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Abstract

This paper presents a study that compares non-manual markers of polar and wh-questions to
statements in Kazakh-Russian Sign Language (KRSL) in a dataset collected for NLP tasks.
The primary focus of the study is to demonstrate the utility of computer vision solutions for
the linguistic analysis of non-manuals in sign languages, although additional corrections are
required to account for biases in the output. To this end, we analyzed recordings of 10 triplets
of sentences produced by 9 native signers using both manual annotation and computer vision
solutions (such as OpenFace). We utilize and improve the computer vision solution, and briefly
describe the results of the linguistic analysis.

1 Introduction

Non-manual marking, that is, linguistically significant use of the body, head, facial features,
and eye gaze, is a prominent feature of sign languages (Pfau and Quer, 2010). For instance, in
most sign languages, polar questions are accompanied with raised eyebrows, and some type of
head movement (Cecchetto, 2012). While non-manual markers in many sign languages have
been previously studied, many other sign languages have not been analyzed before, including
Kazakh-Russian Sign Language (KRSL), which we discuss in this study.

Current developments in computer vision provide an opportunity for a large-scale quan-
titative research on non-manual markers. In this study, we evaluate whether computer vision
solutions can be utilized for the analysis of non-manual marking present in sign language video
recordings. The objective of this work is to compare non-manual markers in statements and
questions in KRSL, and to test a computer vision solution against manual annotations.
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2 Background

2.1 Non-manual markers in sign languages

Sign languages employ not only hands, but also the body, the head, and the face in order to ex-
press linguistic information. Non-manual markers have been analysed for many sign languages
(see Pfau and Quer (2010) for overviews). These markers function on different linguistic levels:
phonological, morphological, syntactic, and prosodic.

Question marking in particular has been studied for many sign languages (Cecchetto,
2012). Polar (yes/no) questions seem to be almost universally marked by eyebrow raise on the
whole sentence, while content questions (wh-questions) are more varied: some sign languages
use eyebrow raise, some use eyebrow lowering, and some a combination of both (Zeshan,
2004). In addition, some type of head movement is reported as a marker for many languages,
including backward head tilt (chin moving upwards) and forward head tilt (chin moving down-
ward/forward).1 The non-manual markers vary in scope: they can align with different con-
stituents in the sentence. Furthermore, recent corpus-based research shows a high degree of
variability of non-manual marking of questions, contrary to previous claims of the obligatory
nature of such markers (Hodge et al., 2019).

Because of both typological and language-internal variation in non-manual marking of
questions in sign languages, it is clearly necessary to conduct more empirical studies of such
marking in languages that have not been described yet. In addition, applying novel computer
vision techniques can facilitate reliable quantitative analysis and enable quantitative cross-
linguistic comparison in future.

2.2 Quantitative approaches to non-manual marking

While there exist quantitative studies of non-manuals in various sign languages, some also based
on naturalistic corpus data (Coerts, 1992; Puupponen et al., 2015; Hodge et al., 2019), until very
recently quantitative approaches were limited by the data sets and the available techniques of
analysing non-manuals. Many projects in the past employed manual annotation of non-manual
markers, which is both extremely time-consuming and potentially unreliable (Puupponen et al.,
2015). Moreover, manual annotation rarely provides the amplitude of non-manuals – in most
cases annotation only states the existence of the marker. A more reliable alternative has been to
use motion tracking to record precise quantitative data (Puupponen et al., 2015) e.g. on head
movement. However, using a motion tracking set up is costly, and the signers have to wear
trackers, which make the data recorded this way very far from naturalistic.

Currently two developments have made a large-scale quantitative studies of non-manual
marking possible. First, large naturalistic corpora have been created for several sign languages
(Crasborn et al., 2008; Konrad et al., 2020). Second, computer vision techniques now allow
tracking of the body and facial features in video recordings without any trackers (see references
in Section 4). The field of sign language translation has already benefited from these and other
factors (see (Camgoz et al., 2018) for a brief overview), however most models only consider
hand signs (Zimmermann and Brox, 2017) and other models do not interpret the video features
at all (Li et al., 2020). Therefore we are just starting a discussion on the applicability of machine
learning methods to non-manual feature extraction in sign languages. In this study, we test the
applicability of computer vision to studying question marking using a controlled data set of
statements and questions in Kazakh-Russian Sign Language.

1Other markers relevant for question marking include eye aperture, eye gaze direction, and body movements, but
we do not consider them in this study (Cecchetto, 2012).
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2.3 Kazakh-Russian Sign Language (KRSL)
KRSL is the language used primarily by the deaf and hard-of-hearing people in Kazakhstan.
We use the term KRSL to acknowledge the fact that this language is closely related to Russian
Sign Language due to the common history in the times of the Soviet Union. While no formal
comparison between the two languages has been conducted, anecdotally the two languages are
fully mutually intelligible, and not considered as separate languages by the deaf signers. Note,
however, that KRSL signs can be accompanied by Kazakh mouthings.

Question marking in KRSL has not been described before. Based on the typological re-
search cited above, we had a strong expectation that eyebrow position and head movement
would be used to mark questions in KRSL, and that polar questions would be marked with raised
eyebrows; we did not have a clear expectation about the eyebrow position in wh-questions.

3 Methodology

3.1 Participants and data collection
We collected video recordings from 9 native signers of KRSL: five deaf signers, and four inter-
preters, who are hearing children of deaf adults (CODAs). The data set analysed here is a part
of a larger data set collected for a different project on automatic sign language recognition.2

We created a list of 10 simple sentences consisting of a subject and an intransitive verb.
Each of the sentences was collected in three forms: statement (1a), polar question (1b), and
wh-question (1c). The former two types of sentences thus contained two signs, and the latter
type contained three signs due to the presence of a wh-sign.

1. (a) GIRL FALL (b) GIRL FALL? (c) WHERE GIRL FALL?
‘A girl fell.’ ‘Did the girl fall?’ ‘Where did the girl fall?’

The stimuli were presented in written Russian to the hearing signers, and as video recordings in
KRSL to the deaf signers. We did not use filler sentences, nor concealed from the signers that
we were interested in question marking in KRSL. Our aim was thus not to create a maximally
naturalistic data set, but a controlled data set with uniform structures produced by several signers
for experimenting with computational approaches. No explicit instructions were given about the
non-manuals, so we expected the signers to produce the markers natural to them.

Given that the data set was created for the purposes of automatic sign language recognition,
and not for research on the grammar of KRSL, and due to the relatively small pool of signers
which also includes hearing CODAs, the current study can only be considered describing non-
manual marking of questions in this specific data set, and not in KRSL in natural settings.
However, we believe that this is a first step towards a more broader research. Furthermore, the
size of the data set is quite small, so further testing of the approach with larger data sets will be
required in future.

3.2 Manual annotation
As the first step in research, we watched all the videos in order to get a qualitative picture of the
non-manual patterns. For polar questions, it turned out that the main non-manual markers were
eyebrow raise on the whole sentence and two consecutive forward head tilts on the subject and
verb (2). For wh-questions, it was eyebrow raise on the whole sentence or only on the wh-sign
and a backward head tilt on the whole sentence or the wh-sign (3-4). It was also noticeable that,
in wh-questions, the signers had less consistency in their marking.

2All the data used in this study as described below is available at https://github.com/kuzanna2016/
non-manuals-2020.
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2.
br_raise

head_forward
DOG

head_forward
EAT

‘Is the dog eating?’

3.
br_raise
chin_up

WHERE CHILD DANCE
‘Where the child is dancing?’

4.
br_raise
chin_up

WHEN MOM TIRED
‘When was mom tired?’

With these observations, it was decided that we need to manually annotate eyebrow move-
ment and head tilts. Besides that, the manual signs were annotated to determine the boundaries
of the constituents, and the syntactic roles of the constituents (subject, verb, wh-word) were
annotated. The annotations were made by the first author, according to the Corpus NGT Anno-
tation Conventions (Crasborn et al., 2015) using the ELAN software (ELAN, 2020).

In order to explore reliability of manual annotation, 20% of randomly selected videos (54
videos) were independently annotated by the last author specifically for eyebrow movement (as
later in the paper we assess computer vision measurements of this specific non-manual against
manual annotations). Inter-rater agreement was calculated in two different ways: using agree-
ment in category assignment and using the percentage of overlap between the annotations to
take duration into account. We found moderate raw agreement for eyebrow movement detec-
tion (67%), and even lower agreement in overlap between annotations (57%).

This testing of the reliability of manual annotations is a showcase of the difficulty and
subjectivity of this procedure. It is clear that automation of annotation is a necessity. At the
same time, the computer vision tools discussed below make it potentially possible to study
these subtle phonetic properties of non-manuals.

In some of the videos, the signers produced signs other than the subject, object, and the
verb (such as a past tense marker), and in a few videos the subject sign was missing. We
removed such videos from further quantitative analysis. Having done that, we had 259 videos
in total (88 statements, 82 polar questions, 89 wh-questions).
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Figure 1: The behaviour of keypoints with different head turns on the test video.

4 Applying computer vision

The field of computer vision is actively developing thanks to the advancements in deep learning.
Achievements in this area allow computers to process a large amount of visual information, such
as pictures, photos or videos. One of the tasks of computer vision is landmark detection. It can
be described as an object recognition task with localization: the algorithm needs not only to
detect an object on the image, but also to estimate the position of this object. We planned to use
face and head landmarks recognition tools to estimate the eyebrow and head movement.

OpenFace is a toolkit for facial landmark detection, head pose estimation, facial action unit
recognition and other facial behaviour analysis (Baltrušaitis et al., 2018, 2013; Zadeh et al.,
2017). OpenFace is able to estimate 3D landmarks position from 2D points using Point Distri-
bution Model, which parametrizes the shape of a face using a limited set of parameters, such as
scaling, rotation, translation and individual deformations of the face. We used OpenFace 2.2.0
FeatureExtraction model for getting face landmarks position in 3D and head pose estimation
for every frame. Face landmarks and head coordinates were in x,y,z-coordinates in mm, and the
head rotation angle was in radians with the camera being the origin. The model also provided
us with a confidence score for each frame. By outputting head rotation, OpenFace directly
provides a measure of forward/backward head tilt that we are interested in for the analysis.
However, the estimation of eyebrow position from OpenFace output is less straightforward.

When we visually investigated the OpenFace output, we noticed that the results conflicted
with our initial observations. We expected polar questions to have the largest eyebrow raise
but OpenFace output was even smaller than in statements. Furthermore, we saw correlation
between rotation angle and eyebrow distance, meaning that, probably, OpenFace predictions
are prone to bias by the head rotation.

To demonstrate this bias, we plotted 3 frames from our test video of the forward to back-
ward head tilt without eyebrow movement. We rotated the face keypoints in the reverse angle
of the computed head rotation and centred them on the bridge of the nose keypoint number 27.
From Figure 1, we can see that the face points, especially eyebrow points, are bending. Hence,
the 3D model that OpenFace deduces is likely to be distorted in the presence of head movement.
We therefore had to attempt to eliminate such distortions.

General 3D reconstruction from a single camera is a really challenging problem and it is
outside of our area of competence, therefore we were not able to modify the OpenFace model
itself. Moreover, we do not have the specifically annotated data with facial landmarks to retrain
the model. That is why we will deal with the computed output instead of the model.

To deal with the bias we created a machine learning model that would predict the eyebrows
distance depending on the head rotation when the eyebrows were not raised or lowered, i.e. the
default eyebrow distance with the influence of tilting. We trained linear regression with L2
regularization and alpha 0.001 from sklearn library for Python (Pedregosa et al., 2018) on
statements that contained no eyebrow raises: 63 sentences (4414 frames). The target of the
model was the distance from the eyebrow points (18, 23 - inner, 20, 25 - outer) to the eye line -
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a line between points 36, 45. The mean inner eyebrow distance in the subset was 29.7 and the
outer was 27.1. Our choice of the model was based on the observation that the distortion seems
to be linear and consistent across signers – Pearson correlation coefficient between vertical head
angle and the eyebrow distance to the eye line in sentences with no eyebrow raise is -0.42 for
the inner distance and -0.48 for the outer distance. Moreover, the training data set is small and
thus a simple model should be sufficient.

Model № Features inner MSE outer MSE

1 cos, sin, tan of vertical and horizontal head angles; 4
nose length (distance between points 27 and 30)

2 + signer IDs and sentence IDs 1.61 1.54
3 + the vertical eye distances 1.45 1.36

Table 1: Models’ features description and the results

The features of the models that we used are shown in Table 1. We did not use the angle
of rotation in the z-axis (from the ears to the shoulders) because it worsened the result for
such turns. We did not use pure radians for rotation, because they shifted the model to some
incomprehensible extremes.3 In all our experiments we used 5-split random permutation cross-
validation with test proportion of 25% (731 frames) to make sure the model does not overfit.

The first model performed with an MSE of about 4 for each eyebrow distance. However
we wanted a better result. We added meta information as one-hot encoded vectors and it signif-
icantly increased the quality on the cross-validation. We believe that this allowed the model to
learn the individual mean eyebrow height for each signer. We also noticed that blinking affected
the distance estimation, so we added eye aperture features, which slightly reduced the error.4

After training the final model on statements, the eyebrow distance was predicted for all
sentences, and then subtracted from the distance computed on OpenFace output directly. Thus,
we subtracted the changes in distance caused by the tilts from the distance based on the output
to get the unbiased distance measurement.

To check that this approach produced reasonable results, we looked manually at 35 sen-
tences and compared the predictions with the annotations. In general, the output of the model
agreed with our annotations. Furthermore, the correlation between the vertical head tilt and the
new eyebrow distance is lower than on the original distance (-0.27 for inner, -0.25 for outer).
Having demonstrated that this method of adjusting the eyebrow distance for head movement
works well, we conducted the subsequent analysis using it.

5 Statistical analysis

One of the main advantages of applying computer vision to analysis of non-manuals in sign
languages is that it opens the possibility of consequent advanced statistical analysis, instead of
relying on qualitative observations. Thus, we use the current data set to showcase a possible
statistical analysis of the output of the proposed computer vision approach.

We analyzed the data in R (version 3.6.3) using R Studio (version 1.0.143) (R Core Team,
2020; RStudio Team, 2020). For this study, we averaged the eyebrows distance in each video in
the parts of sentence areas for inner eyebrows points (20,23) and for outer eyebrows points

3We also deleted the frames that had low OpenFace confidence (<0.8) - 103 frames from 12 videos in total.
4It was our decision to select specific data set features to increase the accuracy of the model. Thus the current model

would not generalize to other data sets and we encourage other researchers to retrain it on their data or use the first
model without the meta features.
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Figure 2: Mean head rotation angle and predicted difference in eyebrow movement for three
sentence types. Vertical lines define the beginning and ending of the part of sentence tag (S
- subject, V - verb). Rotation graphs are reversed in y-axis for interpretation (lower angle -
backward head tilt, higher angle - forward head tilt).

(18,25) (averaging the left and right eyebrow distance). Thus, we had four eyebrow mea-
surements for all the sentences (inner and outer mean distance for the subject and inner and
outer mean distance for the verb) and separately we had six eyebrow measurements for the
wh-questions (inner and outer mean distance for the wh-sign, subject, and verb). Besides, we
calculated the mean head rotation angle on the x-axis (vertical tilts) again for two signs for all
the sentences and for three signs for the wh-questions.

A mixed-effects multivariate linear regression model was picked for the analysis (Baayen
et al., 2008; Bates et al., 2014). We made 9 models with the outcome variables of internal and
external eyebrow distances and head tilt angle on the subjects, verbs, and wh-questions.

The fixed predictor variables for the first 6 models were sentence type (categorical, three
levels: statement, polar question, wh-question), group (categorical, deaf vs. hearing), and all the
interactions between the two predictors. For the last three models, the fixed predictor variables
were part of sentence (categorical, three levels: wh-word, subject, verb), group (categorical,
deaf vs. hearing), and all the interactions between the two predictors. We used orthogonal
coding of contrasts for the predictors with three levels. Finally, for all models, the random
variables were participant (with a random slope for sentence type or part of sentence), and
sentence (with a random slope for group).

For the models, we used the lme4 package (Chung et al., 2015) with the help of the blme
package to achieve convergence with a small number of levels for the random effects (Chung
et al., 2013). The significance of the contribution of the factors was computed with the ANOVA
function from the car package (Fox and Weisberg, 2019).

6 Results

Firstly, we examined the results visually. From Figure 2, we can see that: polar questions have
tilting forward on the subject and verb and eyebrows raise on the whole question, while wh-
questions have tilting backwards on the wh-word and eyebrows raise in the beginning on the
wh-word, which is slowly declining to the end of the sentence. In all the statistical analyses
below, the effect of group and interactions between the group and the other effects were never
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significant, so we do not discuss them further.

6.1 Eyebrow movement
We find that sentence type significantly influences both internal and external eyebrows distance
on the subject and the verb (ANOVA χ2 show significance at p<0.001 for all the comparisons).

For internal eyebrow points, the eyebrows distance is bigger for wh-questions than state-
ments on the subject by estimated 1 mm (se = 0.64, t = 1.57), and on the verb by 0.87 mm (se
= 0.5, t = 1.76). The average between statement and wh-question is lower than polar questions
by 2.05 mm (se = 0.46, t = 4.48) on the subject and 2.34 mm (se = 0.55, t = 4.23) on the verb.

For external eyebrow points, the eyebrows distance is bigger for wh-questions than state-
ments on the subject by estimated 1 mm (se = 0.65, t = 1.5), and on the verb by estimated 0.63
mm (se = 0.5, t = 1.27). The average between statement and wh-question is less than polar
questions by estimated 1.66 mm (se = 0.43, t = 3.89) on the subject and 1.77 mm (sse = 0.6, t
= 2.91) on the verb. The difference in distance is lower for the external eyebrows than for the
internal eyebrows (but note that we did not quantitatively compare these differences).

In wh-questions, we find that the part of the sentence influences the eyebrow distance
(ANOVA χ2 for internal = 7.362, df = 2, p<0.05, for external = 6.824, df = 2, p <0.05).

Internal eyebrows distance on the subject is bigger than on the verb by 0.5 mm (se = 0.5, t
= 1.09). The average between internal eyebrows distance on subject and verb is less than on the
wh-word by 0.73 mm (se = 0.38, t = 1.9). External eyebrows distance on the subject is bigger
than on the verb by 0.68 mm (se = 0.47, t = 1.43). The average between external eyebrows
distance on subject and verb is less than on the wh-word by 0.59 mm (se = 0.4, t = 1.43).

To sum up, we confirmed our initial hypothesis that polar questions and wh-questions are
marked with eyebrow raise both internal and external. Besides, we find indications that the
contour of the raise is different in these sentence types, even though we have not tested the
significance of these differences as the estimates come from different models. The eyebrow
raise in polar questions is higher on the verb than on the subject, whereas in wh-questions it is
higher on the subject than on the verb. Also, the raise itself is smaller in wh-questions.

Moreover, we analyzed the eyebrow raise in wh-questions separately and found out that
eyebrows raise starts at the wh-word and then gradually decreases.

6.2 Head movement
As we stated before, vertical head tilts are measured in radian angles on the x-axis. A positive
angle means forward tilt, whereas a negative angle means head tilt backwards.

We find that sentence type influences the head rotation angle on the subject and the verb
(ANOVA χ2 for subject 8.819, df = 2, p <0.05, for verb 10.462, df = 2, p <0.01). The head
rotation angle is bigger for wh-questions than statements on the subject by estimated 0.006
radians (se = 0.029, t = 0.22), and on the verb by estimated 0.03 radians (se = 0.02, t = 1.4).
The average between statement and wh-question is lower than polar questions by estimated 0.13
radians (se = 0.046, t = 2.9) on the subject and 0.2 radians (se = 0.06, t = 3.1) on the verb.

In wh-questions, we find that the part of the sentence significantly influences the head
rotation angle (ANOVA χ2 = 39.887, df = 2, p <0.001). Rotation angle on the subject is less
by estimated 0.06 radians (se = 0.02, t =-2.6) than on the verb. Rotation angle is less on the
wh-word than on the average between subject and verb by 0.16 radians (se = 0.04, t = -4.19).

To conclude, as we saw in Figure 2, polar questions differ from wh-questions and state-
ments regarding head tilting forward on the subject and verb. Meanwhile, the difference be-
tween wh-questions and statements is not significant (0.006 radians and 0.032 radians on sub-
ject and verb respectively). However, when examining wh-questions separately, we confirmed
that the wh-word is marked with a head tilt backwards (-0.16 radians) in contrast to the other
part of the sentence, and this difference is significant.
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7 Discussion

7.1 Non-manual question marking in the KRSL dataset
Our study provides a first description of non-manual question marking in KRSL by analyzing
a dataset created for NLP purposes. As discussed above, it is inadvisable to generalize our
findings to naturalistic use of KRSL.

Both manual annotations and the quantitative analysis demonstrate that polar questions in
the dataset are marked by forward head tilt on the subject and the verb, and eyebrow raise on
the whole sentence; wh-questions are marked by backward head tilt on the wh-sign, and by
eyebrow raise on the wh-sign that can also spread to the whole sentence, but the raise is smaller
than in polar questions. This dataset thus neatly fits the most common typological pattern for
non-manual marking of questions in sign languages (Cecchetto, 2012).

7.2 Applicability of computer vision
This study demonstrates that it is possible to apply modern computer vision tools to analyze
non-manual markers in sign languages quantitatively.

OpenFace (Baltrušaitis et al., 2018, 2013; Zadeh et al., 2017) provides a solution to the
problem of using 2D video recordings for analysis by reconstructing a 3D model of the face
from the 2D representation. However, our experiments show that the reconstructed 3D model
is still sensitive to distortions due to some types of movement (specifically, due to forward and
backward head tilts). We developed a solution for this problem by applying machine learning
in order to teach a new model to account for the bias introduced by the head tilts.

Based on this experience, we can also offer a practical recommendation for linguists
planning to use OpenFace or similar tools for the analysis of non-manual markers. In case the
study involves novel data collection, it would be very useful to record each subject rotating their
head in various directions without moving the eyebrows or any other articulators on the face.
These recordings can be later use to train a model similar to the one described in this study to
correct for distortions due to head tilts. In our data set we fortunately had some recordings that
could be used as such a training data set, but it is better to plan for such a data set directly.

8 Conclusions

This paper presents the analysis of non-manual marking of simple polar and wh-questions in
KRSL produced by nine native KRSL signers for a dataset for automatic sign language transla-
tion. To this end, we firstly annotated the data set manually, and then applied computer vision
techniques to automate extraction of non-manual marking from video recordings.

Our findings suggest that polar questions in the KRSL dataset are marked by an eyebrow
raise on the whole sentence, and by consecutive forward head tilts on the subject and the verb.
In addition, wh-questions are marked by backward head tilts on the wh-sign, and by an eyebrow
raise on the wh-sign that can spread over the whole sentence.

Additionally, we demonstrated the utility of computer vision solutions, specifically, Open-
Face (Baltrušaitis et al., 2018, 2013; Zadeh et al., 2017) that can be applied to sign language
data for the purpose of linguistic analysis of non-manual marking. However, we also discovered
that head movement leads to distortion of the facial features even though OpenFace reconstructs
a 3D model of the face to account for such movement. We addressed this problem with a ma-
chine learning solution.
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