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Abstract

Aimed at generating a seed lexicon for use in downstream natural language tasks, unsuper-
vised methods for bilingual lexicon induction have received much attention in the academic
literature recently. While interesting, fully unsupervised settings are unrealistic; small amounts
of bilingual data are usually available due to the existence of massively multilingual parallel
corpora, or linguists can create small amounts of parallel data. In this work, we demonstrate
an effective bootstrapping approach for semi-supervised bilingual lexicon induction that cap-
italizes upon the complementary strengths of two disparate methods for inducing bilingual
lexicons. Whereas statistical methods are highly effective at inducing correct translation pairs
for words frequently occurring in a parallel corpus, monolingual embedding spaces have the
advantage of having been trained on large amounts of data, and therefore may induce accurate
translations for words absent from the small corpus. By combining these relative strengths, our
method achieves state-of-the-art results on 3 of 4 language pairs in the challenging VecMap
test set using minimal amounts of parallel data and without the need for a translation dic-
tionary. We release our implementation at https://github.com/kellymarchisio/
align-semisup-bli.

1 Introduction

Unsupervised methods for machine translation (MT) and bilingual lexicon induction (BLI) have
received considerable attention in recent years, showing impressive performance without bilin-
gual data for supervision. While academically interesting, small amounts of supervised data
can almost always help model performance.

The typical use case for unsupervised BLI is to provide initial synthetic training data for
a traditional supervised setup where no parallel bitext exists, such as for MT or cross-lingual
information retrieval. A starting lexicon is induced in an unsupervised manner, and then serves
as initial training data to the supervised model. Practically, however, one struggles to identify
a scenario where one would truly fail to have any parallel text whatesoever from which to gain
some supervision. The Christian Bible, for instance, is translated into over 1600 world lan-
guages, providing multi-way parallel data for many of the world’s languages that are typically
considered “low-resource” (McCarthy et al., 2020). Human translators can also create a small
translation corpus or seed dictionary. The practical necessity of fully unsupervised scenarios
for BLI or MT therefore becomes hard to imagine.
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Statistical translation/alignment models are very proficient at inducing bilingual lexicons
from small amounts of parallel data. Particularly when words occur frequently in the corpus,
statistical models easily recover the translation. At the same time, however, the number of seed
translation pairs possible to extract is limited by the vocabulary of the parallel corpus.

We address a more realistic scenario: there is ample monolingual data and a small parallel
corpus. We combine the strengths of statistical alignment and unsupervised mapping methods
and achieve state-of-the-art results on 3 of 4 languages in the challenging VecMap dataset (Dinu
et al., 2015; Artetxe et al., 2017, 2018a), trailing by only 0.1 in the 4th language pair.

2 Related Work

Automatic BLI has been a popular task in natural language processing for decades, beginning
with statistical decipherment (e.g., Rapp, 1995; Fung, 1995; Koehn and Knight, 2000, 2002;
Haghighi et al., 2008). With the advent of the ability to create large monolingual vector spaces
from abundant monolingual text, the focus has shifted to finding an optimal linear transforma-
tion between such monolingual embedding spaces from which a seed lexicon can be extracted
using nearest neighbors search. Practically, this often involves solving variations of the general-
ized Procrustes problem (e.g., Conneau et al., 2018; Artetxe et al., 2016, 2017; Patra et al., 2019;
Artetxe et al., 2018b; Doval et al., 2018; Joulin et al., 2018; Jawanpuria et al., 2019; Alvarez-
Melis and Jaakkola, 2018). Differing metrics and heuristics can be used to extract the seed
lexicon once the mapping is found. Cross-domain similarity local scaling (CSLS) to mitigate
the hubness is popular and effective (Conneau et al., 2018).

While the orthogonal variant of the Procrustes problem has a simple closed-form solution,
one must know in advance the pairings of words one wants to be closest after the transforma-
tion (i.e., you already know the translations). To adapt to the unsupervised or semi-supervised
scenario, such mapping-based BLI procedures must make a “guess” of some correct translation
pairs. The solution can then iteratively refined through self-learning. The initial “guess” can
come in the form of direct supervision using a bilingual training dictionary, or in an unsuper-
vised manner, such as by identifying the nearest neighbors in a similarity matrix (e.g., Artetxe
et al., 2018b) or via adversarial training (e.g., Conneau et al., 2018; Patra et al., 2019).

Like us, Shi et al. (2021) also use statistical alignment within a pipeline for BLI, but unlike
our work, they do not use the induced alignments as seeds for monolingual embedding mapping.

3 Background

3.1 The Orthogonal Procrustes Problem

Let A and B be matrices in R™*". Let () be a matrix in R"*™. The goal of the orthogonal
Procrustes problem is to find @) such that:

argmin||AQ — Bl|r
QQT=1

The solution to the orthogonal Procrustes problem is Q = VU7, where UV is the singular
value decomposition of BT A (Schénemann, 1966).

3.2 1IBM Model 2

IBM Model 2 (Brown et al., 1993) is designed to be a noisy channel model for MT, but it is a
particularly useful statistical model for word alignment. We view the most likely alignment be-
tween a source sentence f and target sentence e as a hidden variable, modeled as the conditional
probability

arg max p(ay...am | f1... fm,€1...€5,m)

aj...am
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where m is the length of source sentence, [ is the length of target sentence, {fi...fm} and
{ey...e; } are the source words and target words respectively, and a; is the alignment, indicating
that f; is aligned to e,,. To compute the alignment, we need two more definitions:

* p(f]e): the lexical translation probabilities. e is a target word, and f is the source word. In
addition to the whole vocabulary of target language, the target-side also includes a NULL
token indicating that a source word aligned to none of the target words.

* p(j | ¢,1,m): the alignment model. The probability of source position j being aligned to
target position ¢.

The IBM models are trained via expectation-maximization. After training, alignments can be
determined with:

i = ] .alv % j
a; = arg_max (p(j [4,1,m) xp(file;))

4 Motivation

Different types of models have different strengths when it comes to determining translations of
words. We discuss some contrasting strengths of inducing translations from statistical models
versus monolingual embedding space mapping in this section as motivation for our method.
We assert that to maximize accuracy, one should induce the translation of common words from
statistical models and less frequent words from well-trained monolingual embedding spaces.

Statistical models succeed for common words, struggle for rare words.

In the IBM statistical translation models, word translation probabilities are typically initialized
uniformly. In the IBM models, the probability p(f|e) assigned to a given word pair in the
translation table is iteratively refined according to the occurrence of f and e in the corpus.
While this procedure can capture alignment and translation likelihoods of common words in a
large bilingual corpus accurately, the probability can become inaccurate for rare words (not to
mention those absent from the corpus). The risk of such inaccuracies of low-frequency words
increases as corpus size shrinks.

There are 10,673 unique source tokens in the first 10,000 lowercased lines of the English-
side of the Europarl v7 German-English corpus (Koehn, 2005), used later in this work. Of those,
4015 tokens occur just once. Only 5214 — less than half of the vocabulary — occur more than
twice. Such a large percentage of rare words is explained by the well-known Zipf’s law (Zipf,
1935, 1949; Mandelbrot, 1953, 1961), whereby the kth most common word tends to occur with
a frequency approaching the below, where o ~ 1 and 5 ~ 2.7 (Piantadosi, 2014).

freg(w) « ( L (1

rank(w) + §)

Embedding space mapping can take advantage of large amounts of monolingual data.

Just as statistical methods for word translation are more accurate for common words, inducing
translations from monolingual word embeddings spaces for common words is also likely more
accurate than for rare words, owing to the fact that the word embeddings for more common
words are better trained than for rare words. The advantage that monolingual word embedding
spaces have over traditional statistical MT methods, however, is that there is typically orders
of magnitude more available monolingual text than there is translated parallel bitext for a given
language pair. As such, a word that is rare in a bitext may occur frequently enough in a large
monolingual corpus for its word embedding to be well-trained and useful.
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More correct translation pairs — better embedding space mapping.

Empirically, more high-quality seed translation pairs improves the Procrustes mapping of mono-
lingual embedding spaces for BLI. Our method is motivated by the desire to extract a large and
accurate seed dictionary to solve Procrustes given only small amounts of parallel bitext from
which to extract seeds.

Use the relative strengths of statistical vs. mapping methods to maximize performance.

Using 5000 seeds is common in the supervised BLI literature. In light of the fact that our
10,000-line Europarl bitext only has 5214 tokens that occur more than twice, we are hard-
pressed to extract 5000 seed translations that we are confident are correct. We therefore use the
relative strengths of IBM Model 2 and mapping-based methods for extracting a seed lexicon
from monolingual embedding spaces to extract as many high-quality translation pairs as possi-
ble. Because of IBM Model 2’s strength in identifying correct translations for high-frequency
words, we trust its judgement for high-frequency words in the bitext. Monolingual embedding
spaces, however, have the advantage of having a much larger vocabulary (the literature typi-
cally uses 200,000) and having been trained on much larger amounts of data. Thus we trust
monolingual embedding mapping methods to identify the correct translations for any medium-
frequency words, or high-frequency words that happened to not have been present in the parallel
bitext given to IBM Model 2. We avoid the very lowest frequency words, but extract bilingual
translation pairs for words seen frequently in the parallel corpus from IBM Model 2, and those
seen less frequently (or not at all) from the embedding space mapping.

5 Method

5.1 Supervised statistical seed induction from bitext

We first run IBM Model 2 over a small parallel corpus. We rank the resulting word translation
table by probability (“confidence”), and retain the top N translation pairs assigned the highest
confidence. We discard pairs where either the source or target word occurred less than M times
in the bitext, to avoid the problem of the statistical alignment model assigning erroneously high
probabilities to rare words. We also discard pairs lower than a chosen confidence threshold.

5.2 Seed set expansion via embedding space mapping

Using the induced translations from the previous step as seeds, we map the monolingual em-
bedding spaces using the public implementation of VecMap' in supervised mode (Artetxe et al.,
2018a). In this method, word embeddings are length-normalized, mean-centered, and length-
normalized again. A whitening transformation is performed, and then VecMap solves the or-
thogonal Procrustes problem over the known seeds, and the resulting spaces are reweighted
and dewhitened. We extract a phrase table from the resulting mapped monolingual embedding
spaces using Monoses?(Artetxe et al., 2019). For a mapped source word e, let its k nearest
neighbors in the mapped target embedding space be N (z, k). Here, k=100. We calculate the
translation probability for = and each of its k nearest neighbors using the softmax of the cosine
similarity. Let f € N(z, k). Then,

exp(cos(e, f)/T)
> exp(cos(e, f')/T)

f'e€N(x,k)

p(fle) =

See Artetxe et al. (2019) for further details.

"https://github.com/artetxem/vecmap
2https://github.com/artetxem/monoses
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We extract the phrase table and rank the translations in descending order by forward trans-
lation probability. We again require the potential translation pairs to meet a minimum confi-
dence threshold to be considered for use. We take the highest ranked translation per source
word, therefore each source word is only used once.

5.3 Frequency-based seed selection with low-frequency agreement

We select our final seed set based on corpus frequency according to the motivation in Section
4. We retain the top K pairs from the embedding mapping method that are disjoint from the
N word translations generated by IBM Model 2. In other words, if the source and target word
in a potential translation occurred more than a pre-selected minimum number of times in the
parallel bitext (M), we trust IBM Model 2 over VecMap. At the same time, we recognize the
potential fault that the statistical alignment model could inaccurately guess a translation for a
word it only sees once. To compensate for this weakness and allow for the creation of a larger
seed dictionary on which to train our second round of VecMap, we turn to VecMap itself to
induce the seeds of words rarely or never seen in the training corpus. In doing so, we can
induce seed dictionaries larger than the vocabulary of the parallel bitext, but also with higher
accuracy than if induced via VecMap alone in a self-learning fashion. Thus for words occurring
infrequently (or never) in the parallel bitext, we trust VecMap over IBM Model 2. We merge
the two potential seed dictionaries, only retaining low-frequency pairs induced by IBM Model
2 if VecMap can also confirm its desire for the potential pair to be retained.

5.4 Embedding space re-mapping with expanded seed set

Finally, the concatenated list of high-confidence translation pairs are used as seeds to again
solve the Procrustes problem and re-map the monolingual embedding spaces. With the ex-
panded joint seed set owing to the complementary strengths of IBM Model 2 and the previous
embedding space mapping, this second round of embedding space mapping is expected to be
more successful than would have been possible using only seeds from IBM Model 2, or only
from self-learning.

6 Experimental Settings

Language Corpus # of words
English WaCky, BNC, Wikipedia 2.8 B
Italian itWac 1.6B
German SdeWaC 09B
Spanish News Crawl 2007-2012 386 M
Finnish Common Crawl 2016 2.8B

Table 1: Corpora used to train the word embeddings for each language in the VecMap dataset,
with the number of words in billions (B) or millions (M).

6.1 Pretrained Word Embeddings

The pretrained embeddings from Dinu et al. (2015); Artetxe et al. (2017, 2018a) are 300-
dimensional vectors of 200,000 words, trained with CBOW (Mikolov et al., 2013a). Table
1 details the parallel text used to train the embeddings. We conduct experiments on all four
available language pairs (English-German, English-Spanish, English-Italian, English-Finnish).
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6.2 Data

We use the popular and challenging VecMap data set, which is the original English-Italian
data set of Dinu et al. (2015) with the subsequent extensions by Artetxe et al. (2017, 2018a).
The dataset was obtained via alignment of the Europarl corpus (Koehn, 2005; Tiedemann,
2012). Test sets contain approximately 1500 source words and 2000 word pairs total. The
source words are sampled evenly from frequency bins in the Europarl lexicon: one-fifth from
each of frequency ranks [1000-5000], [5000-20,000], [20,000-50,000], [50,000-100,000], and
[100,000-200,000]. This makes the test set considerably more challenging than the widely-used
MUSE training and test sets (Conneau et al., 2018), where the test set consists of exactly source
word frequencies 5,000-6,500 for each language pair. We create a development set for English-
German and English-Finnish using the last 2,000 lines of the training seeds provided by Dinu
et al. (2015); Artetxe et al. (2017, 2018a), which are disjoint from the test set.

We use Europarl v7 as our parallel bitext, which is a corpus of European Parliamentary
proceedings available in 11 languages (Koehn, 2005). We normalize punctuation, tokenize,
and clean the corpus to remove sentences with more than 100 tokens or with a source-to-target
length ratio above 9. Each of these steps uses scripts from the Moses statistical MT system
(Koehn et al., 2007). We then lowercase all bitext. For subsequent experiments varying the
data size of the input corpus, we use the first N lines of the bitext, where N ranges from 500 to
50,000. We stop at 50,000 because our focus is on very small corpora. We use the NLTK? (Bird
et al., 2009) implementation of IBM Model 2, and the public implementation of VecMap.

6.3 Hyperparameter Settings

For the IBM Model 2 step detailed in 5.1, we use N=3000, M=2, and minimum confidence
threshold is set to 0.1. Final translations for the test set are retrieved by choosing the nearest
neighbor in the target-side mapped space of the source word according to CSLS scaling, to
mitigate the hubness problem. These settings are based on early experimentation with en-
de using between 10k-100k lines of Europarl, where we observe that the subsequent VecMap
stage needed about 3000 seeds extracted from 5,000 lines of Europarl to begin exceeding the
unsupervised baseline performance. N=3000 and M=2 were chosen to encourage having 3000+
seeds from IBM2 for data conditions as low as 1k parallel lines. We then apply the chosen
hyperparameters to all language pairs.

Seeds en-de IK en-de 10K en-fi IK en-fi 10K

0 38.1 64.1 14.0 44.8
200 48.7 65.0 18.9 46.8
500 55.8 65.5 26.0 47.0
1,000 58.8 65.7 29.8 48.3
3,000 61.2 66.7 335 48.8
5,000 60.5 66.7 33.7 49.2
10,000 61.7 66.6 35.6 48.2
15,000 61.2 65.9 35.6 49.2
20,000 61.1 65.7 35.6 48.3

Table 2: P@1 on en-de and en-fi development sets with increasing number of seeds induced
from VecMap. Experiments are performed with models using 1K and 10K lines of parallel
bitext input to IBM Model 2.

3https://www.nltk.org/
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To determine the number of seeds that should be induced from VecMap, we performed
experiments using the English-German and English-Finnish development sets. We train systems
with N=3000 IBM seeds given 1,000 or 10,000 input sentences to IBM, and vary the amount
of VecMap seeds that we extract from the resulting system to be concatenated with the IBM
seeds to train the second round of VecMap. The results are presented in Table 2. Note that the
vocabulary size is limited for 1,000 input sentences, the number of possible translation pairs
is limited by vocabulary size and model confidence. This results in 1058 IBM-induced seeds
for en-de and 791 for en-fi, for models using only 1,000 lines of parallel data. We examine
all results, and select a number of seeds that appears to work well across all 4 conditions. We
decide that this best seed set size is 10,000.

7 Results and Analysis

en-it en-de en-fi en-es

Unsupervised

Conneau et al. (2018)* (avg.) 452 46.8 0.4 354
Artetxe et al. (2018b) (avg.) 48.1 482 32,6 37.3
Grave et al. (2019) 45.2 - - -
Mohiuddin and Joty (2020) 4777 487 326 38.1

Alvarez-Melis and Jaakkola (2018) 492 465 183 37.6

Supervised / Semi-Supervised

Smith et al. (2017)* 43.1 433 294 351
Patra et al. (2019) BLISS(M) 459 483 - -

Patra et al. (2019) BLISS(R) 46.2 48.1 - -

Mikolov et al. (2013b)* 349 350 259 277
Faruqui and Dyer (2014)* 384 371 276 268
Artetxe et al. (2016)* 393 419 30.6 314
Artetxe et al. (2017) 39.7 409 28.7 -

Artetxe et al. (2018a) 453 441 329 36.6
Jawanpuria et al. (2019) GeoMM 48.3 493 36.1 39.3
Mohiuddin et al. (2020) 46.7 477 341 378
Jawanpuria et al. (2019) GeoMMsemi  50.0 51.3 36.2 39.7
Ours, N=5,000 495 512 353 400
Ours, N=10,000 499 51.7 360 40.1
Ours, N=20,000 49.7 514 36.8 40.1
Ours, N=50,000 493 514 371 399

Table 3: Main results. P@1 BLI performance on the VecMap data set, compared with existing
literature. *As reported in Artetxe et al. (2018b). “avg” are averaged over 10 runs. For our
method, N is the number of sentences in the bitext given to IBM Model 2. Bold is best perfor-
mance per language pair. We bold all of our models which outperform all previously published
results.

Our main results compared with the existing literature are presented in Table 3. We achieve
state-of-the-art results in the English-German, English-Finnish, and English-Spanish pairs. For
English-Italian, we trail the state-of-the-art semi-supervised system of Jawanpuria et al. (2019)
by only 0.1. However, Jawanpuria et al. (2019) use 80% of available training seeds from the
VecMap test set (4000 seeds) while ours uses only 3000 seeds induced from a parallel bitext
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using IBM Model 2. For en-de and en-fi, our models trained on only 10,000 and 20,000 lines of
bitext achieve state-of-the-art results, respectively. For en-es, even our model using only 5,000
parallel lines of bitext exceeds the performance of previous literature, achieving state-of-the-art
performance.

7.1 TImpact of Size of Input Corpus

500 1000 5000 10000 20000

en-it  40.0 467 495 499 49.7
en-de 333 46.1 512 517 51.4
en-fi 84 244 353 36.0 36.8
en-es 327 37.6 400 40.1 40.1

Table 4: P@1 on VecMap test set varying the number of input parallel sentences. The number of
induced seeds from IBM is 3,000 (or less, for lower data sizes with small vocabularies). 10,000
seeds are induced from VecMap. Top row is number of input sentences to IBM Model 2.

In Table 4, we examine the impact of the size of the input corpus to IBM Model 2 on down-
stream BLI performance. We feed between 500 and 20,000 parallel sentences from Europarl
to the statistical translation model. In each experiment, we induce a maximum of 3,000 seeds
from IBM Model 2.* In line with our intuition, performance generally increases as the size of
the input corpus increases, and appears to plateau around 10,000 input sentences.

7.2 Ablation of frequency-based seed selection method

en-de en-fi

IBM only 64.1 4438
VecMap Only 63.9 465
50% IBM + 50% VecMap 64.8 47.9

Table 5: P@1 on the development set of VecMap models trained with 3,000 seeds generated
either from (1) IBM Model 2, (2) the previous run of VecMap, or (3) a combination of high-
frequency translation pairs from IBM Model 2 and lower-frequency pairs from VecMap. IBM
Model 2 was trained on 10,000 parallel sentences.

The size of the seed dictionary used for solving the Procrustes problem is a critically impor-
tant parameter for success of mapping monolingual embedding spaces. Accordingly, a natural
question to ask is whether our improved performance was due to the number of seeds induced
alone, or our novel way of combining seeds extracted from both IBM and VecMap. To address
this question, we use the en-de and en-fi models which used 10,000 lines of Europarl. In the first
condition, we induce 3000 seeds from IBM Model 2 only, and train VecMap using these seeds.
In the second condition, we extract 3000 from the first round training of VecMap, and feed only
these into VecMap again for embedding space mapping retraining. In the third condition, we
induce 1500 frequent words from IBM Model 2 and combine them with 1500 infrequent words
induced from the phrase table generated from VecMap, according to our method for frequency-
based seed selection with low-frequency agreement. We ensure that the resulting 3000 pair

4The number will be less for small vocabulary and if not enough potential translation pairs exceed the minimum
confidence threshold.
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seed set is split 50/50 between translation pairs induced from IBM Model 2 and those induced
from VecMap. The results are presented in Table 5. We observe that when holding the number
of induced seeds constant, best performance occurs using our combination method of keeping
high-frequency translation pairs from IBM Model 2 and lower-frequency translation pairs from
VecMap (according to the words’ frequency in the 10,000 line parallel bitext).

Table 6 shows the relative importance of the two steps: induction from IBM 2 and inducing
10,000 additional seeds from VecMap to be fed back to VecMap for the final mapping. We use
the first 3,000 seeds from the official VecMap training dictionaries as a baseline (“3k Artetxe
Gold”), and show performance these gold seeds plus the additional 10,000 seeds induced from
VecMap from the models trained using 10,000 lines of bitext (the models from row “Ours,
N=10,000" of Table 3). For comparison, we show performance with the 3,000 pairs mined from
IBM 2 only (“3k IBM2”) from the same models, and report the development set performance
of “Ours, N=10,000" under “3k IBM2 +10K VecMap”. We observe that the secondary step of
inducing 10,000 pairs from VecMap improves performance over the initial 3,000 seeds across
all tested conditions, showing the magnitude of improvement between steps 1 (induction via
IBM 2 or a given seed dictionary) and 2 (mining from word embedding space).

3k Artetxe Gold  +10K VecMap | +3k IBM2  +10k VecMap

en-it 68.5 70.3 (+1.7) 70.0 70.3 (+0.3)
en-de 64.3 65.3 (+1.0) 64.1 66.6 (+2.5)
en-fi 48.9 50.0 (+1.1) 448 48.2 (+3.4)
en-es 66.0 69.2 (+3.3) 66.4 68.5 (+2.0)

Table 6: P@1 on the development set of models mapped with 3,000 seeds from the official
VecMap Training Dictionary vs. 3,000 seeds induced from IBM2 with 10,000 lines of bitext,
with or without an additional 10,000 pairs mined from the monolingual embedding spaces with
VecMap.

8 Conclusion

Motivated by the strength of statistical translation and alignment models in inducing accurate
word translation pairs from small amounts of data, the breadth of training data used to train
monolingual word embedding spaces, we propose a motivated semi-supervised approach for
bilingual lexicon induction that demonstrates state-of-the-art results on the challenging VecMap
test sets. We capitalize upon the complementary strengths of statistical alignment and embed-
ding space mapping methods for generating translation dictionaries, combining the methods
for better downstream bilingual lexicon induction performance than either achieves alone. By
taking this middle ground, we achieve state-of-the-art results with as little as 5,000 sentences -
an amount readily available in thousands of language pairs. We release our implementation at
https://github.com/kellymarchisio/align-semisup—-bli.
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