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Abstract

Multilingual pre-trained models have achieved
remarkable performance on cross-lingual trans-
fer learning. Some multilingual models such
as mBERT, have been pre-trained on unlabeled
corpora, therefore the embeddings of different
languages in the models may not be aligned
very well. In this paper, we aim to improve the
zero-shot cross-lingual transfer performance
by proposing a pre-training task named Word-
Exchange Aligning Model (WEAM), which
uses the statistical alignment information as the
prior knowledge to guide cross-lingual word
prediction. We evaluate our model on multi-
lingual machine reading comprehension task
MLQA and natural language interface task
XNLI. The results show that WEAM can sig-
nificantly improve the zero-shot performance.

1 Introduction

Large-scale multilingual pre-trained language mod-
els such as mBERT (Devlin et al., 2019), XLM
(Conneau and Lample, 2019) and XLM-R (Con-
neau et al., 2020) have shown significant effective-
ness in transfer learning on various cross-lingual
tasks. The pre-training methods of the multilin-
gual language models can be divided into two
groups: unsupervised pre-training like Multilingual
Masked Language Model (MMLM) (Devlin et al.,
2019; Conneau et al., 2020), and supervised pre-
training like Translation Language Model (TLM)
(Conneau and Lample, 2019). In the MMLM, the
model predicts the masked tokens with the mono-
lingual context; in the TLM, the model can attend
to both the contexts in the source language and
target language. Variations of TLM model can be
found in Huang et al. (2019); Chi et al. (2021);
Ouyang et al. (2020).

While it is possible for the model to learn the
alignment knowledge by itself, some works have
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investigated injecting prior knowledge to the model
to help it to align better. Cao et al. (2020) proposed
a bilingual pre-training model for mBERT, where it
identifies matched word pairs in parallel bilingual
corpora using unsupervised standard techniques
such as FastAlign (Dyer et al., 2013), and aligns
the contextual representations between the matched
words with a similarity loss function.

The previous works focus on aligning the con-
textual representations of the pre-trained models.
In this paper, we propose a new cross-lingual
pre-trained model called Word-Exchange Aligning
Model (WEAM). Different from previous works,
we align the static embeddings and the contextual
representations of different languages in the multi-
lingual pre-trained models.

Specifically, in the pre-training stage, we first
use FastAlign to identify bilingual word pairs in
parallel bilingual sentence pairs as our prior knowl-
edge. Then we randomly mask some tokens in the
bilingual sentence pairs. For each masked token,
WEAM performs two kinds of predictions: a mul-
tilingual prediction and a cross-lingual prediction.
The multilingual prediction task predicts the orig-
inal masked word in the standard way. while the
cross-lingual task predicts the corresponding word
from the representations in the other language. For
example, if the words apple and Apfel (German
for apple) appear in the the English–German par-
allel sentence and apple is masked in the sentence,
WEAM takes the representation of the masked ap-
ple and Apfel for multilingual prediction and cross-
lingual prediction respectively to recover the origi-
nal word apple.

Through the two ways of prediction, both the
contextual representations from the last transformer
layer and the static embeddings from the embed-
ding layer can be aligned. We evaluated our method
on the word-level machine reading comprehension
task MLQA (Lewis et al., 2019) and the sentence-
level classification task XNLI (Conneau et al.,
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it [MASK][MASK] 吗[CLS] 下⾬[SEP] [MASK]today ? [SEP]？ [PAD]

rainingIs 今天 rainingIs 今天

1

1

1

今天

下⾬

吗

？

[PAD]

Is it raining today ?

Figure 1: An overview of the Word-Exchange Aligning Model (WEAM). For each language pair, There are two
tasks. The multilingual prediction task predicts the masked tokens. The cross-lingual prediction task utilizes a word
alignment matrix to swap the representations of aligned words in parallel sentences, then predicts the masked tokens
in the swapped sentences.

2018). The results show that WEAM significantly
improves the cross-lingual transfer performance.

2 Methodology

2.1 Translation Language Model

We first briefly describe the Translation Language
Model (TLM) (Conneau and Lample, 2019). Like
MMLM in (Devlin et al., 2019), TLM performs the
masked word prediction task, where it randomly
masks some words and predicts the original ones
within a parallel sentence pair. For each masked
word, the model can either attend to the surround-
ing words or the translated context in the other lan-
guage, encouraging the model to align the words
in different languages.

2.2 Word-Exchange Aligning Model

Our proposed method WEAM is based on the mul-
tilingual pre-trained model and consists of two
tasks: the multilingual prediction task and the cross-
lingual prediction task, as shown in Figure 1.
Multilingual Prediction. In the multilingual pre-
diction, we randomly mask tokens in the bilingual
parallel sentences and predict the original tokens
with the outputs from the last transformer layer. un-
like TLM, we did not reset the position embeddings
or add the language embeddings, so the distinction

between languages will be purely learned from the
token embeddings. We construct the inputs and ob-
tain the representations for a source-target sentence
pair 〈S, T 〉 as

X = [CLS]S[SEP]T[SEP] (1)

H = Encoder(X) (2)

where X is the token sequence and H ∈ Rm×h is
the output from the last transformer layer of the pre-
trained model Encoder; m is the max sequence
length and h is the hidden size. For a masked
token Xi, we predict the original token wi with the
corresponding representation

H ′i = δ(W1 ·Hi + b1) (3)

p(Xi = wi|H ′i) =

exp(linear(H ′i) · ei)∑|V|
k=1 exp(linear(H ′i) · ek)

(4)

where δ is the GELU activation (Hendrycks and
Gimpel, 2016), linear(·) is a linear layer, Hi

is the token representation for Xi, as given by Eq
(2). |V| is the vocabulary size. ei is the emebdding
vector of token wi.
Cross-lingual prediction. In the cross-lingual pre-
diction, we predict the masked tokens with the
representations from the other language. Specif-
ically, we first use FastAlign to construct an
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Model en es de zh AVG(all) AVG(zero-shot)

Translate-Train
mBERT † 65.2/77.7 37.4/53.9 47.5/62.0 39.5/61.4 47.4/63.8 43.0/60.3
mBERT (ours) 67.3/80.3 48.4/67.1 49.1/63.5 42.8/63.6 51.9/68.6 48.1/65.7

Zero-Shot
mBERT † 65.2/77.7 46.6/64.3 44.3/57.9 37.3/57.5 48.4/64.4 44.2/61.0
mBERT+TLM 66.8/80.0 47.7/65.7 48.4/63.1 40.1/62.0 50.7/67.7 46.7/64.6
mBERT+WEAM 66.7/79.7 49.6/67.8 49.7/64.3 41.7/63.7 51.7/68.9 48.2/66.2

Table 1: EM/F1 scores on the test set of MLQA dataset. The results with † are taken from Lewis et al. (2019).
AVG(all) is the average scores on all languages. AVG(zero-shot) is the average scores on the languages excluding
English.

alignment words set from parallel sentences
〈S, T 〉. We denote the words set as d(s, t) =
{(i1, j1), ..., (in, jn)}, where i is the word index
of source language in the input sequence, j is the
word index of the target language. n is the num-
ber of word pairs in the sentence pair. Then we
generate effectively code-mixed representations by
exchanging the positions of each word pair in par-
allel sentences. We denote the exchange operation
with an off-diagonal matrix A ∈ {0, 1}m×m:

A(i, j) =

{
1, if {(i, j) or (j, i)} ∈ d
0, otherwise

We takeA as the transformation matrix to construct
the word-exchange representations H

′
, which is

calculated by

H ′ = AT ·H (5)

H̃ = W2 ·H ′ + b2 (6)

We have applied another linear transformation on
H
′

and obtained H̃ . Lastly, we conduct the masked
word predictions on H̃ similar to the multilingual
prediction:

H̃ ′i = δ(W3 · H̃i + b3) (7)

p̃(Xi = wi|H̃ ′i) =

exp(linear(H̃ ′i) · ei)∑|V|
k=1 exp(linear(H̃ ′i) · ek)

(8)

If the word wi is paired with word wj , what the
cross-lingual prediction does is predicting wi with
the contextual representation of wj . In this way
we are align the embedding of wi (ei) with the
contextual representation of wj (Hj).
Pre-training Objective. Given a bilingual parallel
corpus D, we train the multilingual model with the
cross-entropy loss. Based on the discussion above,

the objective function of pre-training consists of
multilingual part Lmp and cross-lingual prediction
part Lcp. Let Θ denote the parameters of the model,
then the objective function L(D,Θ) can be formu-
lated as

Lmp = −
∑M

i=1
log(p(wi)) (9)

Lcp = −
∑M

i=1
log(p̃(wi)) (10)

L(D,Θ) = Lmp + λLcp (11)

where M is the number of masked tokens in the
instance, p(wi) and p̃(wi), given by Eq.(6) and
Eq.(8), are the predicted probability of the masked
token wi over the vocabulary size, λ is a hyper-
parameter to balance Lmp and Lcp.

3 Experiments

3.1 Experiment Setup

We use three parallel corpora with the source lan-
guage English and the target languages Chinese 1,
German and Spanish 2 respectively. We initialize
the mBERT model with the weights released by
Google3. We pre-train three models for the three
target languages separately to avoid alignment in-
terference among different language pairs.

During the pre-training steps, we empirically set
the masking probability as 0.3. Experimentally we
find that 0.3 gives better performance. The other
settings for masking are the same as the MLM (De-
vlin et al., 2019). The hyper-parameters of the three
models are the same: we set the learning rate as
5e-5, the batch size as 32, the max sequence length
as 128, and the number of pre-training epochs as 2.
We set λ to 1.

1We use the corpus from Xu (2019).
2http://www.statmt.org/europarl
3https://github.com/google-research/bert
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Model en es de zh AVG(all) AVG(zero-shot)

Translate-Train
mBERT 82.1 77.8 75.9 75.7 77.9 76.5

Zero-Shot
mBERT† 82.1 74.3 71.1 69.3 74.2 71.6
Word-aligned BERT† 80.1 75.5 73.1 - - -
mBERT+TLM 82.0 75.0 73.5 73.1 75.9 73.9
mBERT+WEAM 82.6 76.4 74.5 74.4 77.0 75.1

Table 2: Accuracy scores on XNLI dataset. The results with † are taken from Conneau et al. (2020).
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Figure 2: A visualization of the word embeddings from mBERT before and after WEAM pre-training. We select 20
English-German word alignment pairs that appear most frequently in the pre-training corpus. Each word alignment
pair is connected by a blue dotted line. All the word pairs are identified by FastAlign (Dyer et al., 2013).

For the downstream evaluation, we fine-tune and
test our pre-trained model along with several base-
lines on the MLQA and XNLI tasks respectively.
The specific settings of baselines are described in
the following section. Since in this work we mainly
focus on evaluating the zero-shot performance, we
fine-tune all the models in the zero-shot setting
where only the English training set is available. We
also fine-tune mBERT in the translate-train setting
for comparison.

3.2 Baselines
We use mBERT (Devlin et al., 2019) as our main
baseline, which consists of 12 transformer layers,
with a hidden size of 768 and 12 attention heads.
For a fair comparison, we also include a baseline
mBERT+TLM with the same pre-training settings
but uses TLM as the pre-training task. An addi-
tional baseline word-aligned mBERT from Cao
et al. (2020) is included for the XNLI dataset.

3.3 Results on MLQA
Table 1 shows our results on MLQA. Note that
the results on the target languages of the TLM and
WEAM are from models of different language pairs
as introduced in the experiment setup section. The

results of TLM and WEAM on English are the
average of the three models.

The mBERT+TLM model outperforms mBERT
by a large margin in the zero-shot setting, but is
not as good as the mBERT in the translate-train
setting. Our model mBERT+WEAM improves the
scores in the zero-shot setting and also outperforms
mBERT in the translate-train setting. This result
is promising, as it indicates that a properly aligned
pre-training model can exceed the performance of
translate-train even with zero-shot training.

3.4 Results on XNLI
Table 2 shows our results on XNLI. The
mBERT+TLM and word-aligned mBERT achieved
similar improvements on this task compared to
mBERT, whereas mBERT+WEAM has signifi-
cantly outperformed both of them. Because all
of these models are pre-trained with the same paral-
lel corpus, the differences in performance indicate
the importance of considering both the word-level
and contextual-level alignment. Compared with the
translate-train result, the mBERT+WEAM result is
slightly lower but is close. This is different from
MLQA. This observation may indicate that the ex-
amples in XNLI have shorter input sequences and
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thus have fewer translation noises.

4 Visualization

The effect of contextual alignment has been well
studied in Cao et al. (2020), where the authors
demonstrate that the contextual alignment is power-
ful in improving the transferability of mBERT. but
the effect of the word-level information alignment
is still unclear. To further explore this problem, we
use t-SNE (Maaten and Hinton, 2008) to visualize
the distances between embeddings of word align-
ment pairs with the highest frequencies (excluding
stop words). The result is illustrated in Figure 2.

The left panel shows word pairs in the embed-
ding layer of mBERT without WEAM pre-training,
we can see that these word pairs are partly aligned.
For example, the pairs today-heute, Council-Rat
are aligned well, but Beriche-report, Mr-Herr are
distant away. As a comparison, we show the word
pairs from the embedding layer of mBERT with
WEAM pre-training in the right panel, where most
of the word pairs are aligned much better. There
are also words that remained poorly aligned even
with WEAM. For example, our-uns, which may be
due to that they are not the exact translation pair
(us-uns are more exact pairs in this case). In gen-
eral, the embeddings are aligned much better after
the WEAM pre-training procedure.

5 Conclusion

In this paper, we propose a new pre-training task
named WEAM to align the contextual represen-
tations and static word embeddings from multi-
lingual pre-trained models. WEAM consists of a
multilingual prediction task and a cross-lingual pre-
diction task. As a supplement to previous works
MMLM or TLM, WEAM introduces the statistic
alignment information as prior knowledge to guide
the cross-lingual prediction. Through the experi-
ments on MLQA and XNLI, we show that WEAM
can improve the transfer performance significantly
and align the word embeddings within the models
much better. In the future, we plan to extend our
method to other multilingual models like XLM-R.
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