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Abstract

We consider the problem of scaling automated
suggested replies for Outlook email system to
multiple languages. Faced with increased com-
pute requirements and low resources for lan-
guage expansion, we build a single universal
model for improving the quality and reduc-
ing run-time costs of our production system.
However, restricted data movement across re-
gional centers prevents joint training across
languages. To this end, we propose a multi-
task continual learning framework, with auxil-
iary tasks and language adapters to learn uni-
versal language representation across regions.
The experimental results show positive cross-
lingual transfer across languages while reduc-
ing catastrophic forgetting across regions. Our
online results on real user traffic show signif-
icant gains in CTR and characters saved, as
well as 65% training cost reduction compared
with per-language models. As a consequence,
we have scaled the feature in multiple lan-
guages including low-resource markets.

1 Introduction

Automated suggested replies or smart replies (SR)
assist users to quickly respond with a short, generic,
and relevant response, without users having to type
in the reply. SR is an increasingly popular feature
in many commercial applications such as Gmail,
Outlook, Skype, Facebook Messenger, Microsoft
Teams, and Uber (Kannan et al., 2016; Henderson
et al., 2017a; Shang et al., 2015; Deb et al., 2019;
Yue Weng, 2019). While the initial versions of
this feature mostly targeted English users, making
it available in multiple languages and markets is
important not only from the perspective of prod-
uct expansion but also from a linguistic inclusivity
point of view.

In this paper we consider the problem of rapid
scaling of the SR feature to multiple languages for
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Outlook. To develop such a system at production
scale, we are faced with the following challenges.

- Model management: Language scaling in-
creases the effort of training, deploying, and man-
aging per-language models, which needs to be repli-
cated for each language. In addition, one model
per language increases the storage and compute
requirements for the production servers, which can
increase costs and occurrences of run-time issues.

- Data constraints: Developing models at pro-
duction quality requires considerable effort in data
collection and management. Due to regional mar-
ket share and infrastructure constraints, rich and
domain-specific data may not be available for all
languages.

- Data privacy and security policies: Regional
policies enforce data to be located in correspond-
ing regions. For example, Spanish and Portuguese
data are stored in North American (NAM) clus-
ters while French data is stored in European (EUR)
clusters. Data movement across regions is not al-
lowed and this prevents leveraging commonly used
multi-lingual co-training methods which require all
the data stored to be in the same place.

To reduce the cost of model management, we
propose to build a single universal SR model, ca-
pable of serving multiple languages and markets.
To overcome data constraints, we propose to use
augmentation with machine-translated (MT) data
for languages without supervised data. To over-
come privacy constraints, we propose a continual
learning framework, where the model is trained se-
quentially across regions. To alleviate catastrophic
forgetting (French, 1999; McCloskey and Cohen,
1989) in the continual learning process, we rein-
force the universal properties via multi-task learn-
ing approach with public task-agnostic data, and
an adapter-based model architecture that leverages
domain-specific SR data and MT data.

Our experimental results followed with improve-
ments shown on real user traffic illustrate the ef-
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fectiveness of the approach. As a consequence,
we have rapidly scaled the feature in several lan-
guages including low-resource markets. Multi-
lingual training for universal models is often very
tricky to work in practice (especially with our data
constraints). Thus, we demonstrate a significant
accomplishment of a multi-lingual SR system run-
ning at production scale on millions of users, which
saves resources while improving performance.

2 Core SR Model

The SR feature is similar to open-domain chat-
bots and task-oriented conversational agents, (Zhou
et al., 2020; Henderson et al., 2019b; Fadhil and
Schiavo, 2019; Xu et al., 2017; Okuda and Shoda,
2018; Kopp et al., 2018). In terms of usage, SR
is closer to the latter, in that it assists users to
complete a reply, instead of continuing an open-
ended dialog. Following commonly used IR-based
models in commercial SR applications (Hender-
son et al., 2017b; Deb et al., 2019), we use a dual
encoder matching model for our SR system.

The matching model has two parallel encoders
projecting input message and corresponding reply
into a common representation space. Different en-
coders such as feed-forward and BiLSTM layers
can be used here (Henderson et al., 2017a; Deb
et al., 2019). More recently, (Devlin et al., 2018;
Liu et al., 2019; Yang et al., 2019; Henderson et al.,
2019a,b) show considerable improvements with
transformer-based pre-trained models. Our English
SR model uses a BERT equivalent (Devlin et al.,
2018) encoder, while our mono-lingual baselines
in other languages use BiLSTM encoders.

The model is trained on one-on-one message-
reply (m-r) pairs from commercial email data. We
minimize the symmetric loss function. It is a modi-
fied softmax on dot products between m-r encod-
ing in equation 1 where s; ; = e®(mi)¢(ri)  As
described in (Deb et al., 2019), it was shown to
improve the relevance by targeting at bi-directional
conversational constraints.

Sii
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IR-based model requires a fixed response set. To
generate that, we collect differentially private (DP)
(Gopi et al., 2020) and anonymized replies, filtered
for sensitive content from the training data which
preserves user privacy while mining actual user
responses. Furthermore, we use human curation
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Figure 1: (a) Matching model architecture with sym-
metric loss and TLM/MLM cross-entropy loss. (b)
Multi-task continual training loop for EUR->NAM-
>LRL clusters.

to edit responses for cultural-sensitivity, gender-
neutrality, etc. DP filtration requires a large amount
of data due to low yields. For low-resource markets,
we translate English responses with human curation
for cultural adaptation to languages and locales.

During prediction, we compute the matching
score (-) between the message and pre-computed
response set vectors. Similar to (Henderson et al.,
2017a; Deb et al., 2019), we add a language-model
(LM) penalty representing the popularity of re-
sponses to bias the predictions towards more com-
mon ones. Translated responses inherit the penalty
score from the corresponding English responses.
Using this score in equation 2 we first select top /Vy
responses, and down-select to top N, after dedupli-
cation using lexical clustering, before presenting to
users.

Score = ¢(m;) - dr(rr)) + LMk (1) 2)

3 Universal SR Model

The universal SR model consists of parallel encoder
architecture trained using symmetric loss function
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similar to the core SR model. We initialize the
m-r encoders with InfoXLLM (Chi et al., 2020),
an XLM-Roberta (Conneau et al., 2019) equiva-
lent multi-lingual model as shown in as Figure 1(a)
which creates language-agnostic text representation
across 100 languages. The encoder is pre-trained
with both publicly available and internal propri-
etary corpora and has shown good cross-lingual
transfer capabilities on benchmarks such as XNLI
(Conneau et al., 2018).

Using a universal pre-trained model in itself en-
ables language expansion. However, as we dis-
cuss next, data movement constraints made train-
ing the universal model tricky, with performance
frequently worse than single mono-lingual models.

3.1 Continual Learning

Joint training of universal encoders has led to
enormous progress on standard benchmarks and
industrial applications such as (Ranasinghe and
Zampieri, 2020; Gencoglu, 2020).

However, privacy policies restrict the data move-
ment across geographic clusters. This prevents the
joint training at a single compute cluster. As a re-
sult, we train the model sequentially in a continual
learning fashion by fine-tuning the model in one
region, and then continue training in another.

The actual sequence of how this is conducted is
important. We observed that keeping English at the
last stage provides the best performance. This is
likely because English data (which frequently con-
tains bilingual data through code-switching) cov-
ers a large proportion in pre-training corpora, thus
serving as an anchor in subsequent training stage
to maintain the universal properties of the model.

3.2 Multi-task Learning

Training the SR model in multiple stages can lead
to catastrophic forgetting, where new knowledge
easily supplants old knowledge. This problem can
be alleviated to some extent by freezing layers of
the pre-trained encoders but is still significant after
the model is fine-tuned with large corpora.
Several papers have leveraged self-supervised
pre-training tasks based on bi-lingual parallel cor-
pora to create or enhance cross-lingual representa-
tions (Devlin et al., 2018; Conneau et al., 2019; Chi
et al., 2020). Following such approaches, we ex-
periment with Translation Language Model (TLM)
(Lample and Conneau, 2019) in continual learning
to preserve the universal properties of the model.

A total of 79M translation pairs from WikiMa-
trix (Schwenk et al., 2019) and MultiParaCrawl
(Aulamo et al., 2020) data including the languages
considered in production are extracted as train-
ing data. In addition, we conduct an ablation
study on auxiliary task selection by comparing with
Masked Language Model (MLM) (Devlin et al.,
2018) trained on 370M samples from Wikipedia.
The multi-task training alternates between SR
and auxiliary tasks according to a set proportion of
mini-batches in an epoch. The proportion controls
the trade-offs between the tasks, to achieve the
desired levels of performance in the system.

3.3 Data Augmentation

Native supervised data (m-r pairs) is currently not
available for low-resource languages. In such cases,
English data is leveraged to generate pseudo m-r
pairs using machine-translation (MT). We utilize
MT data in continual learning process with auxil-
iary tasks, or with adapters (Houlsby et al., 2019)
by introducing additional parameters in the trans-
former layers. When training with adapters, we
freeze all parameters except the adapters.

3.4 Universal Model Training Loop

The production system targets 5 high-resource lan-
guages (HRL): Spanish (ES), Portuguese (PT),
French (FR), German (DE), Italian (IT) with rich
native data, and 5 low-resource languages (LRL):
Chinese (ZH), Japanese (JA), Dutch (NL), Czech
(CS) and Hungarian (HU) without any supervised
data. English (EN) serves as pivot language in
our experiments. As shown in Table 1, the data is
distributed across Europe (EUR), North America
(NAM) and a dedicated cluster storing MT data
for LRL. Data movement across these regions is
not allowed. Public task-agnostic data for auxiliary
tasks in 8 languages is accessible in all regions.

Region Languages Category
EUR DE, IT, FR
NAM ES, PT, EN

LRL ZH, JA,NL, CS, HU Low-resource*

High-resource

High-resource

Table 1: Regional distribution of training data for dif-
ferent languages. *: data translated from EN.

We train the model sequentially in 3 stages as
shown in Figure 1(b). First, we jointly train the
model in EUR for FR, DE, and IT. Next, we move
the model to NAM and continue train with EN, ES,
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and PT along with auxiliary task. Finally, in LRL,
we train the model on machine translated m-r pairs
along with original EN data in 2 different ways:
(1) jointly train with auxiliary task, or (2) infuse
the model with low-resource language adapters. In
all stages, we freeze the embedding layer of the
encoder during fine-tuning. According to previous
studies (Lee et al., 2019; Peters et al., 2019), freez-
ing partial layers can maintain the model quality
while reducing training time during fine-tuning. We
observed that freezing embedding layer provides a
good balance between micro-batch size per GPU
(low if no layers are frozen) and learning capacity
of the model (low if many layers are frozen).

3.5 Universal Model Graph for Serving

For deployment, we create a composite graph with
pre-computed response vectors of all languages em-
bedded into the main model. A separate language
identifier switches the prediction vectors to the pre-
dicted language of the input at run-time. Besides,
several auxiliary models are added in online system
to decide whether to trigger the universal model
according to the characteristics of input message
such as length and detected language.

4 Experiments and Results

The training data is collected and processed with-
out any eyes access from commercial users in Out-
look email system. To be more specific, we filter
50M m-r pairs from one-to-one conversations for
each high-resource language, and translate 20M
m-r pairs for each low-resource language. Con-
sidering the m-r length distribution, we truncate
m-r pairs to (96, 64) tokens as training data, and
filter out messages longer than 96 tokens during
inference, so that the model is more focused on
providing quick responses to short messages. The
response set size for each language is 20K, filtered
or trans-created from English native data.

In all three stages of training, we use an effective
batch size of 16K. We utilize the Adam optimizer
(Kingma and Ba, 2014) with weight decay and
set peak learning rates as [Se-4, 3e-4, le-4] for
three stages respectively. We train up to 30 epochs
from which the best model is selected based on
validation set loss over all languages.

For MLM/TLM objectives, we use single-token
masking, the task proportion is set as 0.5. The
final loss of the model is sum of symmetric loss
and auxiliary task loss. For adapters, we use the

hidden dimension of 256 in the bottleneck architec-
ture and initialize these parameters with a normal
distribution of mean 0 and standard deviation 0.01.
According to our observation, high standard devi-
ation for initialization can cause divergence. All
experiments are conducted with 16 Nvidia V100-
32GB GPU cards.

During prediction, we pick top N1 = 30 re-
sponses according to equation 2, and then cluster
the ranked results and down-select Ny = 3 re-
sponses as final prediction.

4.1 Offline Evaluation Metrics and Sets

We compute evaluation metrics based on two kinds
of evaluation sets. The first test set samples m-
r pairs, where reply is contained in the response
set (GoldenMR) and is used for computing the
ranking metric, Mean Reciprocal Rank: M RR =
+ Zf\;l #nki’ for the top 15 predictions.

The second set consists of general m-r pairs
(GenMR) where the reply is not restricted to the
response set. weighted-ROUGE metrics is com-
puted on final 3 responses with the reference
response over uni/bi/tri-grams (W_ROUGE =
Y i) = ROUGE;(Ref, Repy)), with weights of
1:2: 3 proportions.

We use ~50K GoldenMR and 500K GenMR
dataset for each language. For languages with-
out native data, an evaluation proxy with MT data
is used for model selection before online deploy-
ment. We give a higher preference to ROUGE as it
showed higher correlation to our online metrics.

4.2 Online Evaluation Metrics

For the deployed models in production, we measure
the following online metrics on real user traffic.

Click-through rate (CTR): the ratio of the
count of replied emails with SR clicks over all
emails that the feature is rendered.

Usage: the ratio of count of replied emails with
SR clicks to all replied emails. This captures the
contribution of SR to all Email replies.

Char-saved: the average number of characters-
saved by clicking the selected reply.

4.3 Results

The model is evaluated on the international markets
we are expanding to. English is excluded as EN
model is well established. Results on baseline (ex-
isting per-language production models) and univer-
sal models for high-resource markets are reported
in Table 2. Results targeting new markets without
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any native data are reported in Table 3. Entries in
the tables are defined as follows:

BiLSTM: Per-language (mono-lingual) produc-
tion models for non-EN markets as the baseline and
also the control setting of online A/B tests. Here
the encoders have shared embedding size of 320
and 2 BiLSTM layers with hidden size of 300.

UniPLM-[NAM/EUR]: Universal model cre-
ated by fine-tuning pre-trained multi-lingual en-
coders for EUR and NAM regions respectively.

UniPLM-HRL: The model across the first 2
stages with the universal training loop in Figure
1(b). In the second stage, the model is fine-tuned
along with TLM auxiliary task with multi-lingual
unsupervised data. This is the first universal model
candidate that breaks down the data boundary
across High-Resource Languages (HRL).

Reg Lang Model MRR W_ROUGE
EUR DE BiLSTM-de 0.3263 0.0685
UniPLM-EUR  0.4185 0.0698
UniPLM-HRL  0.3323 0.0663
FR BiLSTM-fr 0.4569 0.0642
UniPLM-EUR 04721 0.0647
UniPLM-HRL  0.4135 0.0624
IT BiLSTM-it 0.3300 0.0330
UniPLM-EUR  0.4819 0.0385
UniPLM-HRL 0.4186 0.0360
NAM ES BiLSTM-es 0.3248 0.0511
UniPLM-NAM 0.3186 0.0565
UniPLM-HRL  0.3319 0.0552
PT BiLSTM-pt 0.4383 0.0552
UniPLM-NAM 0.4216 0.0577
UniPLM-HRL 0.4154 0.0563

Table 2: Evaluation on HRL (EUR and NAM) with
UniPLM-HRL via continual multi-task learning and
production baselines. The best results are in bold.

For new languages without native data, we con-
tinue to train the base universal model (UniPLM-
HRL) with MT data with two approaches.

UniPLM-AII-CL: The UniPLM-HRL model ex-
ported to LRL region trained with MT data (and
native EN data) with SR and TLM multi-task ob-
jectives.

UniPLM-AII-ADP: The model trained with M T-
adapter, with all parameters frozen except for
adapters parameters.

4.4 Model Quality Analysis

Table 2 compares the universal model UniPLM-
HRL with both per-language baselines and per-
region models. Table 3 shows the results with the
low-resource languages, which are trained with

Reg Lang Model MRR W_ROUGE
EUR DE UniPLM-HRL 0.3323 0.0663
UniPLM-AII-CL 0.3103 0.0686

FR UniPLM-HRL 0.4135 0.0624
UniPLM-AII-CL  0.4207 0.0659

IT UniPLM-HRL 0.4186 0.0360
UniPLM-AII-CL  0.4274 0.0374

NAM ES UniPLM-HRL 0.3319 0.0552
UniPLM-AII-CL  0.3160 0.0551

PT UniPLM-HRL 0.4154 0.0563
UniPLM-AII-CL  0.3783 0.0561

LRL ZH UniPLM-HRL 0.1365 0.0740
UniPLM-AII-CL  0.2638 0.0869
UniPLM-AII-ADP  0.3024 0.0901

JA UniPLM-HRL 0.1475 0.1010
UniPLM-AII-CL  0.3281 0.1106
UniPLM-AIl-ADP  0.3719 0.1180

NL UniPLM-HRL 0.0638 0.0371
UniPLM-AII-CL  0.1822 0.0436
UniPLM-AII-ADP  0.2490 0.0480

CS UniPLM-HRL 0.0366 0.0386
UniPLM-AII-CL  0.1312 0.0441
UniPLM-All-ADP  0.2612 0.0526

HU  UniPLM-HRL 0.0420 0.0356
UniPLM-AII-CL  0.0779 0.0776
UniPLM-AII-ADP  0.2615 0.0907

Table 3: Results with UniPLM-AIl-CL and UniPLM-
All-ADP continually augmented with MT data.

data augmentation approach involving MT data,
with multi-task learning or adapters.

Per-language vs. Universal Model: The BiL-
STM production models serve as strong baselines
and have comparable MRR for UniPLM-NAM in
ES and PT (Table 2). UniPLM-EUR has better
performance than the BiLSTM production models.
Overall, the Uni-PLM models have comparable or
better performance than the monolingual baselines.

UniPLM-NAM/EUR vs. UniPLM-HRL: Ta-
ble 2 also shows no appreciable difference in
ROUGE metrics when training the model in 2
stages. In addition, the model outperforms Bil-
STM per-language models on MRR on ES, DE,
FR, and IT.

The above two comparisons show that for high-
resource languages, we do not suffer significant
degradation in quality with single stage and two-
stage universal models.

Performance on LRL: Table 3 compares
the UniPLM-AII-CL and UniPLM-AIll-ADP with
UniPLM-HRL model on low-resource languages.
While UniPLM-HRL shows poor ranking perfor-
mance, UniPLM-AIl-CL significantly improves on
all metrics for LRL, while preserving the ROUGE
performance on the other 5 languages. With
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adapters, UniPLM-AIllI-ADP outperforms other
models on all metrics in low-resource languages
while keeping the performance unchanged (as a
result of freezing the UniPLM-HRL model) in both
EUR and NAM.

Overall, the results demonstrate the effective-
ness of MT data augmentation in low-resource lan-
guages. We observe slight performance degrada-
tion on EUR and NAM languages caused by con-
tinual training on MT data. This may be due to im-
perfect translation. However we can mitigate these
losses with MT-adapters which are quite promising
as they increase the parameters by just 4.3% and
even improves training efficiency as we can freeze
all other parameters during fine tuning.

Reg Lang Model MRR W_ROUGE
EUR DE UniPLM-HRL 0.3323 0.0663
-TLM  0.3643 0.0701
-TLM+MLM  0.3070 0.0596
FR UniPLM-HRL  0.4135 0.0624
-TLM  0.3772 0.0583
-TLM+MLM 0.4126 0.0606
1T UniPLM-HRL 0.4186 0.0360
-TLM  0.4284 0.0359
-TLM+MLM  0.4035 0.0343
NAM ES UniPLM-HRL 0.3319 0.0552
-TLM  0.2958 0.0543
-TLM+MLM  0.3023 0.0537
PT UniPLM-HRL 0.4154 0.0563
-TLM 04176 0.0561
-TLM+MLM  0.4234 0.0559

Table 4: Results with variations on UniPLM-HRL. -
TLM denotes removing TLM and -TLM+MLM de-
notes replacing with MLM in continual learning.

Reg Lang Model MRR W_ROUGE

EUR DE UniPLM-HRL 0.3323 0.0663
+EUR 0.4272 0.0708

FR UniPLM-HRL 0.4135 0.0624

+EUR 0.4818 0.0660

IT UniPLM-HRL 0.4186 0.0360

+EUR 0.4851 0.0388

NAM ES UniPLM-HRL 0.3319 0.0552
+EUR 0.2125 0.0456

PT UniPLM-HRL 0.4154 0.0563

+EUR 0.3298 0.0505

Table 5: Results with 2-stage and replay-based contin-
ual learning. +EUR denotes replaying UniPLM-HRL
with EUR m-r pairs.

4.5 Ablation Studies

MLM and TLM auxiliary tasks: Table 4 investi-
gates contributions of auxiliary tasks in UniPLM-

HRL model. We remove TLM objective as -TLM
which represents continue training only on SR
task, and replace TLM with MLM objective as
-TLM+MLM which represents joint training with
SR and MLM tasks. UniPLM-HRL with TLM
task shows improvements over MLM task and also
outperforms single SR task for W_ROUGE for all
languages except DE. We hypothesize that TLM
uses bi-lingual corpora which helps align represen-
tations for semantically similar text from different
languages in task-specific fine-tuning. Furthermore,
TLM objective can be interpreted as maximizing
mutual information between cross-lingual contexts
implicitly (Chi et al., 2020). It demonstrates that
such inductive biases in auxiliary tasks are impor-
tant for cross-lingual transfer in universal models.

Replay in continual learning: We continue to
train the UniPLM-HRL model by rehearsing the
old data in EUR as +EUR. In Table 5, + EUR we
see severe regression on NAM languages, despite
the improvement on EUR languages. The replay
concept in continual learning (McClelland, 1998)
fails here due to the two reasons. First, forgetting
is the quintessential mode of continual learning.
Second, EUR iteration doesn’t contain the pivot
language English training data. Continual learning
requires delicately maintaining the universal prop-
erties through knowledge anchors which is difficult
to achieve in practice.

4.6 Online Results

Based on the offline metrics, we selected UniPLM-
HRL as the first candidate for online tests in our
production system. Using BiLSTM per-language
model as the control, we conducted a 2-week A/B
test with 5% user traffic for each model per lan-
guage/region. Table 6 presents the results for dif-
ferent languages. We observe statistically signifi-
cant gain in ES (CTR) and FR (Char-saved). While
there are regressions in other languages, they are
not statistically significant (p > 0.5)

Lang CTR (p-val) Usage (p-val)  Char-saved (p-val)

ES  4.20% (0.0163)
PT  0.00% (0.3690)
FR  -3.51% (0.1636)
IT  -3.62% (0.4506)
DE  2.80% (0.5147)

7.71% (0.0001)
0.00% (0.3264)
-3.14% (0.2773)
-7.59% (0.1515)
-1.07% (0.8233)

-0.91% (0.6592)
3.32% (0.2737)
5.08% (0.0495)
7.03% (0.0602)
5.39% (0.1193)

Table 6: Online metrics for UniPLM-HRL model. The
control model is BiLSTM in each language. The num-
bers with p-val < 0.05 are in bold.

Overall, the universal model is generally better
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or at par compared to their mono-lingual baselines.
This has allowed us to deploy the universal model
to 100% of users in the 5 languages. An extended
universal model supporting low-resource languages
is getting deployed during the writing of this paper.

Compared with per-language separate model
building, the effort of model training, inference
stack and deployment can be substantially reduced,
though the process of training data and response
collection, and human evaluation for all our tar-
geted languages are still required. Overall, around
65% training and performance improvement time
cost can be saved with one single universal model
target at 5 languages. We expect even higher amor-
tized serving costs reductions as the approach is
scaled to more languages.

5 Conclusions

This paper presents our approach of scaling auto-
mated suggested replies with one universal model.
Faced with compute resource and data privacy con-
straints, we propose a multi-task continual learn-
ing framework with auxiliary tasks, and data aug-
mentation with adapter-based model architecture.
The universal model in production saves significant
compute resources and model management over-
head, while allowing us to train across regional
data boundaries. In addition, the process allows us
to cold-start in new markets even when no super-
vised data exists. Based on the promising offline
and online results, we have deployed the model in
several languages and plan to extend the process
for 20 languages around the world.
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