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Abstract
Sentence weighting is a simple and powerful domain adaptation technique. We carry out do-
main classification for computing sentence weights with 1) language model cross entropy dif-
ference 2) a convolutional neural network 3) a Recursive Neural Tensor Network. We compare
these approaches with regard to domain classification accuracy, and study the posterior prob-
ability distributions. Then we carry out NMT experiments in the scenario where we have no
in-domain parallel corpora, and only very limited in-domain monolingual corpora. Here, we
use the domain classifier to reweight the sentences of our out-of-domain training corpus. This
leads to improvements of up to 2.1 BLEU for German to English translation.

1 Introduction

Neural Machine Translation (NMT) outperforms phrase based SMT for settings with large
amounts of parallel data. However, in general adding out-of-domain data during training does
not particularly improve NMT translation quality and is sometimes even harmful. For SMT
domain adaptation is well understood and can be classified into two main approaches: 1) model
centric techniques adapt the training objective on instance level (e.g., sentence weighting or reg-
ularization) or model level (e.g., ensembling or language models), and 2) data centric techniques
perform a sentence selection based on a score indicating the similarity between the sentence to
be translated and in-domain data.

We combine ideas from model centric and data centric approaches. We apply CNNs and
Recursive Neural Tensor Networks (RNTNs) to compute domain scores for sentence weighting
in NMT. We compare with a Cross-Entropy classifier (XenC) as a well established baseline. Our
approach modifies the training objective so that every sentence pair is scaled by its individual
weight, with sentences most similar to the in-domain data having most impact during training.

Our classifier is trained on small amounts of in-domain and out-of-domain monolingual
data. We then use the classifier to find useful sentences within the out-of-domain data, i.e.,
sentences which are similar to the in-domain data.

We carry out intrinsic (classification) and extrinsic (MT) experiments applying sentence
classification for domain adaptation. The scores obtained by the CNN and RNTN are strongly
peaked in comparison to the cross-entropy classifier, which is important for the NMT sentence
weighting. As the neural classifiers showed rather extreme probability score distributions in
the intrinsic experiments, we studied various transformations of the scores which we use to
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find less peaked distributions. The resulting distributions showed less extreme behavior while
preserving the strong classification ability. Applying our transformed scores to the task of
sentence weighting for domain adaptation outperformed cross-entropy classifiers.

In summary, the contributions of this paper are as follows: 1) Neural classifiers show high
confidence separating in- and out-of-domain data, higher than a cross-entropy classifier, hence
posterior probabilities are distributed closely around the extremes 0 and 1. 2) The CNN and
RNTN classifiers don’t differ much from each other with respect to their score distributions,
both are strongly peaked. 3) The extreme scores need to be transformed in order to be applied
as weights in NMT, and we show how to do this effectively. 4) We show that using transformed
CNN scores as weights during NMT training is better than a cross-entropy based classifier,
which was the previous state-of-the-art solution.

2 Sentence-Weighting Techniques

In order to apply sentence weighting to the translation process, one first needs to come up with
a method for scoring sentences with respect to how similar they are to in-domain data. Here
we carry out a comparison between an established baseline (cross entropy) to the two different
techniques based on neural networks that we have discussed (CNN and RNTN).

2.1 XenC: LM Cross-Entropy Difference
Language model (LM ) cross-entropy difference scoring is a widely used technique for MT
domain adaptation. The approach is implemented in the tool XenC Rousseau (2013). Here
the difference between cross-entropy scores of sentences from the entire training corpus and
the sentences of an in-domain corpus is computed. We applied monolingual cross-entropy
difference as proposed by (Moore and Lewis, 2010), which is defined as

H(PLM ) = − 1

n

n∑
i=1

logPLM (wi | wi, . . . , wi−1) (1)

where PLM is the probability of the word wi given the words w1 to wi−1 for the language
model LM . LM is estimated from the specified in-domain corpus. The formula is applied to
all sentences in the training data for the NMT system, and is then interpreted as the sentence
weight. XenC is not a neural system. It applies statistical computation of cross-entropy given
an LM . The language model is a 4-gram model and Kneser-Ney smoothing is applied Ney
et al. (1994).

This approach is widely used throughout various papers and systems with regard to domain
adaptation. It is mathematically relatively inexpensive and can therefore be computed very
quickly even for extensive training corpora, without the need for GPU resources. These factors
make it a suitable baseline for our comparisons to neural classification systems.

2.2 CNN Classifier
Convolutional neural networks (CNN) perform very well on tasks like image and sentence
classification. In our case, we are classifying sentences in two classes, in-domain and out-
of-domain. We applied a plain vanilla system by Yoon Kim Kim (2014), which consists of a
simple CNN on top of pretrained word vectors. CNNs consist of layers with convolving filters
learning local features. In this architecture one layer of convolution is applied on top of word
vectors trained by Mikolov et al. (2013) on Google News. This approach performed well on
several sentence classification tasks (Kim, 2014).

Figure 1 shows this simple model architecture. A sentence of length n (shorter sentences
are padded) is represented as the concatenation of its word vectors. Similar to computer vision
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Figure 1: CNN model architecture.

tasks, filters are applied to words in a certain proximity to produce a new feature.

ci = f(w · xi:i+h−1 + b) (2)

b is a bias term and f a non-linear activation function. The filter slides over the input sentence
and therefore creates a feature map

c = [c1, c2, . . . , cn−h+1] (3)

Then max-over-time pooling is applied, ĉ = max{c}, to capture the most important feature for
each feature map. Multiple filters are applied simultaneously and the max-pooling outputs form
the penultimate layer. The last layer is a fully connected softmax layer to output the probability
distribution over the labels.

For regularization to reduce over-fitting and improve generalization, Dropout and con-
straining the l2−norms of weight vectors is applied Krizhevsky et al. (2012). Dropout ran-
domly drops out - i.e. setting to zero - a proportion p of hidden units (in this case in the last
layer) during training. Given the output of the max-pooling layer z = [ĉ1, ĉ2, . . . , ĉm], instead
of

y = w · z+ b (4)

dropout uses
y = w · (z ◦ r) + b (5)

with ◦ being element-wise multiplication and r ∈ Rm a “masking” vector of bernoulli dis-
tributed random variables with probability p of being 1. Furthermore a threshold s for l2−norms
in introduced, rescaling w to ||w||2 = s if ||w||2 > s after a gradient descent step.

2.3 RNTN Classifier
CNNs work on word vectors and filters, which aggregate local information within a sentence.
This is less expressive than richer forms of sentence representation, e.g., parse trees, which take
into account the grammatical structure. To deal with parse trees for sentiment classification
(Socher et al., 2013) introduced a recursive deep model, the Recursive Neural Tensor Network
(RNTN).

The representations of sentences within recursive neural models apply to variable length
and syntactic type and is used for classification. First, each sentence is parsed into a binary
tree with leaf nodes being single words, represented by a vector. Then the parent vectors will
be computed in a bottom-up fashion using compositionality functions g. The parent vectors
themselves are recursively given as features to a classifier and their parents respectively.
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Each word is represented by a d dimensional word vector. These are fed into activation
functions and ultimately used in softmax for classification.

Recursive Neural Network. The simplest approach is the standard recursive neural net-
work (Goller and Küchler, 1996; Socher et al., 2011). First, the parents whose children are
already computed (i.e. both children are words) will be evaluated with an activation function
f = tanh. Following equations are used to evaluate the parent nodes according to Figure 2a:

p1 = f

(
W

[
b
c

])
, p2 = f

(
W

[
a
p1

])
(6)

where W ∈ Rdx2d is the main learning parameter.
Matrix-Vector RNN. MV-RNNs are linguistically motivated in a sense that most of the

parameters are linked with words and that the composition function depends on the actual words
being combined. Each word and subphrase are represented as a vector and a matrix, which are
combined in the composition function.

Each word’s matrix initially is a dxd identity matrix with Gaussian noise. These matrices
will be trained to optimise classification. Each sentence and subphrase is represented by a list
of (vector, matrix) pairs and its parse tree. Following the same example from Figure 2a, the
computation is as follows:

p1 = f

(
W

[
Cb
Bc

])
, P1 = f

(
WM

[
B
C

])
, (7)

while the parent pair (p2, P2) is computed using (p1, P1) and (a,A). The vectors are fed into
the softmax function for classifying each subphrase.

(a) Recursive Neural Network: Parent vectors
are computed in a bottom up fashion, with ac-
tivation function g and node vectors as features
for classification. Socher et al. (2013) page 4
(CC BY-NC-SA 3.0 license).

(b) A single layer of an RNTN: Representation
of one of d-many slices, that can capture the
type of influence a child node can have on its
parents. Socher et al. (2013) page 6 (CC BY-
NC-SA 3.0 license).

Figure 2: Recursive Neural Network and Recursive Neural Tree Network architecture

Recursive Neural Tensor Network. Since MV-RNNs combine vectors with matrices,
the number of parameters becomes very large, also depending on vocabulary size. A fixed
number of parameters would be more desirable. The standard recursive neural network has to
be extended for this purpose, because there, different from the MV-RNN, the input vectors only
interact with each other implicitly.
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In search for a single, more powerful composition function to perform better and aggregate
meaning from subphrases, they proposed the Recursive Neural Tensor Network. The output for
a tensor product h ∈ Rd is computed as follows

h =

[
b
c

]T
V [1:d]

[
b
c

]
;hi =

[
b
c

]T
V i

[
b
c

]
, (8)

where V [1:d] ∈ R2dx2dxd is the tensor that defines multiple bilinear forms.
The RNTN uses a definition very similar to the standard recursive neural network for

computing p1:

p1 = f

([
b
c

]T
V [1:d]

[
b
c

]
+W

[
b
c

])
(9)

The tensor V can directly relate input vectors and its slices can be interpretated as capturing
specific types of composition, with a static number of parameters.

3 Intrinsic Evaluation: Domain Classification

3.1 Data
We study the interesting task of translation using limited in-domain monolingual corpora and
larger out-of-domain parallel corpora, which is a realistic scenario. All classifiers were trained
on 30k medical in-domain and 30k out-domain sentences, selected from the UFAL corpus.1

This training data was the same for all three classifiers to allow comparison. The RNTN requires
a certain input format, so the sentences were pre-processed by the Stanford Parser and brought
into the necessary parse tree format.

For intrinsic evaluation, the classifiers were applied to gold standard test data. News-
test 2017 was used as out-of-domain data, whereas the medical HimL test set2 was used as
in-domain data. Both test sets contain about 2k sentences.

The trained classifiers were applied to the test sets, in the next section we analysed the
classification errors and compared the respective probability score distribution.

3.2 Evaluation on Test sets
Classifier Acc. [%] Out Acc. [%] In Acc. [%]

CNN 80.4 87.9 72.8
RNTN 76.1 87.3 64.8
XenC 71.1 46.8 95.4

Table 1: Classification results on German out-
of-domain and in-domain test data.

Figure 3 and Table 1 show the scoring outputs
for in- and out-domain test data. These his-
tograms indicate how many sentences in the
test set where assigned a certain score with
bins of width 0.05. An output of 1 means high
confidence for in-domain data and 0 means
high confidence for out-domain data.

When comparing the results for the CNN
and the RNTN, the differences are rather small, without obvious difference in shape of their
distributions. We see a dominating peak at the correct side of the spectrum, which shows these
classifiers have a high degree of confidence in their decisions. This peak diminishes rather
quickly to then have a second minor peak around the other end of the spectrum.

This shape looks different for the cross entropy scoring. It resembles a bell curve with its
mean slightly skewed towards the correct side of the spectrum. This shows a relatively unclear
decision boundary between in- and out-of-domain data, since most of the sentences are scored
rather in the middle between the two extremes.

1https://ufal.mff.cuni.cz/ufal_medical_corpus
2https://www.himl.eu/test-sets
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These results should be taken with a grain of salt, as it is difficult to define pure in-domain
and out-of-domain data. Discussions in the European Parliament (as found in the Europarl
corpus) can revolve around medical topics, while being labeled as out-of-domain. Patient infor-
mation as found in the data by the Health in my Language (HimL) project can include phrases
of a more general nature, while being labeled in-domain. Such effects are not taken into account
in our work.

(a) Cross entropy, in-domain test
data

(b) CNN, in-domain test data (c) RNTN, in-domain test data

(d) Cross entropy, out-of-domain
test data

(e) CNN, out-of-domain test data (f) RNTN, out-of-domain test data

Figure 3: Classifier outputs on German test data

3.3 Classifier probability scores on NMT training data

We applied the classifiers to the source (German) side of the NMT training data, leading to
scores that can be used as weights during training the NMT system. Figure 4 shows the distri-
bution of the scores for the CNN and the Cross Entropy classifier. Since we do have English
data for the same 30K sentences, we also looked at this classification problem, but the graphs
are very similar, so they are not presented. The similarity of English and German suggests that
our work may apply well to other languages.

The scores by the XenC classifier look similar to a normal distribution, with its mean
around 0.5-0.6. Most of the sentences are scored with similar values, indicating an average
importance during learning. There are few outliers, overall the distribution is rather narrow
with a low standard deviation.

The scores by the CNN classifier look significantly different. Instead of the expected
normal distribution, most of the weights are below 0.1 with a few scores above 0.95. This
means that the classifier is very confident in it’s decisions. This high level of confidence is also
visible in Figure 3.

4 Extrinsic Evaluation: Neural Machine Translation

In this section we first present our score transformations, and then we present the experiments
and results.

Proceedings of the 18th Biennial Machine Translation Summit 
Virtual USA, August 16 - 20, 2021, Volume 1: MT Research Track

Page 181



(a) Cross Entropy classifier
XenC applied to NMT training
data

(b) CNN classifier applied to
NMT training data

(c) RNTN classifier applied to
NMT training data

Figure 4: Classifier outputs on German NMT training data

4.1 Score Transformations
In initial experiments (which we present in detail later), we found that without applying score
transformations instance weighting training of NMT models does not converge. During sen-
tence weighting, the probability score from the classifiers is multiplied with the learning rate.
As mentioned previously, the high classification confidence in neural classifiers lead to a vast
majority of sentences scored very close to 0, setting the learning rate during training very low.
This restricts the Transformer to only learn fully on a small subset of its original training data.
We suppose the rather extreme original probability scores let the NMT starve for data.

For the purpose of sentence weighting, the data distributions from the classifier outputs
are problematic in a sense that they put most of the mass to the borders of the distribution, i.e.,
almost all of the scores are very close to 0 or 1. This impacts the sentence weighting techniques
significantly, since a score that is almost 0 effectively excludes these sentences from the data set.
We therefore applied several score transformations to obtain a normalized score distribution, as
we describe next.

Parabolic Transformation. The first approach is to multiply each of the scores with a
linear function to increase the very low scores and decrease the very high scores. Here we chose
a simple linear function by taking an educated guess without doing further hyperparameter
optimisation. For every score x we applied the function

f(x) = x ∗ (−4.2 ∗ x+ 5) (10)

which results in a parabola with its peak around x = 0.5. A parabola in this shape increases low
scores and decreases high scores. Its parameters were an educated guess, leading to competitive
results in preliminary experiments.

Sigmoidal Transformation. The second approach is to limit the scores into a certain inter-
val using a sigmoid function. We tried different hyperparameters indicating different intervals
according the following function

α ∗ 1/(1 + exp(−6 ∗ (x− 0.5))) + (1− α)/2 (11)

indicating the interval [0.5− α/2, 0.5 + α/2]. These functions are shown in Figure 5a, leading
to a normalised distribution on the NMT training data shown in Figure 5b.

Quantile Transformation. The previous approaches lead to narrower and flatter data
distributions. As a third approach, we made the distribution completely uniform.

The second attempt was to “normalise” the quantiles by considering the negatively clas-
sified (0-0.5) and the positive (0.5-1) sentences separately and then performing the quantile
transformation on both subsets individually. Both categories were transformed into quantiles
according to their own distribtion and then transformed back into the respective interval.
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(a) Plot of sigmoidal transformation.
(b) CNN weights for NMT training data after sig-
moidal transformation with α = 0.6

Figure 5: Sigmoidal transformation and its effects on the probability score distribution

4.2 Experiments and Results

For our translation experiments we applied Marian (Junczys-Dowmunt et al., 2018) because
of its ability to incorporate sentence weighting. It offers a transformer (Vaswani et al., 2017)
implementation that closely follows the original architecture. This setup is shown to achieve
state-of-the-art results. Marian is C++ based, which makes it very time efficient.

We assume a scenario with a sufficient amount of parallel out-of-domain data, but only
a small amount of monolingual in-domain data on the source side. We use the classifiers we
trained before. 3M out-of-domain sentences (of which 2M are from Europarl, see the UFAL
corpus web page) from the UFAL corpus are used for training NMT. We report on two well-
known MT test sets (Cochrane and NHS24) which are both from the medical domain.

Table 2 gives an overview of all performed experiments. A baseline transformer model
(Table 2, row 1) was trained without any domain specific adaptation.

Since we assume we have 30K of monolingual in-domain data, we wanted to evaluate
whether giving the NMT system access to this data could be effective. Since we had a trans-
lation of this 30K available, we actually fine-tuned on parallel data (i.e., we assumed perfect
translation of the 30K, so this is an upper bound of the gains that could be obtained). The re-
sults (row 2) show that this is too little data to make much of a difference in translation quality
(0.2 to 0.4 BLEU gains), which is not surprising given the very large out-of-domain corpus.
The strong results we present below are qualitatively different from having access to a small
amount of in-domain data to train on (even small amounts of in-domain parallel data).

The results for the the XenC classifier (row 3) serve as a stronger baseline for our results
with the neural classifiers. We also tried to directly apply the scores from the neural classifiers,
but this led to bad or unstable models that did not coverge (not shown in table). Too many
sentences are scored too close to 0, letting their impact vanish, not allowing the training to
converge. As discussed earlier and shown in Figure 4 for the CNN, most of the probability
mass of the CNN’s score distribution is concentrated at the extremes, 0 and 1, leading to many
sentences having nearly no impact during training (this is similar for the RNTN as well). This is
similar to training with too little data, as weighting a sentence very close to 0 skips the sentence.

These effects can be repaired by adding +1 to the classifier scores (rows 4-6), leading to
improvements over the baseline for all trained systems, especially for the two neural classifiers.
Further experiments focused on the CNN because it outperforms the RNTN and is simpler.

Following this we looked at score transformations. The scores from the CNN were ma-
nipulated by various sigmoidal transformations (rows 7-9), as its results in the first experiments
looked most promising. As the qualitative analysis already showed in Figure 5b, after the sig-
moidal transformation the CNN scores look more natural. The experiment results indicate that
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this transformation also lead to major improvements (rows 7-9), producing the best result (row
8) among our experiments, an improvement over the baseline of 2.1 BLEU. The sigmoid trans-
formation keeps the CNN’s ability to clearly distinguish between in-domain and out-domain
sentences from the test sets - much clearer than XenC.

MT System BLEU

NHS24 Cochrane

(1) Baseline 24.2 24.5
(2) + Fine-tuning 24.6 24.7

Weighting With Transformation

(3) XenC 23.2 23.8

(4) XenC +1 24.2 25.2
(5) RNTN +1 24.7 25.2
(6) CNN +1 24.9 25.7

(7) CNN Sigmoidal0.8 24.7 25.7
(8) CNN Sigmoidal0.6 25.3 26.6
(9) CNN Sigmoidal0.4 24.6 25.7

(10) CNN + XenC 24.9 25.7
(11) CNN + XenC +1 25.2 25.5

(12) CNN Parabolic +1 24.7 25.2
(13) CNN Sigmoidal0.8 +1 24.4 25.8
(14) CNN Sigmoidal0.6 +1 24.6 25.7
(15) CNN Sigmoidal0.4 +1 24.1 25.8
(16) CNN Quantiles 10 +1 24.8 25.7
(17) CNN Quantiles NegPos +1 24.5 25.5

Table 2: Machine translation quality. We report case-
sensitive BLEU of postprocessed translations.

After analysing the results
of different values for α on
the score distribution for the
training data, we restricted our
hyperparameter search to three
values, covering a reasonably
big range, without requiring
an excessive number of NMT
training runs, which was not
possible given our resources.
α = 0.6 seemed promising
as higher values barely change
the score distribution and lower
values result in very narrow dis-
tributions, and indeed leads to
better NMT results.

Another possibility of
combining the CNN’s classi-
fying power and the XenC’s
natural score distribution, is
averaging their scores (rows
10,11). This also lead to im-
provements over the baseline
but could not beat the CNN in
combination with the sigmoidal
transformation (row 8).

Finally, as adding +1 to the
scores improved the results for all classifiers, we also applied +1 to the previously described
transformations (rows 12-17). This still lead to minor improvements over the baseline system,
but was harmful to the CNN and its sigmoidal transformation.

In summary we saw that classifier outputs might be too extreme in their distribution,
which can be normalised by transformations to even outperform baseline approaches. Neu-
ral classifiers show stronger abilities to distinguish between in-domain and out-of-domain data
than cross-entropy based classifiers, resulting in higher BLEU scores when applied in sentence
weighting.

5 Related Work

Domain adaptation strategies can be separated into four categories: data selection, data genera-
tion, instance weighting and model interpolation Chu and Wang (2018). We focus our discus-
sion on data selection and instance weighting, as these are closely related to our approach.

Data-centric methods. Models are trained using in-domain and out-of-domain data to
evaluate out-of-domain data and compute a similarity score. Using a cut-off threshold on these
scores the training data can be selected. Language Models Moore and Lewis (2010); Axelrod
et al. (2011); Duh et al. (2013) or joint models Cuong and Sima’an (2014); Durrani et al. (2015)
can traditionally be applied to score corpora. Recently convolutional neural networks (CNN)
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Chen et al. (2016) were used. Our work has similarities to this work but uses instance weighting
rather than data selection.

In settings where the amount of parallel training corpora is not sufficient, generating
pseudo-parallel sentences by information retrieval Utiyama and Isahara (2003), self-enhancing
Lambert et al. (2011) or parallel word embeddings Marie and Fujita (2017). Aside from gener-
ating sentences, other approaches generate monolingual n-grams Wang et al. (2014) or parallel
phrase pairs Chu (2015).

In general, data-centric methods (data selection and data generation) are not SMT specific
and can be directly applied to NMT. However, because these methods are not directly related to
NMT’s training criterion, they only lead to minor improvements Wang et al. (2017a).

Model-centric methods. Instance Weighting is a technique from SMT and was introduced
to NMT as well Wang et al. (2017b). An in-domain language model was trained to measure the
similarity between sentences and the in-domain data via cross-entropy. The weights are then
integrated into the training objective. We improve on their work by using state-of-the-art neural
classifiers and showing that they are more effective than cross-entropy.

Two works that are closer to our work are Wang et al. (2018) and Chen et al. (2017). In
Wang et al. (2018) they generate sentence embeddings for all in-domain sentences and then
measure the distance between every sentence and the in-domain core. The underlying assump-
tion is that the core of all in-domain sentence embeddings is a typical representative and prox-
imity in their sentence embeddings indicates being part of the same domain. This approach is
appropriate when we have in-domain parallel text, but we study a different scenario, with no
access to in-domain parallel text, which means the encoder has no access to in-domain training
examples. In Chen et al. (2017) a domain classifier is incorporated into the NMT system, us-
ing features from the encoder to distinguish between in-domain and out-of-domain data. The
classifier probabilities are used to weight sentences with regard to their similarity to in-domain
data, when training the neural network. Scaling the loss function is similar to multiplying the
learning rate with the instance weight. The classifier and NMT are trained at the same time,
whereas we chose an approach with pretrained neural classifiers which are trained on a small
amount of monolingual data (the scenario we study) with no access to parallel in-domain data.

Finally, while some previous work we have mentioned did look at various ways to use do-
main classification, such previous work has not focused on how to weight the classifier proba-
bilities for effective use in NMT, which we showed is important for obtaining translation quality
improvements, particularly when using neural classifiers which can be overconfident.

6 Conclusion

Neural classifiers have high confidence when separating in-domain from out-of-domain data,
leading to a strong decision boundary. Classification results are good, but the boundary was too
drastic, resulting in a poor score distribution with most mass near 0 and 1. This can be fixed by
adding +1, keeping sentences with a low score as they are and giving a bonus to sentences with
a higher score. The scores from, e.g., a CNN, can be transformed by a sigmoid function, making
the score distribution more natural while keeping its strong decision boundary. Cross-entropy
approaches lead to a poor score distribution. Sigmoid CNN scores performed best.

Our MT experiments showed that neural classifiers can be used to score out-of-domain data
effectively. Our work showed that simple transformations of classifier outputs are necessary.
The use of the transformed scores by applying sentence weighting on the NMT training data
improves translation quality. Our research shows that results from CNNs trained on domain
classification achieve significant domain adaptation effects in NMT. It was important to carry
out light-weight score transformations. We outperformed baseline experiments by up to 2.1
BLEU points.
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