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Abstract

Pretrained multilingual language models have
been shown to work well on many languages
for a variety of downstream NLP tasks. How-
ever, these models are known to require a lot
of training data. This consequently leaves out
a huge percentage of the world’s languages
as they are under-resourced. Furthermore, a
major motivation behind these models is that
lower-resource languages benefit from joint
training with higher-resource languages. In
this work, we challenge this assumption and
present the first attempt at training a multilin-
gual language model on only low-resource lan-
guages. We show that it is possible to train
competitive multilingual language models on
less than 1 GB of text. Our model, named
AfriBERTa, covers 11 African languages, in-
cluding the first language model for 4 of
these languages. Evaluations on named en-
tity recognition and text classification span-
ning 10 languages show that our model out-
performs mBERT and XLM-R in several lan-
guages and is very competitive overall. Re-
sults suggest that our “small data” approach
based on similar languages may sometimes
work better than joint training on large datasets
with high-resource languages. Code, data and
models are released at https://github.
com/keleog/afriberta.

1 Introduction

Pretrained language models have risen to the fore
of natural language processing (NLP), achieving
impressive performance on a variety of NLP tasks.
The multilingual version of these models such as
XLM-R (Conneau et al., 2020) and mBERT (De-
vlin et al., 2019) have also been shown to generalize
well to many languages. However, these models
are known to require a lot of training data, which
is often absent for low-resource languages. Also,
high-resource languages usually make up a signifi-
cant part of the training data, as it is hypothesized
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that they help boost transfer to lower-resource lan-
guages. Hence, there has been no known attempt
to investigate if it is possible to pretrain multilin-
gual language models solely on low-resource lan-
guages without any transfer from higher-resource
languages, despite the numerous benefits that this
could provide. Motivated by this gap in the litera-
ture, the goal of our work is to explore the viability
of multilingual language models pretrained from
scratch on low-resource languages and to under-
stand how to pretrain such models in this setting.

We introduce AfriBERTa, a transformer-based
multilingual language models trained on 11 African
languages, all of which are low-resource.! We
evaluate this model on named entity recognition
(NER) and text classification downstream tasks on
10 low-resource languages. Our models outperform
larger models like mBERT and XLM-R by up to 10
F1 points on text classification, and also outperform
these models on several languages in the NER task.
Across all languages, we obtain very competitive
performance to these larger models. In summary,
our contributions are as follows:

1. We show that competitive multilingual language
models can be pretrained from scratch solely
on low-resource languages without any high-
resource transfer.

2. We show that it is possible to pretrain these mod-
els on less than 1 GB of text data and highlight
the many practical benefits of this.

3. Our extensive experiments highlight important
factors to consider when pretraining multilin-
gual language models in low-resource settings.

4. We introduce language models for 4 languages,
improving the representation of low-resource
languages in modern NLP tools.

!One of the languages (Gahuza) is counted twice because it

is a code-mixed language consisting of Kinyarwanda and
Kirundi.
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Our results show that, for the first time, it is possi-
ble to pretrain a multilingual language model from
scratch on only low-resource languages and obtain
good performance on downstream tasks.

2 Related Work

In recent years, unsupervised learning of text rep-
resentations has significantly advanced natural lan-
guage processing tasks. Static representations
from pretrained word embeddings (Mikolov et al.,
2013; Pennington et al., 2014) were improved upon
by learning contextualized representations (Peters
et al., 2018). This has been noticeably improved
further by pretraining language models (Radford
etal., 2018; Devlin et al., 2019) based on transform-
ers (Vaswani et al., 2017). These models have also
been extended to the multilingual setting where
a single language model is pretrained on several
languages without any explicit cross-lingual super-
vision (Conneau et al., 2020; Devlin et al., 2019).

However, much of this progress has been fo-
cused on languages with relatively large amounts
of data, commonly referred to as high-resource lan-
guages. There has especially been very little focus
on African languages, despite the over 2000 lan-
guages spoken on the continent making up 30.1%
of all living languages (Eberhard et al., 2019). This
is further visible in NLP publications on these lan-
guages. In all the Association for Computational
Linguistics (ACL) conferences hosted in 2019, only
0.19% author affiliations were located in Africa
(Caines, 2019). Other works (Joshi et al., 2020)
have also noted the great disparity in the cover-
age of languages by NLP technologies. They note
that over 90% of the world’s 7000+ languages are
under-studied by the NLP community.

There have been a few works on learning pre-
trained embeddings for African languages, al-
though many of them have been static and trained
on a specific language (Ezeani et al., 2018; Ogueji
and Ahia, 2019; Alabi et al., 2019; Dossou and
Sabry, 2021). More recently, Azunre et al. (2021)
trained a BERT model on the Twi language. How-
ever, they note that their model is biased to the
religious domain because much of their data comes
from that domain.

While some African languages have been in-
cluded in multilingual language models, this cov-
erage only scratches the surface of the number of
spoken African languages. Furthermore, the lan-
guages always make up a minuscule percentage

of the training set. For instance, amongst the 104
languages that mBERT was pretrained on, only 3
are African.” In XLM-R, there are only 8 African
languages out of the 100 languages. In terms of
dataset size, the story is the same. African lan-
guages make up 4.80 GB out of about 2395 GB
that XLLM-R was pretrained on, representing just
0.2% of the entire dataset (Conneau et al., 2020). In
mBERT, African languages make up just 0.24 GB
out of the approximately 100 GB that the model
was pretrained on. All of this call for an obvious
need for increased representation of African lan-
guages in modern NLP tools for the over 1.3 billion
speakers on the continent.’

Pretrained language models have been shown to
perform well when there is a lot of data (Liu et al.,
2019; Conneau et al., 2020), but some works have
focused on using relatively smaller amounts of data.
Martin et al. (2020) showed that it is possible to
obtain state-of-the-art result with a French BERT
model pretrained on small-scale diverse data. In
another work, Micheli et al. (2020) showed that
training a French BERT language model on 100
MB of data yields similar performance on question
answering as models pretrained on larger datasets.
Furthermore, Ortiz Suarez et al. (2020) obtained
state-of-the-art performance with ELMo (Peters
et al., 2018) language models pretrained on less
than 1 GB of Wikipedia text, and Zhang et al.
(2020) show that RoBERTa language models (Liu
et al., 2019) trained on 10 to 100 million tokens
can encode most syntactic and semantic features in
its learned text representations.

A common theme among these works is their
focus on monolingual language models. While it is
possible to learn monolingual language models on
smaller amounts of data, it remains to be seen if it
is possible in the multilingual case. Our work is the
first, to the best of our knowledge, that focuses on
pretraining a multilingual language model solely on
low-resource languages without any transfer from
higher-resource languages.

3 Methodology
3.1 Data

Languages: We focus on 11 African languages,
namely Afaan Oromoo (also called Oromo),

nttps://github.com/google-research/bert/
blob/master/multilingual .md
*https://www.worldometers.info/
world-population/africa-population/
(accessed on February 19, 2021)
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Language Family Speakers Region
Afaan Oromoo Afro-Asiatic 50M East
Ambharic Afro-Asiatic 26M East
Gahuza Niger-Congo 21M East
Hausa Afro-Asiatic 63M West
Igbo Niger-Congo 27M West
Nigerian Pidgin English Creole 75M West
Somali Afro-Asiatic 19M East
Swabhili Niger-Congo 98M Central/East
Tigrinya Afro-Asiatic 7M East
Yorubd Niger-Congo 42M West

Table 1: Language Information: For each language,
its family, number of speakers (Eberhard et al., 2019),
and regions in Africa spoken.

Language XLM-R mBERT AfriBERTa
Afaan Oromoo 0.10 - 0.05
Ambharic 0.80 - 0.21
Hausa 0.30 - 0.15
Somali 0.40 - 0.17
Swabhili 1.60 0.04 0.19
Yoruba - 0.06 0.03

Table 3: Comparing Sizes Across Models: Compari-
son of the dataset sizes (GB) of languages present in
XLM-R, mBERT and AfriBERTa. “-” indicates lan-
guage was not present in model’s pretraining corpus.

kens). Following findings from Liu et al. (2019)
and Conneau et al. (2020) that more data is always
better for pretrained language modelling, our small

Language # Sent. # Tok. Size (GB)
Afaan Oromoo 410,840 6,870,959 0.051
Ambharic 525,024 1,303,086 0.213
Gahuza 131,952 3,669,538 0.026
Hausa 1,282,996 27,889,299 0.150
Igbo 337,081 6,853,500 0.042
Nigerian Pidgin 161,842 8,709,498 0.048
Somali 995,043 27,332,348 0.170
Swahili 1,442911 30,053,834 0.185
Tigrinya 12,075 280,397 0.027
Yoruba 149,147 4,385,797 0.027
Total 5,448,911 108,800,600 0.939

corpus makes our task even more challenging, and
one can already see that our model is at a disadvan-
tage compared to XLLM-R and mBERT.

Our corpus contains approximately 5.45 mil-
lion sentences and 108.8 million tokens. Table 2
presents more details about the dataset size for each
language. It can be observed that languages like
Swahili, Hausa and Somali have the most amount

Table 2: Dataset Size: Size of each language in the
dataset covering numbers of sentences, tokens and un-
compressed disk size.

Ambharic, Gahuza (a code-mixed language contain-
ing Kinyarwanda and Kirundi), Hausa, Igbo, Nige-
rian Pidgin, Somali, Swabhili, Tigrinya and Yoruba4.
These languages all come from three language fam-
ilies: Niger-Congo, Afro Asiatic and English Cre-
ole. We select these languages because they are
the languages supported by the British Broadcast-
ing Corporation (BBC) News, which was our main
source of data.* We also obtain additional data
from the Common Crawl Corpus (Conneau et al.,
2020; Wenzek et al., 2020) for languages avail-
able there, specifically Amharic, Afaan Oromoo,
Ambharic, Hausa, Igbo, Somali and Swahili. Ta-
ble 1 provides details about the languages used in
pretraining our models.

Size: The total size of our pretraining corpus is
0.94 GB (108.8 million tokens). In comparison,
XLM-R was pretrained on about 2395 GB (164.0
billion tokens) (Conneau et al., 2020), and mBERT
was trained on roughly 100 GB (12.8 billion to-

*https://www.bbc.co.uk/ws/languages (scraped
up to January 17, 2021)

of data, while languages like Tigrinya have very
little data with just about 12,000 sentences.

For each language we pretrained on that is
present in XLM-R or mBERT, we compare the
size of that language in our dataset to its size in
the pretraining corpora of mBERT and XLM-R.
From the comparison details in Table 3, we can see
that XLM-R always has more data for languages
present in our pretraining corpus and theirs. In fact,
on average, we can see that the size of the language
is always at least two times more in XLM-R. For
mBERT, we can see that AfriBERTa has more data
for Hausa and Yorub4, which are present in both
corpora. However, one would expect that, given
that both languages are in the Latin script, there
should be enough high-resource transfer to help
them outperform our model.

Preprocessing: We remove lines that are empty
or only contain punctuation. Given that there is
significant overlap between the African language
corpora in Common Crawl and the BBC News data
that we crawled, we perform extensive deduplica-
tion for each language by removing exact matched
sentences. We also enforce a minimum length re-
striction by only retaining sentences with more than
5 tokens. We observe that the quality of the dataset

‘https://github.com/mayhewsw/
multilingual-data-stats/tree/main/wiki
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from Common Crawl is very low, confirming re-
cent findings from Caswell et al. (2021). Hence,
we manually clean the data as much as we can by
removing texts in the wrong language, while trying
to throw out as little data as possible.

3.2 Model

We train a transformer (Vaswani et al., 2017) with
the standard masked language modelling objec-
tive of Devlin et al. (2019) without next sentence
prediction. This is also the same approach used
in XLM-R (Conneau et al., 2020). We pretrain
on text data containing all languages, sampling
batches from different languages. We sample lan-
guages such that our model does not see the same
language over several consecutive batches.

We utilize subword tokenization on the raw
text data using SentencePiece (Kudo and Richard-
son, 2018) trained with a unigram language model
(Kudo, 2018). We sample training sentences from
different languages for the tokenizer following the
sampling method described in Conneau and Lam-
ple (2019) with o« = 0.3.

3.3 Evaluation

Pretraining: We take out varying amounts of
evaluation sentences from each language’s original
monolingual dataset, depending on the language’s
size. Our total evaluation set containing all lan-
guages consists of roughly 440,000 sentences. We
evaluate the perplexity on this dataset to measure
language model performance. However, follow-
ing Conneau et al. (2020), we continue pretraining
even after validation perplexity stops decreasing.
Effectively, we pretrain on around 0.94 GB of data
and evaluate on around 0.08 GB of data.

NER: We evaluate named entity recognition
(NER) using the recently released MasakhaNER
dataset (Adelani et al., 2021). The dataset cov-
ers the following ten languages: Amharic, Hausa,
Igbo, Kinyarwanda, Luganda, Luo, Nigerian Pid-
gin, Swahili, Wolof and Yorubd. The authors estab-
lished strong baselines on the dataset ranging from
simpler methods like CNN-BiLSTM-CREF to pre-
trained language models like mBERT and XLM-R.

Text Classification: We use the news topic clas-
sification dataset from Hedderich et al. (2020),
which covers Hausa and Yoruba. The authors es-
tablished strong transfer learning and distant su-
pervision baselines. They find that both mBERT

and XLM-R outperform simpler neural network
baselines in few-shot and zero-shot settings.

3.4 Experimental Setup

All models are trained with the Huggingface Trans-
formers library (Wolf et al., 2020) (v4.2.1). In
the following initial experiments, we pretrain each
model for 60,000 steps and use a maximum se-
quence length of 512. We pretrain using a batch
size of 32 and accumulate the gradients for 4 steps.
Optimization is done using AdamW (Loshchilov
and Hutter, 2017) with a learning rate of 1e-4 and
6000 linear warm-up steps. We report F1 scores on
the NER dataset averaged over 3 runs with different
random seeds. Following initial explorations, we
found a vocabulary size of 40k, excluding special
tokens, to yield good results across different model
sizes, so we use this for initial experiments.

NER models are trained by adding a linear clas-
sification layer to the pretrained transformer model
and fine-tuning all parameters. Following Adelani
et al. (2021), we train for 50 epochs with a batch
size of 16, a learning rate of Se-5 and also optimize
with AdamW.

Text classification models are trained by adding
a linear classification layer to the pretrained trans-
former model and fine-tuning all parameters. We
train for 25 epochs with a batch size of 32, warm-
up steps of 100, learning rate of 5e-5 and optimize
with AdamW as well.

4 Results
4.1 Design Space Exploration

In this section, we compare variants of AfriBERTa
models to each other in a bid to understand how
to pretrain multilingual language models in small
data regimes. We pretrain variants from the point
of view of model architecture, taking three factors
into consideration: (i) model depth, (ii) number of
attention heads and (iii) vocabulary size. We define
performance as “good transfer to downstream task”.
Because the NER dataset covers more languages,
we fine-tune and evaluate our models on it.

Model Depth: We compare models with 4, 6, 8
and 10 layers. For each model, we use 4 atten-
tion heads and adjust the size of the hidden units
and feed-forward layers so that all models have ap-
proximately the same number of parameters. From
preliminary experiments, models with more than
10 layers did not yield substantially better perfor-
mance. This is expected, given the small size of the
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#Layers #Params | amh hau ibo kin lug luo pem swa wol yor | avg
4 74.8M 62.18 89.66 87.03 69.29 67.23 59.00 83.57 8389 77.04 67.02 | 75.97
6 74.TM 61.59 9034 8581 7276 6639 6143 86.27 84.02 76.61 68.54 | 76.91
8 74.6M 62.04 9096 86.33 74.00 68.66 6096 8443 84.16 7T6.11 67.38 | 77.00
10 74.3M 62.14 90.69 87.36 75.74 67.87 60.59 8479 84.70 76.17 67.51 | 77.27

Table 4: Effect of Number of Layers: NER dev F1 scores (averaged over three different random seeds) on each
language for models with different layer depth, but same number of parameters. The sizes of the embedding
and feed-foward layers are adjusted such that feed-foward is always approximately 4 times embedding size. The
highest F1-score per language is underlined, while the highest overall average is in bold.

# Layers # Att. Heads # Params \ amh hau ibo kin 1lug luo pcm swa wol yor \ avg
4 2 60.1IM |58.23 88.78 84.63 71.28 65.68 5691 83.84 82.44 76.69 64.64|74.99
4 4 60.1IM | 60.09 89.34 87.08 7295 68.25 60.10 84.08 83.17 76.29 66.73 | 76.44
4 6 60.1IM | 60.26 89.49 86.01 72.69 67.82 59.85 84.68 83.73 76.22 67.66 |76.46
6 2 74.3M 60.54 89.72 87.25 72.68 70.23 5998 84.52 83.25 76.00 67.00 | 76.74
6 4 743M | 63.29 90.19 86.05 7426 68.58 59.23 84.74 83.46 77.62 67.04|76.80
6 6 74.3M 60.38 90.86 86.70 73.12 68.54 61.68 84.59 82.80 79.02 68.48 | 77.31
8 2 88.5M | 60.32 90.55 85.32 7538 69.89 62.73 85.50 83.51 79.07 68.09|77.78
8 4 88.5M | 61.90 90.79 86.67 74.28 68.45 61.57 85.64 83.88 78.48 70.16|77.77
8 6 88.5M | 60.92 90.16 86.95 74.71 70.66 60.75 85.48 84.87 78.04 71.16 | 78.09
10 2 102.6M |59.87 90.78 87.10 73.73 66.29 60.03 85.04 83.47 81.12 69.06 | 77.40
10 4 102.6M | 63.95 9133 87.11 7524 68.96 63.36 85.66 84.67 74.60 69.27 | 77.80
10 6 102.6M | 63.94 90.54 87.39 7590 69.19 61.73 85.77 84.66 75.64 69.48 | 77.81

Table 5: Effect of Number of Attention Heads: NER dev F1 scores (averaged over three different random seeds)
on each language for different models with the same number of layers, but different number of attention heads.
The highest F1-score per layer size is underlined, while the highest overall average is in bold.

data. Because of this, coupled with computational
constraints, we do not explore settings with more
than 10 layers.

As we can see from the results in Table 4, deeper
models always outperform shallower models. How-
ever, the performance gain diminishes with size.
For example, the gain from increasing the model
to 6 layers from 4 layers is roughly 1 F1 point.
However, the gain from increasing from 6 layers
to 10 layers is only ~0.4. This corroborates the
recent universality overfitting findings from Kaplan
et al. (2020), who showed that the performance of
transformer language models improves predictably
as long as data size and model depth are scaled in
tandem, otherwise there is a diminishing return.

In general, our results suggests that deeper mod-
els also work well when pretraining multilingual
language models on small datasets. This follows
previous works on understanding the cross-lingual
ability of multilingual language models (K et al.,
2019), which have shown that deeper models have
better cross-lingual performance. However, gains
from increasing depth are relatively minimal be-
cause of the size of our corpus.

Number of Attention Heads: For each layer
size (4, 6, 8 and 10), we train models with three
different numbers of attention heads: 2, 4 and 6.
Again, initial experiments with more than 6 atten-
tion heads did not yield any better results, so we
do not explore more than 6 heads. Results are pre-
sented in Table 5.

The results suggest that there is a diminishing
return to the number of attention heads when the
model is deep. Shallower models need more atten-
tion heads to attain competitive performance. How-
ever, when the model is deep enough, it is very
competitive with as few as two attention heads.
This suggests that results from recent works (K
et al., 2019; Michel et al., 2019), which suggest
that transformers can do without a large number
of attention heads, also hold true for multilingual
language models on small datasets.

Vocabulary Size: Previous works have sug-
gested that on small datasets, one should employ a
small vocabulary size (Sennrich and Zhang, 2019;
Araabi and Monz, 2020). However, it remains to be
seen if this holds in the multilingual setting since
several languages will be competing for vocabulary
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# Layers # Att. Heads Vocab Size # Params| amh hau ibo kin lug luo pcm swa wol yor | avg

25k 76.9M |60.56 89.96 85.84 73.23 69.67 61.86 85.11 84.34 75.40 68.35|77.09
40k 88.5M [60.92 90.16 86.95 74.71 70.66 60.75 85.48 84.87 78.04 71.16|78.09
55k 99.9M |63.65 90.17 87.28 72.47 67.47 61.49 85.59 85.09 77.56 69.06|77.35

70k 111.5M
85k 123.1M

66.17 91.25 87.74 77.44 68.29 59.91 87.00 87.05 77.49 68.82|78.33
62.35 90.42 87.44 77.01 68.20 61.98 86.46 85.87 72.84 70.14|77.82

0 00 00 OO o0
(o)W Ne) e o))

Table 6: Effect of Vocabulary Size: NER dev F1 scores (averaged over three different random seeds) on the best
model size with varying vocabulary sizes. The highest overall average F1-score is in bold.

Language In In In CNN-BiLSTM mBERT XLM-R AfriBERTa AfriBERTa AfriBERTa
mBERT XLM-R? AfriBERTa? CRF base small base large
a72M) (270M) (97™M) 111M) (126M)
amh no yes yes 52.89 0.0 70.96 67.90 71.80 73.82
hau no yes yes 83.70 87.34  89.44 89.01 90.10 90.17
ibo no no yes 78.48 85.11  84.51 86.63 86.70 87.38
kin no no yes 64.61 70.98  73.93 69.91 73.22 73.78
1lug no no no 74.31 80.56  80.71 76.44 79.30 78.85
luo no no no 66.42 7265 75.14 67.31 70.63 70.23
pcm no no yes 66.43 87.78  87.39 82.92 84.87 85.70
swa yes yes yes 79.26 86.37  87.55 85.68 88.00 87.96
wol no no no 60.43 66.10 64.38 60.10 61.82 61.81
yor yes no yes 67.07 78.64  77.58 76.08 79.36 81.32
avg - - - 69.36 71.55  79.16 76.20 78.60 79.10
avg (excl. amh) - - - 71.19 79.50  80.07 77.12 79.36 79.69

Table 7: Comparison of NER Results: F1-scores on the test sets of each language. XLM-R and mBERT results
obtained from Adelani et al. (2021). The best score for each language and overall best scores are in bold. We also

report the model parameter size in parentheses.

space and Conneau et al. (2020) have found that in-
creasing the vocabulary size improves multilingual
performance. We evaluate our best model size on
varying vocabulary sizes and report results in Ta-
ble 6. As we can see from the results, increasing the
vocabulary size does not always yield good results
on smaller datasets. While a small vocabulary size
performs relatively poorly, medium sized vocabu-
laries can sometimes outperform larger ones. Due
to computation constraints, we selected vocabulary
size of 70k for the final models below.

Final Model Selection: We release three Afri-
BERTa pretrained model sizes: small (4 layers),
base (8 layers) and large (10 layers). Each model
has 6 attention heads, 768 hidden units, 3072 feed-
forward size and a maximum length of 512. Their
respective parameter sizes are 97 million, 111 mil-
lion and 126 million. We use float16 operations
to speed up training and reduce memory usage.
Pretraining is done for 460,000 steps with 40,000
linear warm-up steps and then the learning rate is
decreased linearly. We pretrain with a batch size
of 32 on 2 Nvidia V100 GPUs and accumulate the
gradients for 8 steps.

4.2 NER Comparisons

As we can see in Table 7, even the AfriBERTa small
model, which is almost three times smaller than
XLM-R, obtains competitive NER results across
all languages, trailing XLM-R by less than 3 F1
points. This represents a great opportunity for de-
ployment in resource constrained scenarios, which
is usually common for applications in low-resource
languages. Our best performing model is Afri-
BERTa large, which outperforms mBERT and is
very competitive with XLLM-R across all languages.
AfriBERTa large even outperforms both models on
several languages that all three models were pre-
trained on, such as Hausa, Amharic and Swabhili.

It should be noted that AfriBERTa large achieves
all this with less than half of the number of param-
eters of XLM-R and about 45M fewer parameters
than mBERT. Furthermore, we can see that our
models performs very well on languages that were
not part of our pretraining corpus, such as Luo,
Wolof and Luganda. This demonstrates its strong
cross-lingual capabilities, despite smaller param-
eter sizes and pretraining corpus size. A notable
observation is that both mBERT and XLM-R out-
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Language In In In mBERT XLM-R AfriBERTa
mBERT XLM-R? AfriBERTa? base large
hau no yes yes 83.03 85.62 90.86
yor yes no yes 71.61 71.07 83.22

Table 8: Comparison of Text Classification Results: F1-scores on the test sets. The best score for each language

is in bold.

perform AfriBERTa on Nigerian Pidgin, despite
not being trained on the language. This is likely
because of the language’s high similarity with En-
glish. Nigerian Pidgin is an English Creole, mean-
ing it borrows and shares a lot of its properties (in-
cluding words) with English. Since both mBERT
and XLM-R were pretrained on very large amounts
of English data, it is no surprise that they perform
so well on Nigerian Pidgin. In summary, our small,
base and large models’ performance are compara-
ble to mBERT and XLM-R across all languages,
despite being pretrained on a substantially smaller
corpus and having fewer model parameters.

4.3 Text Classification Comparisons

We also compare our best model (AfriBERTa
large) to XLM-R base and mBERT on text clas-
sification. As we can see from the results in Ta-
ble 8, AfriBERTa large clearly outperforms both
XLM-R and mBERT by over 10 F1 points on
Yorub4 and up to 7 F1 points on Hausa. Results
show that mBERT slightly outperforms XLM-R on
Yorubd, most likely because it was pretrained on it,
while XLM-R was not. XLM-R also outperforms
mBERT on Hausa, presumably for the same reason.
It should be noted that our model was pretrained
on around half as much Hausa data as XLM-R, but
still outperforms it substantially.

An important observation is that AfriBERTa out-
performs both XLLM-R and mBERT on text classifi-
cation, but not so much on the NER task. This sug-
gests that, perhaps, some downstream tasks benefit
from larger multilingual models with high-resource
transfer than other tasks. However, we leave this
interesting observation for future work.

5 Discussion

In this section, we discuss some other contributions
of this work. At a high level, AfriBERTa presents
the first evidence that multilingual language mod-
els are viable with very little training data. This
offers numerous benefits for the NLP community,
especially for low-resource languages.

Opportunities for Smaller Curated Datasets:
Our empirical results suggest that state-of-the-art
NLP methods like multilingual language models
can be made more accessible for low-resource lan-
guages. Caswell et al. (2021) recently showed
that web-crawled multilingual corpora available
for many languages, especially low-resource ones,
are usually of very low quality. They found is-
sues such as wrong-language content, erroneous
language codes and low-quality sentences. Our
work opens the door to competitive multilingual
language models on smaller curated datasets for
low-resource languages.

Another possible benefit of these smaller curated
datasets is that they would tend to contain local
content as opposed to foreign content as is in the
Wikipedia and other relatively larger datasets of
these languages. Models trained on such datasets
with local content could potentially be more useful
to the speakers of the languages given that they
would be trained on data with local context.

Strength of Language Similarity: Our work
challenges the commonly held belief in the NLP
community that lower-resource languages need
higher-resource languages in multilingual language
models. Instead, we empirically demonstrate that
pretraining on similar low-resource languages in a
multilingual setting may sometimes be better than
pretraining using high-resource and low-resource
languages together. This approach should be con-
sidered in future work, especially since there have
been recent findings (Wang et al., 2020) that low-
resource languages also experience negative inter-
ference in multilingual models.

Potential Ethical Benefits: Recent works have
called for more considerations of ethics and related
concerns in the development of pretrained language
models (Bender et al., 2021). These concerns have
ranged from environmental and financial (Strubell
et al., 2019) to societal bias (Kurita et al., 2019;
Basta et al., 2019)

We believe our work offers the potential to ad-
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Model \# Params Data Size (GB) # Tokens
XLM-R base 270M 2395 164.0B
mBERT 172M 100 12.8B
AfriBERTa base| 112M 0.94 108.8M

Table 9: Comparing Sizes: Comparison of datasets
and model sizes between XLM-R, mBERT and Afri-
BERTa.

dress some of these concerns, while developing
language technology for under-served languages.
A comparison of model and data sizes of com-
mon multilingual models is presented in Table 9.
Smaller dataset sizes, like ours, mean that these
datasets can more easily be cleaned, filtered, ana-
lyzed and possibly de-biased in comparison to the
humongous data sizes of larger language models.
We have also shown that smaller-sized models can
outperform larger models, despite using smaller
training resources. This represents a potential for
reduced environmental impact.

While “low-resource” is commonly used in the
NLP community to describe a lack of data re-
sources, Nekoto et al. (2020) have argued that
“low-resource” also includes a wide range of soci-
etal problems, including computational constraints.
Thus, our work embodies the broader spirit of “low-
resource”, as we develop more efficient models on
smaller data sizes for under-served languages.

Improving the Representation of African Lan-
guages in Modern NLP tools: As discussed in
section 2, there is very poor representation of
African languages in modern NLP tools. Recently,
there have been significant efforts towards closing
this gap (Alabi et al., 2019; Ogueji and Ahia, 2019;
Nekoto et al., 2020; Ahia and Ogueji, 2020; Fan
et al., 2020; Azunre et al., 2021; Dossou and Sabry,
2021; Adelani et al., 2021). Our work follows
along this path, as there is a need to build language
technologies for the over 1.3 billion people on the
continent. Besides showing that multilingual lan-
guage models are viable on low-resource African
languages with small training data, we also intro-
duce the first language models for four of these
languages: Kinyarwanda, Kirundi, Nigerian Pidgin
and Tigrinya. These are four languages with over
50 million speakers (Eberhard et al., 2019) who are
active users of digital tools. However, these lan-
guages have noticeably deficient support in NLP
technologies. Our work represents an important
step towards improving this.

6 Conclusion

In this work, we introduced AfriBERTa, a multi-
lingual language model pretrained on less than 1
GB of data from 11 African languages. We show
that this model is competitive with models pre-
trained on larger datasets and even outperforms
them on some languages. Our comprehensive ex-
periments also highlight important factors to con-
sider when pretraining multilingual language mod-
els on smaller datasets. More importantly, we high-
light some practical benefits of viable language
models on smaller datasets. Finally, we release
code, pretrained models and the dataset to stimu-
late further work on multilingual language models
for low-resource languages.
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