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Abstract
We propose a new approach for learning
contextualised cross-lingual word embeddings
based on a small parallel corpus (e.g. a few hun-
dred sentence pairs). Our method obtains word
embeddings via an LSTM encoder-decoder
model that simultaneously translates and re-
constructs an input sentence. Through sharing
model parameters among different languages,
our model jointly trains the word embeddings
in a common cross-lingual space. We also
propose to combine word and subword embed-
dings to make use of orthographic similarities
across different languages. We base our experi-
ments on real-world data from endangered lan-
guages, namely Yongning Na, Shipibo-Konibo,
and Griko. Our experiments on bilingual lexi-
con induction and word alignment tasks show
that our model outperforms existing methods
by a large margin for most language pairs.
These results demonstrate that, contrary to
common belief, an encoder-decoder transla-
tion model is beneficial for learning cross-
lingual representations even in extremely low-
resource conditions. Furthermore, our model
also works well on high-resource conditions,
achieving state-of-the-art performance on a
German-English word-alignment task.1

1 Introduction
Cross-lingual word embedding learning has the
goal of learning representations for words of dif-
ferent languages in a common space (Mikolov
et al., 2013b; Conneau et al., 2018; Levy et al.,
2017). Cross-lingual representations are beneficial
for finding correspondences between languages,
and are utilised in many downstream tasks such as
machine translation (Lample et al., 2018; Artetxe
et al., 2018b) and cross-lingual named entity recog-
nition (Xie et al., 2018).

∗This work was partially done at Nara Institute of Science
and Technology.

1Our code is available at https://github.com/
twadada/multilingual-nlm

The recent trend in cross-lingual embedding
models is to leverage an enormous amount of
monolingual data for each of the target languages,
e.g. by training word embeddings monolingually
and mapping them into a common space. An-
other approach is to jointly train cross-lingual word
embeddings in the same space. Recently, cross-
lingual masked language models such as mBERT
(Devlin et al., 2019) have succeeded in learn-
ing cross-lingual representations using large-scale
monolingual data for multiple languages.

However, when dealing with endangered lan-
guages, there is generally no such large-scale cor-
pus of monolingual data, and when trained under
low-resource settings, modern pretraining meth-
ods do not perform well (Hu et al., 2020). In
this paper, we propose a joint-training method that
learns contextualised cross-lingual word embed-
dings using a small parallel corpus, of the scale
and form constructed by field linguists for language
documentation purposes. Compared to previous
models based on parallel corpora, our model has
two strengths: (1) while previous models extend
bag-of-words models such as Skip-Gram (Mikolov
et al., 2013a) and capture only rudimentary word
order information, our model encodes sentences
with LSTMs (Hochreiter and Schmidhuber, 1997)
and generates contextualised word embeddings;
and (2) our model trains subword-aware word em-
beddings and captures orthographic similarities
among the languages.

We perform evaluation over bilingual lexicon in-
duction and word alignment. Both tasks are ex-
tremely important to facilitate language documen-
tation, revitalisation, and education of endangered
languages. We run experiments targeting three
endangered languages — Yongning Na, Shipibo-
Konibo, and Griko (Section 3.1) — as well as four
high-resource language pairs, and show that our
model substantially outperforms strong baselines
for most language pairs.

https://github.com/twadada/multilingual-nlm
https://github.com/twadada/multilingual-nlm
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2 Methodology
2.1 Model Architecture
Our proposed model is based an LSTM2 encoder-
decoder model with attention (Luong et al., 2015b),
trained with translation and reconstruction objec-
tives (Figure 1). Suppose our model encodes a sen-
tence ⟨xs1..., xsN ⟩ in the source language s and de-
codes a sentence ⟨yt1..., ytM ⟩ in the target language
t. The encoder employs bi-directional LSTMs f ,
which are shared among all languages:

rsi = Esxsi , (1)
us1..., u

s
N = f(rs1..., r

s
N ), (2)

where xsi denotes a one-hot vector. In cross-lingual
tasks, we employ rsi and usi as the static and con-
textualised word embeddings of xsi . Given the en-
coder states us, the decoders −→g t and←−g t translate
(when s ̸= t) or reconstruct (when s = t) the
input sentence left-to-right and right-to-left. We
train separate decoders for each language and di-
rection to allow for the differences of word order.3
Similar to ELMo (Peters et al., 2018), the decoding
is performed independently in both directions:

rti = Etyti , (3)

p(yt1..., y
t
M ,EOS) =

M+1∏
i=1

p(yti |
−→
h i, u

s),

−→
h i =

−→g t(
−→
h i−1, r

t
i−1),

p(BOS, yt1..., ytM ) =

M∏
i=0

p(ytM−i|
←−
hM−i, u

s),

←−
h i =

←−g t(
←−
h i+1, r

t
i+1).

The output layer and attention mechanism are
shared across the two directions:

p(yti |hi, us, rs) = softmax(Et⊤h′i), (4)
h′i = W (ūsi + r̄si + hi), (5)

ūsi =

N∑
j=1

αt
i,ju

s
j , r̄si =

N∑
j=1

αt
i,jr

s
j , (6)

αt
i,j =

exp(hiusj)∑N
k=1 exp(hiusk)

, (7)

2We use LSTM rather than Transformer (Vaswani et al.,
2017) because LSTM is less sensitive to hyper-parameters and
performs better at translation under extremely low-resource
conditions (Zhang et al., 2020).

3In our preliminary experiments, we have found that learn-
ing language-specific decoders improves cross-lingual embed-
dings for distant languages, e.g. SOV and SVO languages.
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Figure 1: Our proposed model.

where hi denotes either
−→
hi or

←−
hi , andN is the num-

ber of words in the source sentence xs. In Eqn. (4),
we use the word embedding parameters Et for the
output layer (weight tying: Inan et al. (2017); Press
and Wolf (2017)). This technique can reduce the
number of the language-specific parameters sub-
stantially, encouraging the model to use the same
space across languages. When calculating atten-
tion weight in Eqn. (7), the model uses dot prod-
ucts of the encoder and decoder hidden states to
encourage them to be in the same embedding space.
In Eqn. (6), our model attends to the word embed-
dings as well as the hidden states to consider more
direct relations between source and target word em-
beddings, i.e. rti

⊤
Wr̄si directly contributes to the

probability p(yti).4 Furthermore, we employ very
aggressive dropout (Srivastava et al., 2014), which
is applied to all the input and output word embed-
dings Eℓ in Eqns. (1), (3), and (4), as well as to
ūsi + r̄si + hi in Eqn. (5) before the linear trans-
formation, with the dropout rate all set to 0.5. We
show that this strong regularisation leads to better
cross-lingual representations.

2.2 Shared Subword Embeddings
To incorporate orthographic information into word
embeddings, we propose a simple yet effective
method to combine word and subword embed-
dings, inspired by FastText (Bojanowski et al.,
2017). For each wordwℓ

i , we calculate its subword-
aware word embedding Ẽℓ

wi
as follows:

Ẽℓ
wi

= Eℓ
wi

+ F(Zk∈Q(wi)), (8)

4This simplifies the lexical model proposed by Nguyen
and Chiang (2018). While they apply separate output layers to
the weighted average of word embeddings and hidden states,
we have found that sharing the same output layer (Et) per-
formed the best, suggesting that the optimal model architec-
ture is different between word and sentence translations.
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where F(·) denotes the subword encoding function;
Zk denotes the k-th subword embedding and Q(wi)
denotes the indices of the subwords included in
wi. The subword embeddings Z are shared among
all languages, capturing orthographic similarities
across languages. For the encoding function F(·),
we experiment with two methods:5 (1) average
pooling (“SWave”); and (2) applying a convolu-
tional neural network (CNN) function which is
shared among all languages, followed by aver-
age pooling (“SWcnn”). For instance, the embed-
ding of the English word puts is represented by
its language-specific word embedding Een

puts and
shared subword embeddings Z@put and Zs, where
@ in @put denotes the beginning of a word. To
segment words into subwords, we apply Sentence-
Piece (Kudo and Richardson, 2018).6

Distinct from a standard NMT model, we use
the subword-aware embeddings Ẽℓ not only as
the input layers in Eqns. (1) and (3), but also as
the output layer in Eqn. (4) (Figure 1). In this
way, we encourage the model to learn subword cor-
respondences between the source and target lan-
guages through attention, i.e. Eqns. (4) and (5). In
monolingual language modelling, Assylbekov and
Takhanov (2018) have previously shown the effec-
tiveness of sharing morpheme-aware embeddings
between the input and output layers.

2.3 Training
Given a parallel corpus aligned between languages
s and t, our model is trained to minimise the
following training loss J = Js,t + Jt,s, where
Js,t =

∑Cs,t

j=1 ∆(xj , p(x
s
j |xsj)) + ∆(yj , p(y

t
j |xsj)).

Here, Cs,t is the number of aligned sentences
between languages s and t, and ∆ denotes the
cross entropy loss. The first and second terms
represent the reconstruction and translation loss,
respectively. Our model can also take multiple
parallel corpora as input and generate multilingual
word embeddings. In this case, we sum the loss
calculated on each parallel corpus. For instance,
we train our multilingual model to minimise
the loss J = Jnru,en + Jen,nru + Jnru,fr +
Jfr,nru + Jnru,zh + Jzh,nru given three parallel
corpora of nru–en, nru–fr, and nru–zh,7 where
some sentences are aligned between more than

5Dropout is always applied to subword embeddings.
6We also tried using character n-grams like FastText, but

observed worse results. For Chinese, we segment words into
characters due to the large number of character types.

7“nru” is the ISO-639-3 language code for Na.

src–tgt #Sents #Tokens #Vocab

src tgt src tgt

nru-en 605 4,690 7,849 1,860 942
nru-fr 3,833 33,816 75,997 8,801 4,797
nru-zh 1,766 15,127 21,598 4,704 2,459
shp-es 14,276 198,024 214,127 20,654 14,781

grk-it (s) 330 2,374 2,384 689 456
grk-it (l) 9,788 207,294 178,980 12,697 9,813

Table 1: The statistics of the parallel corpora of endan-
gered languages used in this paper. grk-it (s) and (l)
denote the smaller and larger corpora, respectively.

two languages. To balance the corpus size, we
perform oversampling to ensure that Cs,t is the
same regardless of the language pairs s and t. Our
model hyper-parameters are detailed in Appendix
A.8

3 Experiments
3.1 Data
We conduct experiments on real-world data sets for
three endangered languages: Yongning Na (nru),
Shipibo-Konibo (shp), and Griko (grk) (Table 1).9
The URLs of the data are shown in Appendix B.

3.1.1 Yongning Na
Yongning Na is an unwritten Sino-Tibetan lan-
guage with less than 50,000 speakers (Do et al.,
2014). Due to the lack of a writing system, tex-
tual data must be professionally transcribed from
speech by linguists, which precludes the use of the
latest pretraining methods such as BERT (Devlin
et al., 2019). As a cross-lingual resource for Na,
there exists a phonemically transcribed corpus that
has been translated into French, Chinese, and En-
glish, which is a part of the Pangloss Collection
(Michailovsky et al., 2014). However, there are
two challenges in learning cross-lingual represen-
tations from this data. First, the syntax and or-
thography of the languages are very different: Na
is an SOV language with rich tonal morphology
(Michaud, 2017), while the others are SVO lan-
guages. Second, there is a lot of noise in the par-
allel corpora. For instance, some words or phrases
in the translations are written in brackets, indicat-
ing alternative translations, subsidiary information,
or words that are implicit in the original Na sen-
tences (Table 2). To clean the data, we use the pre-

8They are tuned on a small subset of de-en or fr-en data.
9Note that Griko is not included in ISO-639-3, and “grk”

is an arbitrary (non-assigned) designator used in this paper.
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Na raw njɤ˧ | ɑ˩ʁo˧ | ə˧si˧-ɳɯ˧ ʐwɤ˩qʰv̩˩ mv̩˩ -hĩ˧ lɑ˩ ɲi˩ mæ˩!
cln njɤ˧ ɑ˩ʁo˧ ə˧si˧-ɳɯ˧ ʐwɤ˩qʰv˩mv˩-hĩ˧ lɑ˩ ɲi˩ mæ˩

English raw It (i.e. this story) is only what (we’ve) heard our great-grandmother tell.
cln it is only what heard our great grandmother tell

Table 2: An example Na–English parallel sentence before and after pre-processing (“raw” vs. “cln”)

processing code used in Adams et al. (2017) with
minor modifications.10

3.1.2 Shipibo-Konibo
Shipibo-Konibo is an indigenous language spoken
by around 35,000 native speakers in the Amazon
region of Peru (Vasquez et al., 2018), and is “def-
initely endangered” according to the UNESCO’s
Atlas of the World’s Languages in Danger (Mose-
ley, 2010). There is no large monolingual corpus
for the language,11 but for cross-lingual resources
there are two parallel corpora aligned with Span-
ish, which are extracted from the Bible and edu-
cational books (Galarreta et al., 2017). Similar to
Na, Shipibo-Konibo is an SOV language with very
rich morphology (Valenzuela, 1997; Vasquez et al.,
2018), whereas Spanish is an SVO language.

3.1.3 Griko
Griko is a Greek dialect spoken in southern Italy,
and “severely endangered” according to UNESCO.
There is no large-scale monolingual corpus of
Griko, but there are two Griko–Italian parallel cor-
pora (Zanon Boito et al., 2018; Anastasopoulos
et al., 2018), with the smaller one including gold
word alignment annotations. However, Griko has
never had a consistent orthography, and hence its
tokenisation and word segmentation differ across
these corpora: the smaller data set is based on
orthographic conventions from Italian, while the
larger one follows the concept of a phonological
word (Anastasopoulos et al., 2018). Unlike the Na
and Shipibo-Konibo data sets, Griko and Italian
are very similar in many ways: they both use the
Latin script and have similar syntax. Therefore, the
main challenge comes from the data paucity and in-
consistent orthography in Griko, both of which are

10We use white space as the word delimiter and keep all
tones in Na sentences, as removing tones increases polysemy
in the bilingual dictionary we use for evaluation. For Chinese,
we perform word segmentation using the Stanford Word Seg-
menter (Chang et al., 2008) after data cleaning.

11Recently, Bustamante et al. (2020) attempted to scrape
monolingual data from PDF documents, but the size of the
resulting data is still too small (22k sentences) to apply the
latest pretraining methods.

common problems for endangered languages.

3.2 Baselines
We compare our model against various cross-
lingual models that are trained on a parallel cor-
pus. First, we compare our model against a
recently-proposed word-alignment model based on
mBERT (Dou and Neubig, 2021).12 It fine-tunes
mBERT on parallel corpora using various cross-
lingual objectives, and achieves state-of-the-art
performance on word alignment tasks across many
language pairs. We also include Levy et al. (2017),
Luong et al. (2015a), and Sabet et al. (2020) as re-
cent word embedding baselines, which we denote
as SENTID, BIVEC and BIS2V, respectively. All
of these baselines are very similar in terms of
methodology: SENTID trains a Skip-Gram model
that predicts a sentence ID (which is assigned to
each set of parallel sentences) from the component
words; BIVEC trains a Skip-Gram model that pre-
dicts the context cross-lingually based on the word-
alignment information;13 and BIS2V trains a Con-
tinuous Bag-of-Words (CBOW) model that pre-
dicts a target word from the rest of the sentence and
its parallel sentence. Sabet et al. (2020) and Marie
and Fujita (2019) show that these joint learning
models perform better than mapping-based meth-
ods, which align monolingual word embeddings
cross-lingually.14 Regarding the vocabulary size
and word embedding dimension, we always use the
same values for all the baselines and our model, to
ensure fairness.15

In addition to these neural baselines, we also
compare our model against statistical word align-
ment methods, namely GIZA++ (Och and Ney,
2003) and Fast Align (Dyer et al., 2013). These
are pre-neural methods based on the IBM models

12We used the bert-base-multilingual-cased model, follow-
ing the original paper.

13We use Fast Align to generate the alignment.
14Besides, Wada et al. (2019) show that the mapping mod-

els perform very poorly on low-resource conditions. Based on
these findings, we did not include them as our baselines.

15Except for the mBERT baseline, which has its pre-defined
vocabulary and word embedding dimension, i.e. 768.
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(Brown et al., 1993), and still serve as de facto
standard models to generate word alignments (Cao
et al., 2020; Aldarmaki and Diab, 2019). For all the
baselines, we use the authors’ implementations.16

3.3 Experimental Settings and Evaluation
In our experiments, we train cross-lingual embed-
dings for five low-resource language pairs: Griko–
Italian, Shipibo-Konibo–Spanish and Na–{French,
Chinese, English}. For the Griko–Italian pair, we
evaluate models on a cross-lingual word alignment
task and report alignment accuracy (1−AER). We
use the gold alignments manually annotated over
the 330 Griko–Italian sentences. To produce align-
ments using Giza++ and Fast Align, we train
them on the 330 sentences with or without addi-
tional 10k sentences from a second corpus,17 and
combine forward and backward alignments using
the grow-diag-final-and heuristic. For the word
embedding-based methods, we train them on the
same data, and align each word in a sentence to
the closest word in its translation using static or
contextualised word embeddings.18 To calculate
word similarity, we use cross-domain similarity lo-
cal scaling (Conneau et al., 2018):

CSLS(x, y) = 2 cos(x, y)− 1

K

∑
yt∈NT (x)

cos(x, yt)

− 1

K

∑
xt∈NS(y)

cos(xt, y),

where cos(x, y) denotes cosine similarity between
x and y, andNT (x) andNS(y) denote the K near-
est words to x or y in a target or source sentence;
we set K to 3 in the word alignment task. For the
mBERT baseline, we follow the authors in using
the softmax function.19

For the Shipibo-Konibo–Spanish and Na–
{French, Chinese, English} pairs, we perform
bilingual lexicon induction (BLI). That is, for

16Fast Align: https://github.com/clab/fast_
align, Giza++: https://github.com/moses-smt/
giza-pp, SENTID: https://bitbucket.org/
omerlevy/xling_embeddings/src/default, BIVEC:
https://github.com/lmthang/bivec, BIS2V
https://github.com/epfml/Bi-Sent2Vec, and mBERT
https://github.com/neulab/awesome-align

17This is a standard training and evaluation setup for these
unsupervised word alignment models: the main objective of
word alignment is to extract equivalent words from parallel
texts, not to perform translation on held-out data.

18We align words bidirectionally and use the grow-diag-
final-and heuristic to produce the final result.

19We also experimented with the CSLS method and got
comparable results.

each source word in a bilingual dictionary, we
extract the k nearest words from the whole target
vocabulary and see whether they are listed as
translations in the dictionary. We set k to 1 or
5, and report P@1 and P@5. For evaluation,
we use a Shipibo-Konibo–Spanish dictionary20

(Maguiño-Valencia et al., 2018) and Na–French–
Chinese–English dictionaries (Michaud, 2018).
Based on extracting words that are present in
the parallel corpora, we identified 79, 262, 215
and 87 word pairs for Shipibo-Konibo–Spanish,
Na–French, Na–Chinese, and Na–English.21 To
perform BLI with GIZA++ and Fast Align, we use
their source-to-target probability table. We also try
using the result of bidirectional word alignments,
aligning each word to the most frequently aligned
words to it.22 For the neural baselines and our
model, we use static word embeddings and employ
CSLS to measure the word embedding similarities.
To obtain static word embeddings using mBERT,
we calculate the contextualised representations
for each word (calculated as the average of its
subword embeddings), and take the average over
all word occurrences.23 In BLI, NT (x) and
NS(y) denote the K closest words extracted from
the whole vocabulary, with K = 10, following
Conneau et al. (2018).

3.4 Model Selection
Since our evaluation data (i.e. bilingual dictionar-
ies and gold word alignments) is extremely lim-
ited, we do not have access to validation data to
perform model selection over. Therefore, for all
methods except ours, we run the models with dif-
ferent configurations and report the best scores
of the baselines on the test data to show their
upper-bound performance, which clearly gives a
significant advantage to the baselines.24 For Fast
Align and GIZA++, we train the models for 5 (de-
fault), 10, 15, or 20 iterations independently, and

20In this dictionary, sets of synonyms are aligned cross-
lingually and we regard each member of them as translations.

21Since the Shipibo-Konibo–Spanish parallel corpora con-
tain pairs of words as well as sentences, we include them in
the evaluation data and remove them from training data.

22We use the probability tables as a backup when there are
less than k aligned words.

23We also tried taking the average of the static subword em-
beddings of mBERT, but observed much worse results.

24In addition, we tuned the hyper-parameters of BIS2V and
BIVEC based on P@1 on the na–en test data, based on the
observation that they were very sensitive to hyper-parameters
in low-resource conditions (e.g. BIVEC ranged from 5.4 to
33.8 P@1 in the na–en BLI task). Refer to Appendix C for the
hyper-parameters of the baselines we used in our experiments.

https://github.com/clab/fast_align
https://github.com/clab/fast_align
https://github.com/moses-smt/giza-pp
https://github.com/moses-smt/giza-pp
https://bitbucket.org/omerlevy/xling_embeddings/src/default
https://bitbucket.org/omerlevy/xling_embeddings/src/default
https://github.com/lmthang/bivec
https://github.com/epfml/Bi-Sent2Vec
https://github.com/neulab/awesome-align
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src–tgt P@k
mBERT SENTID BIVEC BIS2V Fast Align GIZA++ OURS

MLM SG SG CBOW Ptable +Align Ptable +Align Word +SWave +SWcnn

nru–en 1 1.8 29.7 32.9 26.6 23.0 21.6 25.7 21.6 30.2 32.0 35.6
5 4.1 50.9 50.4 44.6 48.6 50.0 43.2 47.3 50.9 56.3 51.8

nru–fr 1 0.2 22.7 23.6 19.6 23.6 20.8 22.2 15.7 27.3 29.9 32.1
5 0.8 37.7 40.1 30.2 35.2 36.1 32.9 37.5 43.7 47.8 46.0

nru–zh 1 0.5 28.7 31.9 25.1 31.6 29.9 29.4 25.7 31.6 36.7 38.5
5 1.2 44.8 50.6 46.0 46.0 44.4 44.4 46.5 49.6 56.1 55.4

shp–es 1 12.0 25.1 29.5 26.2 31.1 32.8 34.4 26.2 35.0 35.0 35.5
5 18.0 45.9 43.7 38.8 47.5 47.5 42.6 45.9 54.6 57.9 59.0

Table 3: The performance on bilingual lexicon induction (BLI). “+Align” indicates bidirectional alignments are
used with the probability table (Ptable) as backup. The scores of the neural models are averaged over three runs.

report the best score.25 For the neural baselines, we
evaluate each model-checkpoint and report the best
score; we fine-tune the mBERT baseline for 40,000
steps26 with 20 checkpoints, and train SENTID and
BIS2V for 1,000 epochs with 100 checkpoints to
ensure convergence. For BIVEC, we increase the
training corpus size by 20 times by duplicating the
sentences and train the model for 50 epochs with
50 checkpoints.27

For our model, on the other hand, we use a sim-
ple early-stopping criterion that doesn’t require ex-
ternal data. First, we build a pseudo bilingual dic-
tionary from the training data. To retrieve pseudo
bilingual word pairs, we compute the Dice Coeffi-
cient (Dice, 1945; Smadja et al., 1996) and extract
pairs of words that appear ≥ 3 times in each lan-
guage and whose Dice Coefficient is ≥ 0.8 across
two languages. We perform model selection based
on the BLI performance on this pseudo dictionary.

3.5 Results
Table 3 shows the results for BLI.28 We run the neu-
ral baselines and our model three times with differ-
ent seeds and report the average score since neural
models can be unstable with little data. It clearly
shows that our model outperforms all the baseline
models by a large margin for every language pair.
It also shows that utilising shared subword em-
beddings (+SWave and +SWcnn) further improves

25For GIZA++, we trained HMM and IBM models 1, 3, and
4 with the same number of iterations, following the default set-
ting. We also tune the number of word classes chosen among
{10, 20, 30, 40, 50}.

26This follows the original paper, and with those steps the
model converged well in our experiments as well.

27Without this, it performed very poorly, likely because the
code is optimised for reasonably-sized data. Moreover, we
trained BIVEC using the word alignments produced by the
best Fast Align model, and thus it’s doubly optimised.

28We present an analysis of retrieved words in Appendix D.

src–tgt Word +SWave +SWcnn

bi multi bi mult bi multi

nru–en 30.2 34.2 32.0 37.8 35.6 40.5
nru–fr 27.3 28.7 29.9 29.8 32.1 30.7
nru–zh 31.6 36.9 36.7 40.1 38.5 40.8

Table 4: Our model performance (P@1) on BLI when
the model is trained on two and four languages (“bi” vs.
“multi”). All scores are averaged over three runs.

our model. Compared to the neural baselines, our
model performs better even without subword infor-
mation, demonstrating its efficiency. The mBERT
baseline performs very poorly, likely because of
its sub-optimal tokenisation for endangered lan-
guages. Table 4 compares our bilingual and multi-
lingual models. The multilingual model is trained
jointly on the three parallel corpora, sharing param-
eters among the four languages. The table shows
that the multilingual model achieves better perfor-
mance overall, especially for Na–English and Na–
Chinese, where the number of the aligned sen-
tences is much smaller than for Na–French. This
result demonstrates that our model is not only able
to embed multiple languages into the same space,
but also benefits from extra sentences aligned be-
tween additional languages.

Table 5 shows the results for the Griko–Italian
word alignment task. It shows that our model
performs the best of all the models when they
are trained on the 330 sentences only. This is
particularly surprising given that encoder-decoder
models are usually not effective when trained on
small-scale data of magnitude 100s of sentence
pairs. The result also shows that our model pro-
duces much better static word embeddings than
SENTID, BIVEC and BIS2V, demonstrating the
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src–tgt #Sents mBERT SENTID BIVEC BIS2V Fast Align GIZA++ OURS
MLM SG SG CBOW Align Align Word (static) Word +SWave +SWcnn

grk–it 330 91.1 66.7 59.2 65.3 90.2 93.3 88.0 93.1 93.4 93.5
+10k 93.1 61.8 56.1 58.1 87.1 81.0 86.6 92.6 93.0 93.0

Table 5: The performance (1−AER) on the Griko-Italian word alignment task with or without additional 10k parallel
sentences. “Word (static)” is the result when our model uses static word embeddings instead of contextualised ones.
The scores of the neural models are averaged over three runs.

importance of considering word order information.
When we use the additional 10k sentences, the per-
formance of the baselines drops substantially ex-
cept for mBERT,29 likely because of the differ-
ences in domains and tokenisation schemes, with
the smaller Griko corpus closely following Italian
norms. On the other hand, our model achieves
good results under both conditions, indicating the
robustness of our model to noisy real-world data.

3.6 Results on High-Resource Languages

To investigate how our model performs on high-
resource conditions, we conduct additional word-
alignment experiments on four high-resource lan-
guage pairs: Japanese-English (ja-en), English-
Inuktitut (en-iu), German-English (de-en), and
English-French (en-fr). Regarding Inuktitut, there
is no large-scale monolingual data, making it a
salient test case for our model. We use benchmark
word-alignment data sets for each language pair,30

where the de-en and en-fr data sets contain about
2M and 1M parallel sentences, and the ja-en and
en-iu ones about 0.3M. We apply SentencePiece
to each corpus31 and use them to train all the mod-
els except for mBERT, for which we use its pre-
trained tokeniser. To perform word alignment, first
we align subwords and align words if any of their
subwords is aligned.32 We use the same model
selection criteria (Section 3.4) to report the upper
bound of the baselines.33

29We conjecture this is because the additional data helped
mBERT (esp. its positional embeddings) to learn that these
two languages have very similar syntax.

30Kyoto Free Translation Task (Neubig, 2011) (ja-en); the
Legislative Assembly of Nunavut (Martin et al., 2003) (en-
iu); Europarl (Koehn, 2005) (de-en); and Canadian Hansards
(Germann, 2001; Mihalcea and Pedersen, 2003) (en-fr).

31For the en-iu corpus, we segmented the Inuktitut sen-
tences only, as there is a significant gap between the English
and Inuktitut vocabulary size, i.e. 22k vs. 400k.

32GIZA++ and Fast Align also benefit from this method.
33We train the word embedding baselines for 100 epochs

and the mBERT baseline for 40,000 steps with 20 checkpoints,
and Fast Align and GIZA++ for 5, 10, 15 or 20 epochs, using
50 word classes (Moses default) for GIZA++.

Model en-iu ja-en
P R 1−A P R 1−A

mBERT 69.7 86.7 74.0 73.9 56.4 64.0
SENTID 72.9 86.3 75.3 57.7 46.8 51.7
BIVEC 67.4 84.4 70.3 56.3 46.1 50.7
BIS2V 65.2 82.8 68.4 52.3 41.3 46.2
Fast Align 80.5 96.0 82.8 61.7 51.7 56.3
GIZA++ 85.7 93.5 87.1 71.3 55.9 62.7

OURS (static) 73.1 88.6 75.6 59.4 48.0 53.1
OURS 83.5 99.3 85.6 62.7 65.5 64.1
OURS+SWave 83.0 98.8 85.2 63.0 66.9 64.9
OURS+SWave+null 91.8 97.0 92.8 75.2 59.7 66.6

Table 6: Precision (“P”), Recall (“R”) and 1−AER
(“1−A”) of word alignment on high-resource condi-
tions. P and R are calculated based on possible and sure
alignments, resp. “+null” denotes the result with null
alignments.

Table 6 shows the results of the ja-en and en-iu
word alignment experiments. It demonstrates that
our model (OURS) significantly outperforms the
other static word-embedding baselines. It also
outperforms mBERT in en-iu and even in ja-en,
which is very surprising given that mBERT is
pre-trained on large-scale monolingual data for
Japanese and English.34 We also tried training
our subword-aware model (OURS+SWave) by
segmenting subwords into smaller word pieces
and learning “subsubword” embeddings. The
result shows that this approach improves our
model for ja-en but not en-iu, probably because
some Japanese characters (e.g. kanji) contain
much semantic information. When compared to
the word alignment tools, our model outperforms
Fast Align and is comparable to GIZA++, achiev-
ing lower precision and higher recall. This is
because, unlike GIZA++, our simple alignment
algorithm based on CSLS cannot handle NULL
alignments (untranslatable words) and generates
more alignments than necessary. To handle those
words, we apply the following heuristic: discard

34Inuktitut is not included in the training data of mBERT,
accounting for its poor performance on en-iu.
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Model Method Training Data de-en en-fr

Jalili Sabet et al. (2020) Masked LM monolingual 18.8 7.6
Fast Align Statistical Model bilingual 27.0 10.5

eflomal Statistical Model bilingual 22.6 8.2
GIZA++ Statistical Model bilingual 20.6 5.9

Zenkel et al. (2020) Pre-trained NMT+Aligner bilingual 16.0 5.0
Chen et al. (2020) Pre-trained NMT+Aligner bilingual 15.4 4.7

Dou and Neubig (2021)+α-entmax Fine-tuned Masked LM monolingual+bilingual 16.1 4.1
Dou and Neubig (2021)+sotmax Fine-tuned Masked LM monolingual+bilingual 15.6 4.4

Dou and Neubig (2021)+α-entmax (β = 1) Fine-tuned Masked LM monolingual+multilingual 15.0 4.5
Dou and Neubig (2021)+sotmax (β = 1) Fine-tuned Masked LM monolingual+multilingual 15.1 4.5

OURS NMT bilingual 16.4 9.1
OURS +null NMT bilingual 14.0 4.5

Table 7: Comparison of AER scores among various word alignment models. All the scores except for ours are cited
from Dou and Neubig (2021). “+null” denotes the result with null alignments.

alignments between x and y if CSLS(x, y) ≤ 0
or cos(x, y) ≤ min(cos(x,BOS), cos(BOS, y)).
This improves our model substantially (“+null” in
Table 6) and it outperforms all the baselines.35

Lastly, Table 7 shows the results of the de-en
and en-fr experiments. We cite the scores of the
baselines from Dou and Neubig (2021), and report
AER instead of 1−AER following the original ta-
ble. It shows that “OURS +null” performs com-
parably to mBERT for en-fr (4.5 vs. 4.1), and out-
performs it for de-en (14.0 vs. 15.0), establishing a
new state-of-the-art with much less data and fewer
parameters. The table also shows that our method
is much simpler than the other NMT-based models
(Zenkel et al., 2020; Chen et al., 2020), which pre-
train an NMT model and then train an alignment
model on top of it. Another important difference
is that our model can produce cross-lingual repre-
sentations while the NMT-based baselines can gen-
erate word alignments only.

3.7 Alignment with Pre-trained Embeddings
To employ large-scale monolingual data, we try ini-
tialising word embeddings of a high-resource lan-
guage with pre-trained word embeddings, and train
the word embeddings of a low-resource language
in the same embedding space. During training, we
freeze the pre-trained embeddings Eℓ

pre and apply
the element-wise operation a ⊗ Eℓ

pre + b, where
a and b are trainable vectors and shared among all
the words in Eℓ

pre. For the other words, we train
subword-aware embeddings (SWave) from scratch.

35For grk-it, the performance (1−AER) slightly dropped,
e.g. “+SWcnn+null” achieved 92.3/93.2 w/w.o the 10k sen-
tences, likely because there are very few NULL alignments.

Model Source Retrieved Words (Top 3)

BIVEC ʐo˩
(lunch,
noon)

lunch, woman, lunchtime
OURS lunch, lunchtime, outside
+ Pre lunch, lunchtime, dinner

BIVEC ʈʂʰɯ˧-qo˧
(here)

here, fireplace, beam
OURS here, sat, there
+ Pre here, there, where

BIVEC kwɑ˧tsʰɑ˧
(coffin)

coffin, rush, near
OURS coffin, rush, placed
+ Pre coffin, cremated, corpse

Table 8: Examples of retrieved words on nru-en BLI.
“+ Pre” denotes the use of pre-trained embeddings.

We conduct an experiment on nru-en, where we
pre-train English word embeddings using FastText
on 10M sentences sampled from web-crawled data,
OSCAR (Ortiz Suárez et al., 2020). The model
achieves 30.6/52.3 on P@1/5, underperforming
OURS+SWave without pre-training (32.0/56.3),
possibly because of the domain difference between
the parallel and monolingual data. However, a
closer look at the matched words reveals that pre-
training can improve the retrieval performance in
several cases, as shown in Table 8 (more examples
are in Appendix D). It shows that even though all
the models successfully match the correct words,
our models retrieve more relevant words to the tar-
get word, especially when trained with pre-trained
embeddings. This suggests that pre-training may
benefit the model on other semantic tasks. Pre-
training also makes it possible to measure the sim-
ilarities between Na words and English words that
are out-of-vocabulary in the parallel corpus.
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Model nru ja-en
en fr zh multi

OURS+SWave (+null) 32.0 29.9 36.7 35.9 66.6
−(sub)subword 30.2 27.3 31.6 33.3 65.9
−Eℓ

wi
in Eqn. (8) 27.5 21.4 40.8 28.2 59.7

−Bkw (←−g ) 30.2 28.6 34.9 33.1 64.8
−dropout 27.9 25.1 29.6 27.0 60.3
−weight tying 24.3 23.4 29.0 32.5 63.9
−reconstuction 0.9 1.2 0.4 34.8 36.5

Table 9: Ablation results for our model (P@1 (nru) or
1−AER (ja-en)). “multi” indicates the average P@1 of
our multilingual model over the three language pairs.

3.8 Ablation Studies
To investigate the effectiveness of our model, we
perform ablation studies, targeting: shared sub-
word embeddings, word-specific embeddings Eℓ

wi

in Eqn. (8), backward decoding, dropout, weight
tying, and the reconstruction objective. Table 9
shows the results. Without the reconstruction loss
(i.e. the standard NMT model), the model per-
forms very poorly in the bilingual settings. In the
multilingual setting, however, the reconstruction
is not essential because the model is trained to
translate multiple languages into Na, which forces
the source languages to be encoded in the same
space. The table also shows that weight tying is
very effective. We find this result intriguing, as
usually it does not affect translation quality very
much (Press and Wolf, 2017). In our model, how-
ever, weight tying is crucial in two ways: first, it
reduces the number of parameters and prevents the
model from learning word embeddings in different
spaces; and second, it introduces more direct con-
nections between source and target (sub)word em-
beddings through attention. Aggressive dropout
is also effective in all the conditions, preventing
the model from learning language-specific embed-
dings using different spaces. Word-specific em-
beddings also improve the model performance ex-
cept for nru-zh.36 Lastly, backward decoding also
improves performance, incorporating right-to-left
contexts into the word embeddings.

4 Related Work
There are two main approaches to learning cross-
lingual word embeddings. One is to learn a matrix
that aligns pretrained monolingual embeddings.

36This is likely because Chinese words can be represented
well by their component characters (Li et al., 2019). However,
in “mutli”, Eℓ

wi
is beneficial for nru-zh as well.

Most such methods exploit bilingual dictionaries
to learn the mapping matrix (Mikolov et al., 2013b;
Xing et al., 2015; Joulin et al., 2018), but recently
a number of methods have succeeded in learn-
ing the matrix without supervision (Zhang et al.,
2017; Conneau et al., 2018; Artetxe et al., 2018a).
However, Wada et al. (2019) show that this ap-
proach does not work well on low-resource condi-
tions. The second approach is to jointly train cross-
lingual embeddings in a common space. Most ex-
isting methods extend bag-of-words models (e.g.
Skip-Gram) to incorporate cross-lingual informa-
tion provided by parallel or comparable corpora
(Hermann and Blunsom, 2014; Vulic and Moens,
2016; Levy et al., 2017; Dufter et al., 2018a,b; Lu-
ong et al., 2015a; Sabet et al., 2020; Sarioglu Kayi
et al., 2020), or bilingual dictionaries (Gouws and
Søgaard, 2015; Duong et al., 2016). Recently,
masked language models such as XLM (Conneau
and Lample, 2019) and mBERT (Devlin et al.,
2019) have been shown to generate cross-lingual
representations without parallel data, but require
an enormous amount of monolingual data, which
is not available for endangered languages.

Similar to our work, some papers use multilin-
gual neural machine translation models to obtain
cross-lingual representations (Eriguchi et al., 2018;
Schwenk and Douze, 2017; Artetxe and Schwenk,
2019; Schwenk, 2018). However, they employ
extremely large and/or multilingual data aligned
among more than two languages (e.g. Europarl,
United Nations). Another important difference is
that their methods focus on learning cross-lingual
sentence representations only (i.e. not at the word
level), and are evaluated on cross-lingual sentence
retrieval or sentence classification tasks.

5 Conclusion
We propose a new approach for learning contextu-
alised cross-lingual word embeddings that can be
trained with a tiny parallel corpus. We evaluate
models on real-world data for three endangered lan-
guages, and also on benchmark data sets for four
high-resource languages, and show that our model
outperforms existing methods at bilingual lexicon
induction and word alignment.
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Parameter
Resource Condition

low medium high

Epoch 200/100 10 10
Batch Size 16 80 80

Enc LSTM Layers 1 2 3
Dec LSTM Layers 1 1 2

Dropout Rate 0.5 0.5 0.5
Gradient Clipping 5 5 5

LSTM Hidden State 500 500 768
Word Embedding 500 500 768

Subword Embedding 500 500 –
CNN Hidden State 500 – –
CNN Window Size 3 – –

Table 10: Hyper-parameters of our model in low- and
high-resource experiments. The first column (“low”)
denotes the hyper-paramertes for low-resource lan-
guages, the second (“medium”) for ja-en and iu-en, the
last (“high”) for de-en and en-fr. CNN is used in low-
resource experiments only due to its high computational
cost.

A Details of Our Model
We report the details of our model to ensure repro-
ducibility. Our model was trained using PyTorch
(Paszke et al., 2019) on a single GPU.

A.1 Hyper Parameters
Table 10 shows the hyper-parameters of our model.
We tuned the hyper-parameters on low and medium
conditions using a subset of the de-en or en-fr data
sets. We used the same embedding size in both
low and medium resource conditions for simplic-
ity. For very high-resource languages (i.e. de-en
and en-fr), we simply increased the number of the
encoder and decoder layers by one and set the em-
bedding size to the same as that of mBERT to have
a fair comparison. We use Adam (Kingma and
Ba, 2015) as the optimiser with the default learn-
ing rate. In low-resource experiments, we train
our model for 200 epochs in the Na and Griko
bilingual experiments, and for 100 epochs for other
languages. To learn our subword-aware models,
we applied SentencePiece separately to each lan-
guage with the vocabulary size set to 1,000 (in low-
resource experiments) or 1,000 + the number of
character types (for ja-en and en-iu).

A.2 Number of Parameters
Table 11 shows the number of parameters of
our model in millions. In low-resource experi-

src-tgt OURS
Word +SWave +SWcnn

nru–en 11.2 11.7 12.5
nru–zh 13.3 14.2 15.0
nru–fr 16.6 17.3 18.0

grk–it (s) 10.3 10.8 11.5
grk–it (s+l) 21.3 22.2 23.0

shp–es 27.5 28.4 29.2

Table 11: The number of parameters (in millions) of our
model.

src-tgt #Sents OURS
Word +SWave +SWcnn

nru–en 605 2 3 7
nru–zh 1766 8 10 45
nru–fr 3833 21 31 212
shp–es 14276 96 160 1382
ja–en 331024 1565 1795 –

Table 12: Run-time (in seconds) of our model per one
epoch on a single GPU.

ments, most of the model parameters are located in
LSTMs (9.5 millions) because the vocabulary sizes
are very small. While our model itself is clearly
more complex than the neural baselines (except for
mBERT), the dimension of the word embeddings,
which our model is trained for, is set to the same
for all the models to ensure fairness.

A.3 Run-time
Table 12 shows the run-time of our model in sec-
onds. Although computationally more expensive
than baseline models (except mBERT), it scales
well and can be fully trained using a GPU in less
than a minute for nru-zh.

B Language Resources

Here we provide the URLs (in footnotes) from
which we obtained the language resources we used
in our experiments: Griko-Italian37, Na-{English,
French, Chinese}38, Shipibo-Konibo-Spanish39,

37https://bitbucket.org/antonis/
grikoresource/src/master/ and https://github.
com/antonisa/griko-italian-parallel-corpus

38https://github.com/alexis-michaud/na
39http://chana.inf.pucp.edu.pe/resources/

parallel-corpus

https://bitbucket.org/antonis/grikoresource/src/master/
https://bitbucket.org/antonis/grikoresource/src/master/
https://github.com/antonisa/griko-italian-parallel-corpus
https://github.com/antonisa/griko-italian-parallel-corpus
https://github.com/alexis-michaud/na
http://chana.inf.pucp.edu.pe/resources/parallel-corpus
http://chana.inf.pucp.edu.pe/resources/parallel-corpus
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Soruce Word Method Retrieved Words

tʰi˩˥ (then, so, plane)
BIVEC then, well, calculates, the, counts
OURS (+SWave) then, well, but, so, and
+ Pre then, well, sikee, quickly, and

wɤ˩˥ (again)
BIVEC also, again, place, roof, beams
OURS (+SWave) also, again, well, haenke, halves
+ Pre also, haenke, again, and, once

ʑi˧mi˧ (house, farm)
BIVEC house, building, houses, build, built
OURS (+SWave) house, building, main, room, build
+ Pre house, building, home, houses, housed

ʈʂʰɯ˧-qo˧ (here)
BIVEC here, fireplace, beam, halves, hearth
OURS (+SWave) here, sat, there, way, where
+ Pre here, there, where, area, looking

mæ˩ (water)
BIVEC story, edge, strong, told, eighteen
OURS cry, right, arrive, eat, strong
+ Pre need, want, mupae, heard, terrifically

ə˧mi˧ (mother, aunt)
BIVEC wow, mother, living, so, mmm
OURS wow, mother, alas, daughter, how
+ Pre wow, mother, ggimi, truly, really

ɑ˩ʁo˧ (home)
BIVEC home, family, lives, homes, else
OURS (+SWave) home, family, want, at, members
+ Pre home, family, families, household, homes

Table 13: Examples of retrieved words on nru-en BLI.

Japanese-English40, English-Inuktitut41, a
Shipibo-Konibo-Spanish dictionary42 and Na–
French–Chinese–English dictionaries43. To
download and pre-process the German-English
and French-English data, we used the script
at https://github.com/lilt/alignment-scripts,
which is also used by Zenkel et al. (2020) and Chen
et al. (2020). For other langauges, when the data
is not pre-lowercased, we lowercased them. For
ja-en, we applied SentencePiece to both languages
independently and with the vocabulary size set
to 20k. For en-iu, since there is a significant gap
between the English and Inuktitut vocabulary size,
i.e. 22k vs. 400k, we applied SentencePiece to
Inuktitut only, with the vocabulary size set to 20k.

40http://www.phontron.com/kftt/
41http://web.eecs.umich.edu/~mihalcea/wpt05/
42http://chana.inf.pucp.edu.pe/resources/

wordnet-shp
43https://github.com/alexis-michaud/na/tree/

master/DICTIONARY

C Hyper Parameters of the Baselines

In this section, we describe the hyper parameters of
the baselines we used in our experiments. For SEN-
TID, we used the default settings since they are
already optimised for low-resource data (25k sen-
tences from Bible) and works well on both small
and large data. For BIS2V, we set the number
of negatives sampling to 5, max length of word
n-gram to 2, and the number of n-gram dropout
to 1. In high-resource experiments, we changed
the number of n-gram dropout to 4. For BIVEC,
we set the subsampling rate to 0.001, bi-weight
to 2, and the number of negative sampling to 5.
In high-resource experiments, we set the sampling
value to 0.01 and the negative sampling value to 10.
We observed BIVEC very sensitive to the subsam-
pling rate and bi-weight: the performance ranged
from 5.4 to 33.8 (P@1) in the nru-en BLI task.
We tuned these hyperparameters of BIVEC and
BIS2V based on the last-checkpoint model perfor-
mance on the test data of nru-en and en-iu. For
the mBERT baseline, we used their default setting.

https://github.com/lilt/alignment-scripts
http://www.phontron.com/kftt/
http://web.eecs.umich.edu/~mihalcea/wpt05/
http://chana.inf.pucp.edu.pe/resources/wordnet-shp
http://chana.inf.pucp.edu.pe/resources/wordnet-shp
https://github.com/alexis-michaud/na/tree/master/DICTIONARY
https://github.com/alexis-michaud/na/tree/master/DICTIONARY
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For GIZA++ and Fast Align, we used their default
hyper-parameters unless mentioned otherwise. In
BLI, we set the counts increment cutoff and prob-
ability cutoff thresholds to 0 in GIZA++, and re-
move the probability cutoff in Fast Align to avoid
pruning low-probability words.

D Examples of Retrieved Words on BLI
Table 13 shows some examples of retrieved words
on the Na-English BLI task. The source words
are chosen by sorting the Na words in the dictio-
nary based on the frequency in the Na-English cor-
pus, and selecting the seven most frequent ones.
The table shows that, although P@5 and P@1 are
nearly the same for all the methods, our model
matches more semantically and/or grammatically
related words to the target word than BIVEC, the
best performing baseline.44 For instance, given
the source word tʰi˩˥, OURS (+SWave) retrieved
its translations “then” and “so”, and also other
conjunctions “and” and “but”, while BIVEC was
able to retrieve “then” only and the other retrieved
words are irrelevant to it, such as “calculates” and
“counts”. For the source word ʈʂʰɯ˧-qo˧, all the
models successfully retrieved its translation “here”.
However, while our models also retrieved rele-
vant words to it, such as “there” and “where” ,
BIVEC retrieved completely irrelevant words such
as “beam”. These results suggest that our models
encode more semantic and syntactic information
into the word embeddings by taking word order in-
formation into account.

44Note that since the Na-English parallel corpus is ex-
tremely small, the size of the English vocabulary from which
the words are retrieved is also very small (i.e. 942 word types).
Besides, as shown in Table 2, the corpus is also very noisy
and contains some ungrammatical sentences. Therefore, it is
inevitable to some extent that some of the retrieved words are
irrelevant to the source word.


