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Abstract
Existing approaches for machine translation (MT) mostly translate a given text in the source
language into the target language, without explicitly referring to information indispensable for
producing a proper translation. This includes not only information in the textual elements and
non-textual modalities in the same document, but also extra-document and non-linguistic infor-
mation, such as norms and skopos. To design better translation production workflows, we need
to distinguish translation issues that could be resolved by the existing text-to-text approaches
from those beyond them. To this end, we conducted an analytic assessment of MT outputs, tak-
ing an English-to-Japanese news translation task as a case study. First, examples of translation
issues and their revisions were collected by a two-stage post-edit (PE) method: performing a
minimal PE to obtain a translation attainable based on the given textual information and further
performing a full PE to obtain an acceptable translation referring to any necessary informa-
tion. The collected revision examples were then manually analyzed. We revealed the dominant
issues and information indispensable for resolving them, such as fine-grained style specifica-
tions, terminology, domain-specific knowledge, and reference documents, delineating a clear
distinction between translation and the translation that text-to-text MT can ultimately attain.

1 Introduction

Translation is not a purely linguistic process (Vermeer, 1992) but also the process of producing
a document in the target language that plays the same role (has the same effect) as the given
source document written in the source language. When translating a given document, transla-
tors refer not only to the textual elements in the document, but also to the role of each textual
element (e.g., running text, section title, table element, and caption), other non-linguistic ele-
ments (e.g., figures and formulae), and their structure. To produce a translation, we also need
some extra-document and non-linguistic information, such as the norms specific to the register
of the document and corresponding target sub-language (Toury, 1978), the objective and the
intended usages of translation, i.e., skopos (Vermeer, 2004), and various specifications (Melby,
2012) designated by the translation client if any.

Despite the requirements a (proper) translation must satisfy, techniques for machine trans-
lation (MT) have been developed by regarding the task of translation as text-to-text transfer.
Until very recently, most studies have performed a text-to-text MT for each text segment,1 even
though a sequence of perfect segment-level text-to-text translations does not necessarily qual-
ify as a proper translation. Recent studies on neural MT (NMT) have addressed issues beyond

1In this paper, we use “segment” for the unit of inputs for MT systems rather than “sentence,” because a segment is
not necessarily composed of a single sentence, but can often be multiple sentences or non-sentential textual fragments.
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this formulation, exploiting further information such as document-level textual context (Voita
et al., 2018, 2019; Lopes et al., 2020) and other modalities (Barrault et al., 2018). There are
also several focused studies on exploiting extra-document and non-linguistic information. How-
ever, such information has not been extensively discussed. As a result, in translation production
workflows at translation service providers (TSPs), where MT outputs are treated as draft trans-
lations, heavy human labor is necessary to fill the gap between MT outputs and translations in
addition to resolving issues at the text-to-text level, for instance, by manual post-editing (PE).

To design and establish more practical ways of exploiting MT systems in translation pro-
duction workflows as well as to discuss how to make MT systems more useful, we need to
understand what lies in the gap between a translation that text-to-text processing can attain and
a truly acceptable translation. Moreover, this should be shared among not only translators but
also MT researchers and MT users. From this point of view, this paper presents our analytic
assessment of MT outputs, taking an English-to-Japanese news translation task as a case study.
First, we obtained segment-level text-to-text translation by resolving translation issues in MT
outputs. At this stage, a minimal PE was performed referring only to each source segment iso-
lated from any other information, and thus the results represent what segment-level text-to-text
MT systems can ultimately attain. Then, the document-level full PE (ISO/TC37, 2017) in the
succeeding stage resolved all the remaining issues, i.e., those issues lying in the gap between
acceptable segment-level text-to-text translation and proper translation. Finally, the collected
revision examples were manually analyzed based on an issue classification scheme. This re-
vealed several dominant issues as well as the information indispensable for resolving them.

The remainder of this paper is organized as follows. Section 2 summarizes related work
in translation studies and MT. Section 3 presents the material for our case study. Section 4
describes our workflow, designed for collecting translation issues that cannot be solved by text-
to-text processing. Section 5 presents our analytic assessment of translation issues, which relies
on an existing issue typology, and explains the dominant issues as well as several types of
extra-document and/or non-linguistic information that must be used to solve them. Section 6
describes future research directions and advice for non-expert MT users, and Section 7 con-
cludes the paper.

2 Related Work

In the literature of translation studies, linguistic approaches to translation have been criticized
(Kenny, 2001), and the equivalence of a source document and a target document has been stud-
ied from a diverse range of aspects. In a seminal work, Nida (1964) claimed the necessity of
equivalence of recipients’ reactions when reading source and target documents. Chesterman
(1997) compiled a typology of translation strategies adopted to guarantee the equivalence when
producing a translation. His syntactic and semantic strategies can be explained (and potentially
realized) referring only to textual information in the source document and linguistic knowledge
in general. In contrast, some of his pragmatic strategies, such as cultural filtering and illocu-
tionary changes, require extra-document and/or non-linguistic information.

Some of the kinds of information that must be referred to for producing a proper transla-
tion, including terminologies and style specifications, are mentioned in the translation workflow
standard, ISO 17100 (ISO/TC37, 2015). Other items are mentioned in existing criteria for qual-
ity assurance, such as the Multidimensional Quality Metrics (MQM)2 and the Dynamic Quality
Framework (DQF).3 Reference sources, such as translation memories and bilingual concor-
dancers, and other access to past translations are valuable assets for improving efficiency in
personal practices and workflows in TSPs. However, there is neither a comprehensive inven-

2http://www.qt21.eu/launchpad/content/multidimensional-quality-metrics
3https://www.taus.net/data-for-ai/dqf
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tory of references, nor a common view of the extent of the necessity and availability of each
reference depending on the given skopos.

Recent advances in MT go beyond segment-level and/or text-to-text processing. For in-
stance, Voita et al. (2019) focused on several discourse-level issues, i.e., deixis, lexical cohe-
sion, and ellipsis, occurring in segment-level text-to-text MT. Following studies proved that
context-aware decoding that refers to several preceding segments better handles these linguistic
phenomena (Lopes et al., 2020). There are several focused studies on exploiting extra-document
and non-linguistic information, including terminologies (Arthur et al., 2016; Hasler et al., 2018),
politeness (Sennrich et al., 2016a), domain (Chu et al., 2017; Kobus et al., 2017; Bapna and Fi-
rat, 2019), style (Niu et al., 2017; Michel and Neubig, 2018b), markups (Chatterjee et al., 2017;
Hashimoto et al., 2019), and external lexical knowledge (Moussallem et al., 2019). However,
the information indispensable for producing a proper translation have not been thoroughly stud-
ied. More importantly, no work guarantees to perfectly reflect such information.

The MT community has benefited from manual analyses of translation issues4 caused by
MT systems. Existing methodologies for analyzing translation issues in MT outputs can be
two-fold: (a) comparisons of independent products, i.e., MT outputs and human translations
(Popović and Ney, 2011; Irvine et al., 2013; Toral, 2020), and (b) annotations of the issues
in MT outputs according to pre-determined issue typologies, such as MQM and DQF (Lom-
mel et al., 2015; Ye and Toral, 2020; Freitag et al., 2021). The issues identified in the former
approach contain both true errors and preferential differences, i.e., alternative acceptable trans-
lations independently selected by MT systems and humans. The latter approach enables us to
clearly separate them. For instance, past studies (Hardmeier, 2014; Scarton et al., 2015; Voita
et al., 2019) analyzed outputs of segment-level text-to-text MT, showed the limitation of that
approach, and encouraged the research on document-level MT. However, they discussed only
the differences between two text-to-text approaches. Issues beyond the text-to-text processing,
such as those related to extra-document and/or non-linguistic information, have seldom been
mentioned (Castilho et al., 2020), and no focused and empirical analysis has been conducted.

3 Subject of Our Case Study

Our focus in this paper is to clarify the types of extra-document and/or non-linguistic informa-
tion that are indispensable for producing a translation. Among several translation tasks, this
paper takes an English-to-Japanese news translation task as a case study and presents our in-
depth analysis. We chose it for two reasons. First, despite the high demand for it, the task is
still very difficult, since the two languages are linguistically distant and used in substantially
different cultures (cf. English-to-German studied by Scarton et al. (2015)). The norms for news
texts are also substantially different in these languages, making them more difficult to trans-
late than texts in other domains, such as scientific paper abstracts (Nakazawa et al., 2019) and
patent documents (Goto et al., 2013). The second reason is that we wished to conduct an in-
depth analytic assessment of translation (see Section 5) by ourselves. We have a linguist who is
highly competent in both linguistics and translation and has ample experiences in the analytic
assessment of both MT outputs and human translations.

As material for this case study, we used the documents in the Asian Language Tree-
bank (ALT) (Riza et al., 2016).5 Table 1 gives statistics for the English source documents and
Japanese target documents produced by professional human translators, where the numbers of
tokens were counted after applying our in-house tokenizers.

4As a way of human evaluation, holistic assessment (or scoring) (Barrault et al., 2019; Nakazawa et al., 2019; Läubli
et al., 2020; Barrault et al., 2020) is also beneficial, but does not suffice for our needs.

5http://www2.nict.go.jp/astrec-att/member/mutiyama/ALT/
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Split #Doc. #Seg.
#Tok.

English Japanese
Training 1,698 18,088 2,572k 3,743k
Development 98 1,000 139k 202k
Test 97 1,018 143k 208k

Table 1: Statistics for the ALT English–Japanese data (ALT-Standard-Split).

4 Data Collection

To clarify the limitations of the text-to-text approach for MT while acknowledging its status,
we began with the outputs of a reasonably strong NMT system and collected examples of trans-
lation issues with their revisions through a modified version of the two-stage PE workflow
originally proposed by Scarton et al. (2015). Our procedure is as follows.

Stage (1) Segment-level text-to-text NMT: Given source documents are translated by an MT
system, which is preferably the one that can produce a translation of exploitable quality.
We regard a segment-level text-to-text NMT as the subject.

Stage (2) Segment-level minimal PE: Each segment-level MT output is separately post-
edited without referring to any information other than the segment itself, for example,
other segments in the same document and other reference documents. To avoid introduc-
ing any preferences from human workers, this stage allows only minimal edits.

Stage (3) Document-level full PE: The results of stage (2) are further post-edited at document
level to resolve the remaining issues caused by segment-level and/or text-to-text process-
ing, where the human workers are allowed to refer to any necessary information. The
resulting data exhibit the limitations of the segment-level text-to-text processing.6

Figure 1 compares our workflow (in the right-most path) with conventional human trans-
lation (“Non-MT workflow”) and the prevalent one in TSPs (“MT+PE”), i.e., segment-level
text-to-text MT followed by document-level manual full PE. Our workflow can be seen as an
extension of “MT+PE” with an intermediate segment-level minimal PE stage.

The division of segment-level and document-level PE was originally proposed by Scarton
et al. (2015) as a means of manually assessing the outputs of statistical MT (SMT) systems.
Note that our subject is not the gap between segment-level and document-level text-to-text
processing, i.e., MT systems, as in Scarton et al. (2015), but the limitation of such text-to-
text processing. We therefore need to collect translation issues that can only be resolved by
referring to information other than the given textual information. To exclude issues that can
be resolved by referring only to the given textual information as much as possible, we decided
to obtain translations that are attainable but closest to the outputs of text-to-text MT through
minimal PE; we explicitly constrain the human workers by (i) prohibiting them from referring
to any information other than the textual information and (ii) allowing only minimal edits,7

while also avoiding subjective stylistic changes.8 Even though document-level text-to-text MT
6Translation obtainable through this method is not necessarily of high quality because it is, in the end, post-editese

(Toral, 2019). We plan to analyze the gap between PE-based translation and high-quality human translation, i.e., the art
of translation, in our future work.

7This might be comparable with the goal of light PE (ISO/TC37, 2017): “obtain a merely comprehensible text
without any attempt to produce a product comparable to a product obtained by human translation.”

8Scarton et al. (2015) regarded style changes as the translator’s choice. However, according to ISO/TC37 (2015),
the appropriate style is not determined by the translators, but by the extra-document specifications for translation, for
instance in the form of a translation brief that specifies the purpose/usage of the translated documents.

Proceedings of the 18th Biennial Machine Translation Summit 
Virtual USA, August 16 - 20, 2021, Volume 1: MT Research Track

Page 218



Target document
(final)

Source document

Target document
(draft)

Non-MT workflow MT+PE

(1) MT

Ours

Segment-level
text-to-text process

Translation process
Translation

Revision & review

(2) Minimal PE

(3)
Full PEFull PE

Figure 1: Comparison of translation workflows: the translation process refers to any information
other than the given source document (cf. text-to-text process).

has been actively studied (Voita et al., 2018, 2019; Lopes et al., 2020), we decided to begin with
segment-level MT and PE because we can ensure the minimality of the edits using segment-
level automatic metrics (see Section 4.2).

By performing only minimal PE at segment level, we can leave all the translation issues
that can only be resolved by referring to extra-document and/or non-linguistic information for
a later stage. These issues are resolved in the succeeding document-level full PE stage, and
we distinguish (a) those issues revealing the gap between segment-level and document-level
processing and (b) those issues revealing the limitations of the text-to-text processing, through
our manual analysis (see Section 5).

Our process for collecting translation issues uses some parameters that differ from those in
Scarton et al. (2015), including the MT paradigm (SMT vs. NMT), translation task (English-to-
German vs. English-to-Japanese), and worker experiences (students vs. professionals employed
by a TSP with ISO certificates (ISO/TC37, 2015, 2017)).

4.1 Stage (1) Segment-level Text-to-Text NMT
To begin with a translation of exploitable quality, we trained a segment-level but reasonably
strong9 English-to-Japanese NMT system on a large-scale in-house English–Japanese parallel
corpus (henceforth, TexTra)10 in addition to the ALT training data, using a method for domain
adaptation (Chu et al., 2017). First, we trained an English-to-Japanese NMT model on TexTra
alone, explicitly excluding all the segment pairs in the ALT. For each source and target lan-
guage, a sub-word vocabulary was also created from the corresponding side of this corpus: we
determined 32k sub-words with byte-pair encoding (Sennrich et al., 2016b) after tokenization.
Then, we fine-tuned the model parameters on a mixture of TexTra and the ALT training data.
Following Chu et al. (2017), we used a balanced mixture of the two corpora by inflating the
ALT training data K times and randomly sampling the same number of segment pairs from
TexTra. Finally, we further fine-tuned the NMT model on the ALT training data only.

We used Marian NMT (Junczys-Dowmunt et al., 2018)11 for all the NMT training and
decoding processes, using the Transformer Base model and the hyper-parameters for training as

9We are aware that our system would not be state of the art because we do not use synthetic parallel data, a model
ensemble, nor re-ranking. However, because these are all the methods for improving segment-level text-to-text MT, we
assume that omitting them does not affect the main issues that we identify during the document-level full PE stage.

10The size is confidential. The generic model can be used via https://mt-auto-minhon-mlt.ucri.jgn-x.jp.
11https://github.com/marian-nmt/marian/, version 1.7.0

Proceedings of the 18th Biennial Machine Translation Summit 
Virtual USA, August 16 - 20, 2021, Volume 1: MT Research Track

Page 219



used in Vaswani et al. (2017). We terminated the training at each phase by early-stopping with
a patience of 5, regarding the model perplexity on the ALT development data, computed after
every T iterations, as the evaluation criterion. The value of T was set to 5,000 for the phase 1,
and 10 for the phases 2 and 3. For the value of sample size K in phase 2, we selected 32 from
the options 1, 2, 4, 8, 16, 32, and 64 according to the BLEU score (Papineni et al., 2002) on
the ALT development data, computed by SacreBLEU (Post, 2018).12 When decoding the ALT
test data, the beam size was fixed 10, and the value for the length penalty was tuned on the ALT
development data and set to 0.8.

4.2 Stage (2) Segment-level Minimal PE
To perform a segment-level PE, we isolated each segment from the others in the same document
by shuffling the pairs of source segment and corresponding segment-level MT output across all
the test documents.

We then asked13 an experienced, ISO-certified TSP with well-designed workflows for
translation (ISO/TC37, 2015) and PE (ISO/TC37, 2017) to revise the MT output of each seg-
ment independently without referring to any information other than the individual segment. The
goal of this stage was to obtain a segment-level translation that fluently and accurately conveys
the information in the corresponding source segment. To avoid excessive PE, we imposed a con-
straint, hter(m, p) ≤ hter(m, r), where m, p, and r stand for the MT output, its post-edited
version, and reference translation,14 respectively. hter(a, b) is the Human-targeted Translation
Edit Rate (HTER) (Snover et al., 2006), which computes how one segment a is dissimilar from
another segment b at surface level, implemented in tercom.15 We used MeCab16 to tokenize
the Japanese translation, unlike our implementation of NMT, in order to enable the consistent
tokenization in both our environment and the workers’ environment.

During this process, 95% of the segments (970/1,018) received some revisions. This sug-
gests that our system still seldom generates acceptable segment-level translation in this English-
to-Japanese news translation task. Because we allowed only minimal editing operations, the
results represent the closest goal of segment-level text-to-text MT.

4.3 Stage (3) Document-level Full PE
After completing segment-level minimal PE for all segments, the documents were reverted by
ordering the segments. We then asked17 another set of workers through the same TSP to further
revise the translation referring not only to the entire document but also to any extra-document
and/or non-linguistic information, as in the ordinary document-level full PE workflow, i.e.,
“MT+PE” in Figure 1. Note that we hid the original MT outputs and provided the results of
segment-level PE as the draft translation for revision. The workers were asked to make the
target documents cohesive, consistent, and appropriate for news articles, also correcting content
errors if any. Some examples are presented in Section 5.1.

As a result, 320 segments (31%) in 86 documents (89%) were revised. The total quantity
of edits during this stage was much smaller than in the previous stage, but they were indeed nec-
essary to obtain proper translations. This also confirms that a sequence of acceptable segment-
level text-to-text translations does not necessarily qualify as translation. It further confirms that,

12https://github.com/mjpost/sacreBLEU/, short signature: BLEU+c.mixed+l.en-ja+#.1+s.exp+t.13a+v.1.4.1
13The price was based on the number of tokens in the source documents as in an ordinary translation contract. Thus,

there was no incentive to increase the amount of PE.
14The TSP and workers did not see the ALT reference translation, and were asked to redo the task from the given

MT output if we judged that their PE result did not satisfy the constraint.
15http://www.cs.umd.edu/∼snover/tercom/, version 0.7.25.
16https://taku910.github.io/mecab/, version 0.996.
17For this task, we paid the same amount as we did for the segment-level PE.
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Translation BLEU (↑) HTER (↓)
Output of NMT trained only on ALT 14.6 73.9
Output of NMT in phase 1 29.0 55.5
Output of NMT in phase 2 35.8†1 47.6
Output of NMT in phase 3 36.0†1 47.6
Segment-level minimal PE result 36.8†3 47.0
Document-level full PE result 36.8†3 47.0

Table 2: BLEU and HTER scores of different versions of translations with respect to the ALT
reference translation (ALT). Note that these results are based on our in-house Japanese tokenizer
(cf. MeCab used in the workflow for consistent tokenization). “†1” and “†3” respectively denote
the score is significantly better than that for phases 1 and 3 (p < 0.05).

as in other well-studied translation tasks (Läubli et al., 2020; Freitag et al., 2021), human parity
(Hassan et al., 2018) is not yet attainable in this English-to-Japanese news translation task.

4.4 Translation Quality Measured by Automatic Evaluation Metrics
Table 2 summarizes the BLEU and HTER scores of different versions of translations obtained
in our workflow. To determine if differences in BLEU scores are significant, we performed sta-
tistical significance testing (p < 0.05).18 The BLEU score of our adapted NMT system (phase
3) was significantly better than the non-adapted system (phase 1). We consider that it generated
a translation of sufficient quality for this first stage in the process. Whereas the improvement
brought by segment-level minimal PE was visible and the BLEU gain was statistically signifi-
cant, the document-level full PE improved neither BLEU nor HTER scores.

5 Manual Analysis of Translation Issues

Our post-edited translation data contain two separate and different types of translation issues:
the remaining issues from the segment-level text-to-text MT, and the issues that require informa-
tion other than the individual segments to resolve. We manually analyzed the latter translation
issues resolved during the document-level full PE in stage (3).

First, using tercom, we automatically identified the corresponding text spans in the two
versions of the translations obtained in stages (2) and (3). Then, we manually extracted pairs
of text spans: one for an issue in the segment-level PE result, and the other for its revision in
the document-level PE result. As a result, we obtained 529 such revision examples. Finally, we
annotated each revision example with the following three types of labels.

Need for document-level textual information: whether the textual information outside the
segment but within the document was necessary to solve the issue.

Need for extra information: whether any extra-document and/or non-linguistic information
was necessary to solve the issue. If it was needed, we also noted the information types
(more than one if applicable).

Issue type: one of the 16 types in a translation issues typology designed for assessing and
learning English-to-Japanese translation (Fujita et al., 2017). We chose this typology be-
cause its usefulness for this translation direction had been verified, whereas a widely used
MQM had not.

18https://github.com/moses-smt/mosesdecoder/blob/master/scripts/analysis/bootstrap-hypothesis-difference-significance.pl
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Extra info.
No need Necessary

Document-level No need (a) 196 (c) 168
textual info. Necessary (b) 116 (d) 49

Table 3: Revision examples classified according to the types of necessary information.

Issue type
#Examples

(a) (b) (c),(d)
Lv 1: Incompleteness X4a: Content-untranslated 0 0 16

X6: Content-indecision 0 1 1
Lv 2: Semantic errors X7: Lexis-incorrect-term 5 6 67

X1: Content-omission 11 4 2
X2: Content-addition 3 0 0
X3: Content-distortion 42 31 25

Lv 3: Linguistic issues in target document X8: Lexis-inappropriate-collocation 5 0 0
X10: Grammar-preposition/particle 2 0 0
X11: Grammar-inflection 0 0 0
X12: Grammar-spelling 0 0 0
X13: Grammar-punctuation 7 0 0
X9: Grammar-others 1 0 0

Lv 4: Felicity issues in target document X16: Text-incohesive 31 63 14
X4b: Content-too-literal 54 0 7
X15: Text-clumsy 35 3 4

Lv 5: Register issues in target document X14: Text-TD-inappropriate-register 0 8 81
Total 196 116 217

Table 4: Distribution of the revision examples. Refer to Fujita et al. (2017) for the definition of
each issue type and the classification procedure, and Table 3 for the classification of (a) to (d).

Tables 3 and 4 show our classification results: whereas Table 3 shows a contingency ta-
ble based on the first two labels, Table 4 shows the type-wise numbers of revision examples,
merging (c) and (d) in Table 3 for the sake of simplicity.

5.1 Issues Beyond Text-to-text MT

Among the four classes shown in Table 3, our main subjects are 217 examples in (c) and (d) that
can only be resolved by referring to some extra-document and/or non-linguistic information.
Such information is categorized into the following four types.

A) Fine-grained style specifications (121 examples): Texts in Japanese newspapers are writ-
ten following various specifications, including those for vocabulary, set of characters, usages of
symbols including parentheses, degree of formality, and other notational rules. Our source texts
themselves might have revealed that they are from the news domain. However, the workers
for the segment-level minimal PE task did not perform revisions to fulfill such specifications,
leading to translation that is inappropriate for the register (81 X14 issues). Because of a lack
of a specification for transliteration at the segment-level PE stage, the workers left some named
entities untranslated (16 X4a issues), considering that Latin characters are sometimes used in
Japanese documents and that the contents in the source segments are comprehensible.
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Source: Clemens (3-0(#1), 1.90 ERA in seven World Series starts) will make his
33rd career postseason(#6,#7) start(#8) Saturday, at least for a day matching(#5) Pettitte
(3-4(#3), 3.90 in 10 World Series starts) for the most ever(#4).

Seg.PE: クレメンス（ワールドシリーズ７回出場で３対０(#1/3 points vs 0 points)、防御率１．

９０）は、少なくとも１日 [　](#2/ε)ペティット（ワールドシリーズ１０回

出場で ３対４(#3/3 points vs 4 points)、３．９０）と [　](#4/ε)組んで(#5/paired)、土曜日に

[　](#6/ε)３３回目のポストシーズン(#7/33rd postseason)のスタートを切る(#8/start)。

Doc.PE: クレメンス（ワールドシリーズ７回出場で３勝０敗(#1/3 wins and 0 losses/(c)/X3)、防御率

１．９０）は、少なくとも１日は(#2/topic marker/(a)/X15)

ペティット（ワールドシリーズ１０回出場で３勝４敗(#3/3 wins and 4 losses/(c)/X3)、３．９

０）と史上最多で(#4/most ever/(a)/X1)並び(#5/ranked same/(c)/X3)、

土 曜 日 に生涯で(#6/in ones life/(a)/X1)ポストシーズン３３回目(#7/33rd time in postseason/(c)/X3)の

先発登板を行う(#8/to be the first pitcher of the game/(c)/X3)。

Figure 2: An example segment (Doc.ID: 24312, Seg.ID: 15534), where eight issues (numbered
in the first element of subscript) were resolved during the document-level full PE. The second
elements of the subscript in the translation give phrase-level gloss, and the remaining elements
of the subscript for the document-level full PE represent the type of necessary information (see
Table 3) and the issue type (see Table 4).

B) Terminology (80 examples): When translating named entities, we must look up the ter-
minologies for authorized translations/transliterations. Consider, for instance, the person name
“John Paul.” The most likely transliteration for it is “ジョン・ポール” (/dZ’On p’O:l/). How-
ever, it must be transliterated into “ヨハネ・パウロ” (/joh2nE p2Ul@/) when it refers to the
Pope. Most improper and/or inconsistent term translations (64 X7 issues) and the above un-
translated entities (16 X4a issues) were caused due to a lack of a terminology.

C) Domain-specific knowledge (31 examples): Our documents cover diverse topics such as
politics, religion, and sports. Some semantic issues required knowledge specific to each of these
domains to understand the contents in the source texts and produce appropriate expressions.
See, for instance, the example in Figure 2. One must realize that this text is talking about
baseball, and have knowledge about that domain, in order to perform the revisions marked (c).
Some incohesive issues (five X16 issues) also require such knowledge to resolve.

D) Reference documents (eight examples): When translating ambiguous expressions, we
need some clues to disambiguate them. If the document does not contain such information, we
must find some reliable information outside the document. Because our text-to-text MT system
and our segment-level minimal PE can only access the textual information, some semantic is-
sues (seven X3 issues) and an incomplete translation with multiple options (X6 issue) were left.
The X6 issue gives both “兄 (elder brother)” and “弟 (younger brother)” as multiple translation
options for “brother.” This ambiguity was resolved only when the worker found credible bio-
graphical information on the Web. Although we found only eight examples that were resolved
in the document-level full PE stage referring to other information sources, we confirmed that
our text-to-text MT sometimes correctly disambiguates such expressions by chance.

5.2 Remaining Issues of Text-to-Text MT
The remaining 196 and 116 examples were respectively classified as (a) and (b), i.e., those that
had been resolved by referring only to the given textual information. These resolutions could
be attainable by algorithmic advancements in the text-to-text approach for MT. Although they
are outside the focus of this paper, we make some observations relevant to our study.
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Segment-level issues, i.e., (a), lie at the levels 2 to 4 in the issue typology (Table 4).
Whereas the ones at levels 2 and 3 should have been resolved through segment-level mini-
mum PE, the ones at level 4 are not considered mandatory as long as the translations are con-
sidered comprehensible. We believe that we have successfully excluded much larger number
of similar segment-level text-to-text issues by introducing the segment-level minimal PE stage
(Section 4.2) and the above remaining issues are not harmful to our study. We could have
reduced the examples in this class by removing our constraints for minimal edits. However,
this introduces some risks, such as losing examples in our concern, i.e., (c) and (d), and being
mislead by some artificial examples, such as combinations of preferential edits in both segment-
level PE and document-level PE.

Class (b) examples exhibit revisions made by referring to the textual information in the
document, but no more than that. They appeared at all issue levels in the typology except level
3, grammaticality, and the majority were either X16 (incohesive) or X3 (content distortion). To
translate the mentions of each entity coherently and cohesively (Voita et al., 2019), we need to
identify the correct referent of each mention. In the literature, a matrix called the entity grid
(Barzilay and Lapata, 2008) is used to represent the appearance of entities and segments in
the given source document. Actively studied document-level text-to-text MT might be able to
capture such information, for instance, by enhancing the self-attention mechanisms (Vaswani
et al., 2017; Maruf et al., 2019; Beltagy et al., 2020). However, as we confirmed in our analysis
(Section 5.1), referents are not necessarily given in the source document, and we hence must
seek reliable extra-document information.

6 Discussion and Future Directions

Techniques for MT have been advanced thanks to the simplified problem setting, i.e., text-
to-text processing, and the advent of automatic evaluation metrics, such as BLEU (Papineni
et al., 2002), which are based on comparison with reference translations. However, considering
the large gap between what text-to-text MT can ultimately attain and the needs that transla-
tion must satisfy, a fully automatic MT approach (Hutchins and Somers, 1992) still looks in-
feasible. Rather, approaches in machine-aided human translation and human-aided MT, i.e.,
human–machine interactions, are more promising. Indeed, “MT+PE” in Figure 1, which has
been prevalent in the translation production workflow at TSPs for a decade, lies in that direc-
tion. In this way, to reduce the cognitive load of PE, we must continue to enhance both wheels,
i.e., improving MT systems and determining the best practices in using them.

As confirmed in Section 4.2, segment-level text-to-text MT still has much room for im-
provement. Yet, as shown in recent studies, textual information within the entire source doc-
ument is useful. To generate cohesive texts, we should incorporate the latest outcomes in dis-
course processing and natural language generation, such as discourse parsing (Jia et al., 2018)
and generating referential expressions (Paraboni et al., 2007). To assess MT outputs for fur-
ther improvement while reducing the human labor in PE, we also need to invent document-
level automatic evaluation methods, preferably analytic ones rather than holistic ones. Ulti-
mately and ideally, we should also consider going beyond text-to-text processing, seeking better
ways for incorporating information indispensable for translation, such as those we described in
Section 5.1, rather than indirectly representing them with text data. For instance, to enforce the
use of particular expressions specified by pre-compiled terminologies and style specifications,
we need to improve the decoding mechanism, such as constrained decoding (Hasler et al., 2018;
Post and Vilar, 2018; Zhang et al., 2018). Style specifications and domain-specific knowledge
might be learned from text data in a given fine-grained domain, such as the one in Figure 2.
We can see related work in adaptive data selection (Chen et al., 2016) and extreme adaptation
(Michel and Neubig, 2018a).

Proceedings of the 18th Biennial Machine Translation Summit 
Virtual USA, August 16 - 20, 2021, Volume 1: MT Research Track

Page 224



In addition to the enhancement of MT systems, we should also establish reliable and ef-
fective ways for identifying critical issues in MT outputs as well as determining translation sce-
narios where MT is promising or hopeless. For instance, word frequency and sentence length
affect the segment-level MT quality (Koehn and Knowles, 2017). Such findings motivate the
pre-editing of segments prior to decoding (Pym, 1990; Miyata and Fujita, 2021).

From a general perspective, we should consider educating people (all people) so that they
acquire two types of literacy: translation literacy for understanding the norms, skopos, and
other specifications in their translation task (Klitgård, 2018), and MT literacy for understanding
the characteristics of the intended MT service, which helps minimize potential risks (Bowker
and Ciro, 2019). We believe that our method for clearly delineating between translation and the
translation that text-to-text MT can ultimately attain as well as our case-study findings can be
useful resources for such education.

7 Conclusion

To analytically assess issues that cannot be resolved by text-to-text processing, such as text-
to-text MT, this paper presented our specific constraints incorporated into the two-stage PE
pipeline originally proposed by Scarton et al. (2015). In a case study on the English-to-Japanese
news translation task, we found that translation issues beyond text-to-text processing are caused
by a lack of extra-document and/or non-linguistic information, such as fine-grained style spec-
ifications, terminology, domain-specific knowledge, and reference documents. The resulted
parallel data and annotated revision examples are publicly available.19

Our method is laborious and requires very high competence in both linguistics and transla-
tion. Nevertheless, it is applicable to other translation tasks where we can build an MT system
that can produce translation of exploitable quality. We thus hope other researchers use our
method to assess the limitations of text-to-text processing and the remaining issues in a wide
range of translation tasks. We plan to introduce another document-level minimal PE stage in
order to assess the attainable translation by document-level MT.

While clarifying the limitations, we also suggested how we can enable MT systems to
explicitly refer to extra-document and/or non-linguistic information. We plan to evaluate the
impact of enforcing decoding with external knowledge, such as terminologies and style specifi-
cations.

An important issue in present-day society was also illuminated: the need to cultivate trans-
lation literacy and MT literacy in people to avoid the risk caused by the innocent use of MT
services. To tackle this, we are currently compiling educational materials to help people under-
stand translation, MT, and their differences. We will also analyze various levels of competences
required for human translators, following the Competence Framework developed by the Euro-
pean Master’s in Translation (Toudic and Krause, 2017).
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