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Abstract
Placeholder translation systems enable the users to specify how a specific phrase is translated
in the output sentence. The system is trained to output special placeholder tokens, and the user-
specified term is injected into the output through the context-free replacement of the place-
holder token. However, this approach could result in ungrammatical sentences because it is
often the case that the specified term needs to be inflected according to the context of the out-
put, which is unknown before the translation. To address this problem, we propose a novel
method of placeholder translation that can inflect specified terms according to the grammatical
construction of the output sentence. We extend the sequence-to-sequence architecture with a
character-level decoder that takes the lemma of a user-specified term and the words generated
from the word-level decoder to output the correct inflected form of the lemma. We evaluate
our approach with a Japanese-to-English translation task in the scientific writing domain, and
show that our model can incorporate specified terms in the correct form more successfully than
other comparable models.1

1 Introduction

Over the last several years, neural machine translation (NMT) has pushed the quality of machine
translation to near-human performance (Sutskever et al., 2014; Vaswani et al., 2017). However,
due to its end-to-end nature, this comes with the cost of losing a certain degree of control over
the produced translation, which once was explicitly modeled, for example, in the form of phrase
table (Koehn et al., 2003) in statistical machine translation (SMT). In practice, users often want
to specify how certain words are translated in order to ensure the consistency of document-level
translation or to guarantee the model to produce the correct translation for words that may be
underrepresented in the training corpus such as proper nouns, technical terms, or novel words.

Given this motivation, a line of previous research has investigated placeholder translation
(Post et al., 2019). With a source sentence where certain words are replaced with a special
placeholder token, the model produces a translation with the special placeholder token in an
appropriate position, and then that placeholder token is replaced with a pre-specified term in a
post-processing step.

Although this approach ensures that certain words appear in the translation, one limitation
is that the user must specify the term that fits in the context surrounding the placeholder token,
or specifically, the term should be properly inflected according to the syntactic structure of

1Code is available at https://github.com/Ryou0634/placeholder_translation.
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Specified Translation: 管理→ controlling
Source: フローセンサーの原理は浮遊式流量計のテーパー管内フロートの位置を差
動トランスで検出し,これの電圧制御により流量を[VERB]する。
Reference: The sensor controls the flow rate by detecting the position of the float in the
tepered tube with a a differential transformer and [VERB] it with the obtained voltage.
System Output: The principle of the flow sensor is that the position of the float in the taper
tube of the floating flowmeter is detected by the differential transformer, and the flow rate is
[VERB] by this voltage control.

Table 1: A translation example from the ASPEC corpus (Nakazawa et al., 2016) with a place-
holder translation model. The specified target term grammatically fits the placeholder in the
reference, but not in the system output as it is.

the produced translation. To illustrate the problem, we show an actual output from a normal
placeholder translation model in Japanese to English translation in Table 1.

The system is supposed to translate the word管理 into controlling as in the reference, but
the output has a different grammatical construction and thus the progressive form controlling
is invalid in this context; instead, controlled should be injected in the placeholder. The appro-
priate word form is difficult to predict, especially in translation between grammatically distant
languages, such as Japanese and English. As manually correcting the inflection in post-editing
significantly hurts the convenience of placeholder translation, we need a way to automatically
handle inflection.

One possible approach to this problem is the code-switching methods, in which certain
words in the source sentence are replaced with the specific target words, and the model is
encouraged to include those specific words in the translation. This approach is flexible in that
the model can inflect the specified words according to the context (Song et al., 2019), but less
faithful to the lexical constraints, often ignoring the specified terms (§5).

To address this problem, we propose a model that automatically inflects a pre-specified
term according to the context of the produced translation. We extend the sequence-to-sequence
encoder and decoder with an additional character-level decoder that predicts the inflected form
of the pre-specified term. Our approach combines the advantages of both the placeholder and the
code-switching methods: the faithfulness to lexical constraints and the flexibility of dynamically
deciding the word form in the output.

We test our approach with a Japanese-to-English translation task in the scientific-writing
domain (Nakazawa et al., 2016), where the translation of technical terms poses a challenge to a
vanilla NMT system. The results show that the proposed method can include the specified term
in the appropriately inflected form in the translation with higher accuracy than a comparable
code-switching method. We also perform a careful error analysis to understand the weaknesses
of each system and suggest directions for future work.

2 Related Work

2.1 Placeholder Translation
To ensure that certain words appear in the translated sentence, previous studies have explored
the method of replacing certain classes of words with special placeholder tokens and restore the
words in a post-processing step, which we call placeholder translation in this paper.

Luong et al. (2015) and Long et al. (2016) employed placeholder tokens to improve the
translation of rare words or technical terms. However, simply replacing words with a unique
placeholder token loses the information on the original words. To alleviate this problem, sub-
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sequent studies distinguish different types of placeholders, such as named entity types (Crego
et al., 2016; Post et al., 2019) or parts-of-speech (Michon et al., 2020).

Instead of replacing the placeholder token with a dictionary entry, some studies propose
generating the content of the placeholder with a character-level sequence-to-sequence model to
translate words not covered in the bilingual dictionary. Li et al. (2016) and Wang et al. (2017)
incorporated a named entity translator, which is supposed to learn transliteration of named en-
tities. As in their work, our proposed model also uses a character-level decoder to generate the
content of placeholders, but our focus is to inflect a lemma to the appropriately inflected form
given the context.

2.2 The Code-switching Method

Another way to introduce terminology constraints is the code-switching method (Song et al.,
2019; Dinu et al., 2019; Exel et al., 2020). The model is trained with source sentences where
some words are replaced or followed by specific target words and expected to copy the words
to the translation.

One advantage of the code-switching method is that, unlike the placeholder methods, it
preserves the meaning of the original words, which likely leads to better translation quality.
Also, the model can incorporate the specified terminology in a flexible way: a model trained
with the code-switching method not only copies the pre-specified target words but can inflect
the words according to the target-side context (Dinu et al., 2019). In parallel to our work,
Niehues (2021) offers a quantitative evaluation of how well the code-switching method handles
inflection of a pre-specified terminology when the terminology is given in the lemma form.

Although the code-switching method is flexible, one disadvantage is that it tends to ig-
nore the pre-specified terminology more often than the placeholder method (§5). We propose
a placeholder method that handles inflection of pre-specified terms, aiming for both flexibility
and faithfulness to terminology constraints.

2.3 Constrained Decoding

Another approach to ensure that a pre-specified term appears in the translation is constrained
decoding (Anderson et al., 2017; Hokamp and Liu, 2017; Post and Vilar, 2018). Constrained
decoding can be applied to any existing NMT models without modifying its architecture and
training regime, but imposes a significant cost on the decoding speed. It is also unclear how to
incorporate lexical inflection into constrained decoding. Therefore, we focus on the placeholder
and code-switching methods in this study.

2.4 Modeling Morphological Inflection in Neural Machine Translation

Explicitly modeling morphological inflection into NMT models has been studied mainly to
enable effective generalization over morphological variation of words. Tamchyna et al. (2017)
and Weller-Di Marco and Fraser (2020) propose to decompose certain classes of words into its
lemma and morphological tags to reduce data sparsity. At decoding time, the inflected form is
restored by a morphological analyzer. Song et al. (2018) proposed a model that only requires
a stemmer to alleviate the need for linguistic analyzers. The model decomposes the process of
word decoding into stem generation and suffix prediction.

In this work, we propose to model morphological inflection in the process of embedding
pre-specified terms into placeholders to improve the flexibility of placeholder translation. Our
approach requires no external linguistic analyzer at prediction time; instead, inflection is per-
formed via a neural character-based decoder.
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Figure 1: The proposed method: placeholder translation with a character decoder.

3 Approach

The proposed model builds upon a sequence-to-sequence (seq2seq) model with an attention
mechanism. Specifically, we use the Transformer model (Vaswani et al., 2017).

In the normal placeholder translation, the model is trained to generate placeholder tokens
[PLACEHOLDER] when the source sentence includes them. Then the placeholder tokens are
replaced with user-provided terms in post-processing.

We extend the model to be able to handle inflection. Specifically, we consider the scenario
where lemmas are provided as a specified term. On top of the (sub)word-level decoder, we
stack a character-level decoder to generate the content of the placeholder token. The character-
level decoder has to predict the correct inflected form of the specified lemma in the surrounding
context. Specifically, given the target tokens {w1, ..., wT } that contain a placeholder token and
the specified lemma that consists of L characters clemma = {c1, .., cL}, the character decoder
generates the inflected form cinfl = {c′1, .., c′L′}.

We model the generation process with a decoder with attention mechanism (Fig. 1). We
first summarize the contextual information on the placeholder token by a context encoder.
Specifically, we feed the embeddings of the target tokens {w1, ...,wT } into another Trans-
former encoder to contextualize the placeholder token (Eq. 1). Then, the contextualized rep-
resentation of the placeholder token hp and the character embeddings of the specified lemma
{c1, .., cL} with positional encoding (Vaswani et al., 2017) are concatenated to form key-value
vectors for decoder attention (Eq. 2). Finally, the key-value vectors are passed to the character-
level Transformer decoder and it generates the inflected form {c′1, .., c′L′} in an auto-regressive
manner (Eq. 3).

h1, ...,hT = ContextEncoder([w1, ...,wT ]) (1)
A = [hp; Positional(c1, .., cL)] where wp = [PLACEHOLDER] (2)
c′t = CharacterDecoder(c′<t,A) (3)

4 Experimental Setups

We evaluate the proposed model with several baselines to show how well the model can produce
the appropriately inflected form of a given lemma.
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4.1 Corpus

We conduct experiments in a Japanese-to-English translation task with the ASPEC corpus
(Nakazawa et al., 2016). This corpus consists of abstracts from scientific articles, which tend to
contain many technical terms. Such words are rare and hard for the model to learn the correct
translation, and thus this corpus fits the typical use-case of lexically constrained translation. We
use the initial 1M sentence pairs from the training split for training.

4.2 Word Dictionary

In this study, lexical constraints in translation are introduced through a source-to-target word
dictionary. We construct the dictionary automatically from the ASPEC corpus through the
following procedure.

First, we obtain the word alignment by feeding the first 1M sentence pairs of the training
split and validation/test splits to GIZA++.2 We tokenize Japanese sentences with Mecab3 and
English sentences with spaCy.4 We then construct a phrase table and extract only those with
more than 100 occurrences. Then, we split the dictionary into noun and verb entries to facilitate
the analysis of the results and remove noise. If both the Japanese and English phrases are noun
phrases, the entry is registered in the noun dictionary. If the Japanese phrase is a nominal verb5

and English is a verb, the entry is registered in the verb dictionary. In this study, we evaluate
the model’s ability to inflect a provided lemma. Lemmas for the target language (English) are
obtained with spaCy.

4.3 Models

As the baseline, we implement a Transformer (Vaswani et al., 2017) translation model based on
AllenNLP (Gardner et al., 2018). We configure the model in the Transformer-base setting and
sentences are tokenized using sentencepiece (Kudo, 2018), which has a shared source-
target vocabulary of about 16k sub-words. The overviews of lexically constrained models are
summarized in Fig. 2.
Placeholder (PH). In the placeholder method, the model is trained to translate sentences with a
placeholder token and pass that through to the translation. In our experiments, we use different
placeholder tokens [NOUN] and [VERB] for nouns and verbs. Predicted placeholder tokens
are replaced by the pre-specified term in the post-processing step. We evaluate three types of
placeholder baselines, each of which differs in what inflected form the target placeholder token
is replaced with: PH (oracle), where the pre-specified term is embedded in the same form
as in the reference; PH (lemma), always the lemma form; PH (common), the most common
inflected forms in the training data, which are the singular form for [NOUN] and the past tense
form for [VERB]. The results of PH (lemma) and PH (common) are provided as naive baselines
to give a sense of how difficult predicting the correct inflected form is.

We also provide a baseline that performs word inflection through an external resource (PH
(morph)). As in Tamchyna et al. (2017), words that need inflection are followed by morpholog-
ical tags, and word formation is realized through an external resource. We use LemmInflect6

to decompose the dictionary entries with their lemma and part-of-speech tags and to recover the
inflected word form. As this model uses an external resource to perform inflection, it is not
directly comparable with our proposed models but we provide its results as an oracle baseline.

2https://github.com/moses-smt/giza-pp
3https://taku910.github.io/mecab/
4https://spacy.io/
5The nominal verb (サ変動詞) is the most productive class of verb in Japanese and many new or technical terms

fall into this category (e.g.,最適化する-optimize,過学習する-overfit).
6https://github.com/bjascob/LemmInflect
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Figure 2: The preprocessing of the lexically constrained baseline models.

Code-switching (CH). The code-switching model replaces a phrase in a source sentence with
the corresponding target phrase according to a bilingual dictionary.7 CH (oracle) uses the same
target words as in the reference, and CH (lemma) uses the lemma form.
Proposed Model. We implement our proposed model described in §3 on top of the placeholder
baseline model. Compared to the baseline, our proposed model has three additional modules:
the target context encoder, target character embeddings, and character-level decoder. The em-
bedding and hidden sizes are all set to 512, which is the same as in the Transformer-base model.
The additional encoder and decoder have two layers, and the feedforward dimension is 1024.

Note that, for all the models, we restrict the number of constraints to at most one in each
sentence as an initial investigation. This favors the placeholder-based models as handling more
than one placeholder introduces additional complexity in the system and tends to degrade the
performance, while the code-switching methods suffer less from multiple constraints (Song
et al., 2019). We leave experiments with multiple constraints to future work.

4.4 Training with Lexical Constraints
To apply lexical constraints, the models are trained with data augmentation. Augmented data is
created for all sentences that contain any of the source and target phrases found in the dictionary
entries. To control the amount of augmented data to around 10% of the original training data,
we restrict the dictionary entries to infrequent ones. The restriction to infrequent phrases also
simulates real-word use-cases, where user-specified terms are often rare words that typical NMT
models struggle with in translation. Specifically, we restrict the noun entries to ones with a count
at most 20, and the verb entries to 2000. The threshold is chosen to balance the amount of noun
and verb entries in the augmented data.

4.5 Optimization
We optimize the models using Adam (Kingma and Ba, 2015) with the Noam learning rate
scheduler with 8000 warmup steps (Vaswani et al., 2017). The training is stopped when the
validation BLEU score does not improve for 3 epochs.

For our proposed model, we found that optimizing the word-level modules and character-
level modules separately stabilizes the training process and improves the translation quality. We
first train a normal placeholder model, use the weights to initialize those of our proposed model,

7Dinu et al. (2019) utilize source factors that indicate which tokens are code-switched, but we observe no significant
difference by adding source factors. Therefore, we simply report the results from the model with minimal components.
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and then only update the parameters of the additional modules. In this second training stage,
we use the loss value as validation metric and stop the training when the lowest value is updated
for 5 epochs.

5 Results

5.1 Evaluation
For each model, we evaluate the overall translation quality with BLEU (Papineni et al., 2002).8

We also evaluate the specified term use rate, a metric to check if the model correctly includes
the specified target term. Note that this is only an approximate measure of what we want to
measure: whether the specified term is used in the correct form in the output translation. Since
a single source sentence can be translated into different grammatical constructions, it is possible
that the inflected form in the system output is different from the one in the reference but still
correct in the context. Still, we find a substantial overlap in the inflectional form of the specified
term between the reference and the system output, and thus report this metric, followed by a
more closely inspected manual evaluation.

Also, we are interested in how well the model generalizes to dictionary entries unseen
during training. In typical use cases of lexically constrained translation, the specified terms are
new or rare words that are not likely to appear in the training data. We construct two kinds of
evaluation dictionaries: seen and unseen. We first construct a dictionary by aggregating only
entries that appear in the dev/test set. Then, we randomly split the entries into seen and unseen
and remove the unseen entries from the training dictionary. Thus, the seen split contains entries
that appear in the training data while the unseen not. We evaluate the model separately using
the noun and verb dictionary, which results in a total of four kinds of evaluation configurations.

NOUN VERB
seen unseen seen unseen

Baseline 27.1 / 68.3 27.1 / 66.5 27.1 / 63.4 27.1 / 61.2

CS (oracle) 27.3 / 86.8 27.0 / 79.3 27.5 / 91.9 27.2 / 43.9
PH (oracle) 27.2 / 98.8 27.0 / 99.2 27.4 / 98.7 27.5 / 99.4

PH (lemma) 27.1 / 84.7 26.9 / 84.0 26.9 / 9.41 27.1 / 11.4
PH (common) 27.3 / 81.8 27.3 / 68.9
CS (lemma) 27.4 / 81.7 27.1 / 74.6 27.6 / 81.7 27.3 / 42.1
Proposed 27.2 / 89.9 26.9 / 79.1 27.4 / 88.3 27.4 / 73.9
PH (morph) 27.9 / 84.7 27.8 / 81.2 28.5 / 91.1 28.4 / 87.9

Table 2: BLUE scores and the specified term use rate of the different models over different
evaluation dictionaries. CS: Code-switching, PH: placeholder. For NOUN, PH (lemma) and PH
(common) are the same model because the most common inflection for nouns is their lemma.

5.2 Main Results
The results are shown in Table 2. For each configuration, we report the average of three models
trained with different random seeds.

First, the lexically constrained models show BLEU scores not significantly different from
the baseline. The only exception is PH (morph): it consistently improves the BLEU score by

8SacreBLEU(Post, 2018) version string:
case.mixed+numrefs.1812+smooth.exp+tok.13a+version.1.5.1
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VERB seen VERB unseen
CS (lemma) 49 / 0 / 1 26 / 0 / 24
PH with lemmas (proposed) 48 / 2 / 0 39 / 7 / 4
PH (morph) 50 / 0 / 0 47 / 3 / 0

Table 3: The manual evaluation of the 50 sampled sentences. The values in each cell indicate
correct / incorrect / null.

from 0.7 to 1.4 points from the baseline. This indicates the strength of injecting the NMT
model with morphological knowledge for better generalization in translation. In the following
discussion, we focus on the comparison of the specified term use rate.

PH (oracle) and CS (oracle) models receive the same inflected form of a specified term as
in the reference, and thus offer upper bounds for the specified term use rate. We observe that PH
(oracle) exhibits nearly perfect specified term use rates (more than 98% with all dictionaries).
Also, it is more successful at incorporating the specified term into translation than CS (oracle)
in the setting of one constraint, which is in line with previous observations (Song et al., 2019).

As for the models that need to handle inflection, the results are quite mixed for NOUN.
A simple strategy of predicting the most common inflection achieves better specified term use
rates than most of the other sophisticated models. We conjecture that some examples allow
either singular or plural form and that makes a proper evaluation difficult. Therefore, we turn to
the results from VERB for model comparison.

In terms of both seen and unseen of the VERB dictionary, PH (morph) performs the best.
Note, however, that this model is not comparable to our model as it assumes access to a high-
quality morphological analyzer at training time to obtain morphological tags and the correct
inflectional paradigm of user-specified terms at prediction time.

In a more restricted setting, our proposed model outperforms the comparable code-
switching model (CS (lemma)) and the other baselines. In particular, the proposed model is
more robust than CS (lemma) to unseen specified terms: we observe a consistent tendency that
the specified term use rate degrades when the entries are unseen during training especially with
CS (lemma) and verb entries (81.7 to 42.1), while this tendency is less pronounced in the place-
holder model with lemmas (88.3 to 73.9). Overall, our model exhibits faithfulness to lexical
constraints similar to those of the normal placeholder model while having flexibility, which we
examine below.

5.3 Fine-grained Analysis
The specified term use rate only checks whether specified terms are used in the same form as
in the reference. Now we examine the systems’ output more closely by manual inspection. As
the problem of inflection matters more in verbs than in nouns in English, here we focus on the
translation with the verb dictionary.

We sample from the system’s output of the test set 50 sentences with the seen and unseen
lexical constraints respectively. We manually check the sampled sentences and annotate each
sentence with one of the three tags: correct — the specified term is used in the translation
in the correct inflected form (not necessarily the same as in the reference); incorrect — the
model produces the specified term in some inflected form but that results in an ungrammatical
sentence; null — the model fails to produce the specified term in any form. The result is shown
in Table 3.

Firstly, for the words that are seen in the training data, all the models mostly generate the
correct word form in the context. On the other hand, the evaluation with VERB unseen reveals
both the advantages and disadvantages of each model, which we discuss with examples below.
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The placeholder model with morphological tags can handle inflection well. The model
mostly generates the correct inflectional form of the specified terms. The only three exceptions
from VERB seen are errors in choosing the transitive or intransitive usage of the term (Table 4).

Source: 特発性肺線維症(IPF)患者14例及びIPF急性増悪で入院した患者8例を対象と
して,BALF・血漿に関してウィルス検査・免疫血清学的検査を施行した
Reference: The virus inspection and immunoserologic inspection of BALF and blood
plasma were carried out for 14 idiopathic pulmonary fibrosis (IPF) patients and of 8 patients
hospitalized for IPF acute aggravation.
System Output: Wils inspection and immunoserologic inspection were enforced on BALF
blood and blood in 14 patients with idiopathic pulmonary fibrosis (IPF) and 8 patients who
hospitalized in the IPF acute aggravation.

Table 4: A translation example with the placeholder model with morphological tags. The system
output should have generated were hospitalized in the red part.

The code-switching method always produces grammatical inflectional forms. We observe
no incorrect examples from the code-switching model. Since the output is determined solely by
the word decoder with no additional post-editing performed, if the word decoder is well trained,
we can expect the output sentences to be grammatical.
The code-switching method tends to fail to observe the constraints. However, the code-
switching methods fail to produce the specified term in 24 examples out of 50, which is notably
higher than the other methods. A typical error is the model ignoring the constraint and produc-
ing a synonym, for example, generating conclude instead of judge, examine instead of study.
This is reasonable given the model architecture. A well-trained NMT model usually assigns
similar vector representations to synonyms. Even when the specified term is given in the source
sentence, it is given a representation similar to other synonyms inside the model, and thus the
decoder can generate any words with similar meaning. We also observe a few character decod-
ing errors: wrongly generating hot-spitalized instead of hospitalized, move instead of remove.
The placeholder method almost always produces the specified term, but sometimes fails to
inflect it correctly. The placeholder method fails to observe the constraint much less frequently
than the code-switching method (only 4 examples out of 50). In most cases (39 examples out
of 50), the model can successfully predict the correct form as shown in Table 5.

Source: フローセンサーの原理は浮遊式流量計のテーパー管内フロートの位置を差
動トランスで検出し,これの電圧制御により流量を管理する。
Reference: The sensor controls the flow rate by detecting the position of the float in the
tepered tube with a differential transformer and controlling it with the obtained voltage.
System Output: The principle of the flow sensor is that the position of the float in the taper
tube of the floating flowmeter is detected by the differential transformer, and the flow rate is
controlled by this voltage control.

Table 5: A translation example with the placeholder model with a character decoder. The model
predicts the correct inflectional form of control that fits in the context.

The failures consist of generalization errors of inflectional form: generating maken for
make. It is impossible in principle to correctly predict irregular inflectional forms that are
unseen in the training data, but this is usually not much of a problem since the specified term
is usually a rare or new word, which tends to have a regular inflectional paradigm. The other
kind of error we observe is the model predicting a well-defined word form that is wrong in the
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Source: 国立病院機構関門医療センター(国立下関病院)は2002年9月30日に女性総合
診療を開設した。
Reference: A National Hospital System Kanmon Medical Center (A National Shimonoseki
Hospital) opened the comprehensive woman medical care service on September 30th in
2002.
System Output: National Hospital Mechanism Kanmon Medical Center ( the national Shi-
monoseki Hospital ) opening the woman general medical care on September 30th, 2002.

Table 6: A translation example with the placeholder model with a character decoder. The model
predicts a wrong inflectional form for open.

context (Table 6). We expect that both error types can be addressed by exploiting additional
data, either parallel or monolingual, to learn inflection rules in the target language.

6 Conclusion and Future Work

In this study, we point out that the traditional placeholder translation method embeds the speci-
fied term into the generated translation without considering the context of the placeholder token,
which potentially leads to grammatically incorrect translations. To address this shortcoming,
we proposed a flexible placeholder translation model that handles inflection when the specified
term is given in the form of a lemma. In the experiment of the Japanese-to-English translation
task, we showed that the proposed model can inflect user-specified terms more accurately than
the code-switching method.

Future work includes testing the proposed method on morphologically-rich languages or
extending the model to handle more than one placeholder in a sentence. Also, the proposed
model still has room for improvement to learn inflection. It is possible that we can improve the
model by exploiting monolingual corpora in the target language to provide additional training
signals for learning the correct inflection in context.
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