pairs were formed by pair-
ing random texts together.

Validation and test sets were composed of 665
and 696 expertly annotated pairs, respectively.
These sets were not balanced due to the fact that
finding duplicate pairs manually is far more diffi-
cult than finding related or unrelated pairs, which
stems from the nature of the problem. That is why
duplicate class forms only approximately 13 % of
the dataset, whereas related and unrelated classes
each represent roughly 43 %.

Fine-tuning on plain dataset. We first experi-
mented with fine-tuning the generic SBERT model
on the train set of the target domain dataset. We
call the output model SBERT target. We fine-tuned
it for 8 epochs with early stopping based on vali-
dation set performance, batch size 64, Adam op-
timizer with learning rate 2 × 10−5 and a linear
learning rate warm-up over 10 % of the total train-
ing batches.

Extending the dataset. Since we had a lot of
data without annotations available, we also experi-
mented with extending the dataset and fine-tuning

192

Augmented SBERT (Thakur et al., 2020).
We pre-selected 379K duplicate candidates us-

ing BM25 (Amati, 2009) and annotated them
using a pre-trained cross-encoder based on
RoBERTaLARGE. In the annotated data, low simi-
larity values were majorly prevalent (median sim-
ilarity was 0.18). For this reason, we needed to
balance the dataset by undersampling the similar-
ity bins with higher number of samples to get to a
final balanced dataset of 32K pairs. We refer to the
original expert annotations as gold data and to the
cross-encoder annotations as silver data.

After creating the silver dataset, we first fine-
tuned the model on the silver data and then on
the gold data. We call the model fine-tuned on
augmented target dataset AugSBERT. Correct hy-
perparameter selection was crucial for a successful
fine-tuning. It was especially necessary to lower
the learning rate for the final fine-tuning on the
gold data and set the right batch sizes. For the
silver dataset we used a learning rate of 2× 10−5

and batch size of 64. For the final fine-tuning on
the gold dataset we used a lower learning rate of
2× 10−6 and a batch size of 16.

4.2.3 Results

As we can see in Table 3, smaller BERT alterna-
tives can compete with SBERTBASE. AugSMobile-
BERT manages to reach 93 % of the performance
of SBERTBASE on the target dataset while being
more than 3 times smaller in size.

We believe that the lower performance of smaller
models is not only caused by the them having less
parameters, but it also essentially depends on the
size of the model’s output dense vector. Tiny-
BERT’s output embedding size is 312 and Mo-
bileBert’s is 512, whereas BERTBASE outputs em-
beddings of size 768. This would in line with the
findings published in (Wieting and Kiela, 2019)
which state that even random projection to a higher
dimension leads to increased performance.

5 Deployment

As described in Section 3, numerous limitations
must be satisfied when deploying a model to a
serverless environment, among which the size of
the deployment package is usually the major one.
The deployment package consists of the function
code, runtime libraries and in our case a model.

Model STSb Target
STinyBERT NLI 72.86 46.29
SMobileBERT NLI 78.29 52.08
SBERTBASE NLI 77.03 52.44
STinyBERT STSb 76.76 53.89
SMobileBERT STSb 81.52 59.05
SBERTBASE STSb 85.35 65.87
STinyBERT target 75.49 53.29
SMobileBERT target 79.56 59.27
SBERTBASE target 82.52 64.20
AugSTinyBERT target 73.88 54.34
AugSMobileBERT target 80.47 61.75
AugSBERTBASE target 82.98 64.14

Table 3: Spearman rank correlation between the cosine
similarity of dense vectors and true labels measured for
individual models on the test set of the STSbenchmark
dataset (STSb column) and on the test set of the tar-
get domain dataset (Target column). The values are
multiplied by 100 for convenience. We also present
SBERTBASE performance as baseline. The model with
the best performance on the target domain dataset, that
is also deployable in serverless environment, is high-
lighted.

5.1 Model inference engine

In order to fit all of the above in a few hundreds
of MBs allowed in the serverless environments,
standard deep learning libraries cannot be used:
the standard PyTorch wheel has 400 MB (Paszke
et al., 2019) and TensorFlow is 850 MB in size
(Abadi et al., 2015).

ONNX Runtime. We therefore used a smaller
model interpreter library called ONNX Runtime
(Bai et al., 2019), which is mere 14 MB in size,
leaving a lot of space for the model. Prior to exe-
cuting the model by the ONNX Runtime library, it
needs to be converted to the ONNX format. This
can be done using off-the-shelf tools, for instance
the Hugging Face transformers library (Wolf
et al., 2020) is shipped with a simple out-of-the-box
script to convert BERT models to ONNX.

TensorFlow Lite. It is also possible to use the
TensorFlow Lite interpreter library (Abadi et al.,
2015), which is 6 MB in size. However, we only
used ONNX in our deployments as we had prob-
lems converting more complex BERT models to
TensorFlow Lite format.

193

(a) Sentiment analysis. (b) SBERT encoding.

Figure 3: Results of performance tests of trained models deployed in AWS Lambda. Execution time is denoted in
miliseconds (ms). TB stands for TinyBERT, MB for MobileBERT. q50, q95 and q99 denote the 0.5, 0.95 and 0.99
quantiles, respectively.

AWS GCP
q50 q95 q99 q50 q95 q99

Sentiment TinyBERT 6.63 19.20 24.77 10.47 100.71 110.31
Sentiment MobileBERT 64.67 89.00 105.84 27.58 125.04 176.46

STinyBERT 5.71 13.03 21.24 10.93 101.32 111.80
SMobileBERT 50.08 80.14 102.65 58.88 175.14 213.56

Table 4: Performance comparison between the Ama-
zon Web Services (AWS) and Google Cloud Platform
(GCP) serverless environments. Numbers denote exe-
cution time in miliseconds with 1GB of RAM allocated
for the deployed function. q50, q95 and q99 denote the
0.5, 0.95 and 0.99 quantiles, respectively.

5.2 Serverless deployment

After training the models and converting them into
the ONNX format, we deployed them to different
serverless environments.

6 Deployment evaluation

We measured the performance of deployed mod-
els in scenarios with various amounts of allocated
memory by making them predict on more than
5000 real-world examples. Before recording mea-
surements we let the deployed model evaluate a
small subsample of data in order to keep the infras-
tructure in a ”warm” state. This was done in order
to estimate the real-life inference time, i.e. to avoid
biasing the inference results by initialization time
of the service itself.

From the results described in Table 4 we can see
that using both the AWS and GCP platforms, we
can easily reach the 0.99 quantile of execution time
on the order of 100 ms for both tasks and models.
Figure 3 also lets us observe that the execution
time in AWS Lambda decreases with increasing

RAM. This is expected, as both AWS Lambda and
GCP Cloud Functions automatically allocate more
vCPU with more RAM.

The serverless deployments are also cost-
effective. The total costs of 1M predictions, taking
100 ms each and using 1 GB of RAM, are around
$2 on both AWS and GCP, whereas the cheapest
AWS EC2 virtual machine with 1 GB of RAM
costs $8 per month.

7 Conclusion

We present a novel approach of deploying domain-
specific BERT-style models in a serverless envi-
ronment. To fit the models within its limits, we
use knowledge distillation and fine-tune them on
domain-specific datasets. Our experiments show
that using this process we are able to produce much
smaller models at the expense of a minor decrease
in their performance. The evaluation of the de-
ployment of these models shows that it can reach
latency levels appropriate for production environ-
ments, while being cost-effective.

Although there certainly exist platforms and de-
ployments that can handle much higher load (of-
ten times with smaller operational cost (Zhang
et al., 2019)), the presented solution requires min-
imal infrastructure effort, making the team that
trained these models completely self-sufficient.
This makes it ideal for smaller-scale deployments,
which can be used to validate the model’s value.
The smaller, distilled models created in the process
can then be used in more scalable solutions, should
the cost or throughput prove inadequate during test
deployments.

194

References
Martín Abadi et al. 2015. TensorFlow: Large-scale ma-

chine learning on heterogeneous systems. Software
available from tensorflow.org.

Giambattista Amati. 2009. BM25, pages 257–260.
Springer US, Boston, MA.

Timon Back and Vasilios Andrikopoulos. 2018. Us-
ing a microbenchmark to compare function as a ser-
vice solutions. In European Conference on Service-
Oriented and Cloud Computing, pages 146–160.
Springer.

Junjie Bai et al. 2019. Onnx: Open neural network
exchange. https://github.com/onnx/on
nx.

Lucas Bernardi et al. 2019. 150 successful machine
learning models: 6 lessons learned at booking. com.
In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data
Mining, pages 1743–1751.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Jake Brutlag. 2009. Speed matters for google web
search.

Cristian Buciluǎ, Rich Caruana, and Alexandru
Niculescu-Mizil. 2006. Model compression. In Pro-
ceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data min-
ing, pages 535–541.

Daniel M. Cer, Mona T. Diab, Eneko Agirre, Iñigo
Lopez-Gazpio, and Lucia Specia. 2017. Semeval-
2017 task 1: Semantic textual similarity - multilin-
gual and cross-lingual focused evaluation. CoRR,
abs/1708.00055.

Jacob Devlin et al. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Xiaoqi Jiao et al. 2019. Tinybert: Distilling bert
for natural language understanding. arXiv preprint
arXiv:1909.10351.

Jeongchul Kim and Kyungyong Lee. 2019. Function-
bench: A suite of workloads for serverless cloud
function service. In 2019 IEEE 12th International
Conference on Cloud Computing (CLOUD), pages
502–504. IEEE.

Hyungro Lee et al. 2018. Evaluation of production
serverless computing environments. In 2018 IEEE
11th International Conference on Cloud Computing
(CLOUD), pages 442–450. IEEE.

Xin Li et al. 2019. Exploiting bert for end-to-end
aspect-based sentiment analysis. arXiv preprint
arXiv:1910.00883.

Theo Lynn et al. 2017. A preliminary review of en-
terprise serverless cloud computing (function-as-a-
service) platforms. In 2017 IEEE CloudCom, pages
162–169. IEEE.

O’Reilly Media, Inc. 2019. O’Reilly serverless survey
2019: Concerns, what works, and what to expect.
https://www.oreilly.com/radar/orei
lly-serverless-survey-2019-concern
s-what-works-and-what-to-expect/.
Accessed: 2021-01-12.

Adam Paszke et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 32, pages 8024–
8035. Curran Associates, Inc.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany. Association for Computa-
tional Linguistics.

Emma Strubell et al. 2019. Energy and policy con-
siderations for deep learning in nlp. arXiv preprint
arXiv:1906.02243.

Zhiqing Sun et al. 2020. Mobilebert: a compact task-
agnostic bert for resource-limited devices. arXiv
preprint arXiv:2004.02984.

Nandan Thakur, Nils Reimers, Johannes Daxenberger,
and Iryna Gurevych. 2020. Augmented sbert: Data
augmentation method for improving bi-encoders for
pairwise sentence scoring tasks. arXiv preprint
arXiv:2010.08240.

Jörg Tiedemann and Santhosh Thottingal. 2020.
OPUS-MT — Building open translation services for
the World. In Proceedings of the 22nd Annual Con-
ferenec of the European Association for Machine
Translation (EAMT), Lisbon, Portugal.

https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.1007/978-0-387-39940-9_921
https://github.com/onnx/onnx
https://github.com/onnx/onnx
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
http://arxiv.org/abs/1708.00055
http://arxiv.org/abs/1708.00055
http://arxiv.org/abs/1708.00055
https://www.oreilly.com/radar/oreilly-serverless-survey-2019-concerns-what-works-and-what-to-expect/
https://www.oreilly.com/radar/oreilly-serverless-survey-2019-concerns-what-works-and-what-to-expect/
https://www.oreilly.com/radar/oreilly-serverless-survey-2019-concerns-what-works-and-what-to-expect/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1009
https://arxiv.org/abs/2010.08240
https://arxiv.org/abs/2010.08240
https://arxiv.org/abs/2010.08240

195

Zhucheng Tu, Mengping Li, and Jimmy Lin. 2018.
Pay-per-request deployment of neural network mod-
els using serverless architectures. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Demonstrations, pages 6–10.

Liang Wang et al. 2018. Peeking behind the curtains
of serverless platforms. In 2018 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 18), pages
133–146.

John Wieting and Douwe Kiela. 2019. No training
required: Exploring random encoders for sentence
classification. arXiv preprint arXiv:1901.10444.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Chengliang Zhang, Minchen Yu, Wei Wang, and Feng
Yan. 2019. Mark: Exploiting cloud services for cost-
effective, slo-aware machine learning inference serv-
ing. In 2019 {USENIX} Annual Technical Confer-
ence ({USENIX}{ATC} 19), pages 1049–1062.

https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

