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Abstract

Ciardelli, Roelofsen, and Theiler (2017) have
shown how a Montague-like semantic frame-
work based on inquisitive logic allows for a uni-
form compositional treatment of both declara-
tive and interrogative constructs. In this setting,
a natural question is the one of the relation be-
tween the intensional and the inquisitive inter-
pretation of a declarative sentence. We tackle
this problem by defining an embedding of inten-
sional semantics into inquisitive semantics, in
the spirit of de Groote’s and Kanazawa’s (2013)
intensionalization procedure. We show that the
resulting inquisitivation procedure preserves
intensional validity and entailment.

1 Introduction

Inquisitive semantics (Ciardelli et al., 2013, 2018)
provides a semantic framework for analysing the
information conveyed by linguistic utterances. It is
based on a formal notion of issue that is reminiscent
of alternative semantics and that allows several
linguistic constructs to be assigned a meaning. In
particular, it offers a uniform treatment of both
declarative and interrogative forms.

Taking advantage of this new semantic frame-
work, Ciardelli, Roelofsen, and Theiler (2017) have
introduced a typed inquisitive logic, based on the
simply typed �-calculus, that can be used to pro-
vide a compositional semantics to fragments of
language that contain interrogative constructs. This
opens the door to Montague grammars based on
inquisitive logic, but raises the question of the re-
lation between the intensional and the inquisitive
interpretation of a declarative utterance. If one
sticks to the case of first-order logic, the question
can be easily settled. This, unfortunately, is not
sufficient. Indeed, a Montague grammar typically
contains higher-order constructs, as in the follow-
ing example that might correspond to the lexical

semantic of the word seek:

�os. s (�x. try x (�x. o (�y.findx y)))

In the above �-term, constant try is assigned the
following type:

e ! (e ! s ! t) ! s ! t

Then, the question we must answer is the following
one: which inquisitive interpretation should we
assign to constant try so that the intended meaning
of seek is preserved?

In order to solve this problem, we propose an
inquisitivation procedure akin to de Groote’s and
Kanazawa’s (2013) intensionalization. This proce-
dure is based on an embedding of the intensional
interpretations of the types into their inquisitive
interpretations. We then prove that our inquisiti-
vation procedure is adequate in the sense that it
preserves validity and entailment.

The rest of our paper is organized as follows:

• Section 2 contains a brief introduction to inquisi-
tive semantics.

• In Section 3, we present the necessary mathemat-
ical preliminaries, and we fix the type-theoretic
setting in which we are working. In particular,
we remind one of the definition of the simply
typed �-calculus, and we give its intensional in-
terpretation.

• In Section 4, we define an embedding of inten-
sional semantics into inquisitive semantics, and
we provide the simply typed �-calculus, with an
inquisitive interpretation.

• Section 5, contains the proof that our inquisitiva-
tion procedure preserves validity and entailment.

• In Section 6, we compare the inquisitive interpre-
tations of the logical connectives, as defined in
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inquisitive semantics, with their inquisitive inter-
pretations, as resulting from the inquisitivation
procedure. We then propose a syntactic transla-
tion that allows inquisitive logic to be used as
object language.

• In Section 7, we discuss briefly the inquisitiva-
tion of modal operators.

2 Inquisitive semantics

Montague semantics, in its original formulation
(Montague, 1970, 1973), is only concerned with
declarative sentences. To remedy this situation,
Hamblin (1973) introduced alternative semantics,
which allows for a treatment of interrogative sen-
tences. Hamblin’s idea is to interpret a question
as the set of its possible answers. Hence, if an an-
swer is modeled by a proposition, a question, in
turn, must be modeled by a set of propositions. At
the semantic level, a proposition being interpreted
as a set s of possible worlds, a question is then
interpreted as a set of sets of possible worlds.

This different treatment of declarative vs. in-
terrogative propositions has some disadvantages
though. Traditional set-theoretic operations cannot
be used on interrogative propositions to interpret
common semantic coordination, e.g. conjunction.
Moreover, alternatives fail to predict even basic
declarative entailments such as John walks |= John
moves (Groenendijk and Stokhof, 1984).

Inquisitive semantics (Ciardelli et al., 2013,
2018) elaborates on the idea of alternative seman-
tics and circumvents some of its drawbacks.

Technically, in inquisitive logic, a proposi-
tion (also known as an issue) is defined to be a
non-empty set of sets of possible worlds that is
downward-closed with respect to set inclusion. As
a consequence, conjunction, disjunction, and en-
tailment can be defined in a standard way, i.e., as
intersection, union, and inclusion, respectively. Let
us illustrate this by an example.

Consider a discourse universe with three indi-
viduals, namely, Mary, John, and Ash, and assume
a situation where it is known that exactly one of
them is sleeping. Accordingly, we define a set of
possible worlds, W = {M, J, A}, where each possi-
ble world corresponds respectively to the fact that
Mary, John, or Ash is sleeping. Then, the propo-
sition '1 that Mary sleeps and the proposition '2

that John sleeps are interpreted as follows:

J'1K = {{M},?}

J'2K = {{J},?}

Then, the inquisitive disjunction of '1 and '2 is
interpreted as the union of their interpretations:

J'1 _ '2K = {{M}, {J},?}

This disjunction does not correspond to a proposi-
tion asserting that either Mary or John is sleeping,
but rather to the question whether it is Mary or John
who sleeps. The mere assertion, '3, that Mary or
John is sleeping is interpreted in a different way:

J'3K = {{M, J}, {M}, {J},?}

The proposition, '4 asserting that Mary does not
sleep is interpreted as follows:

J'4K = {{J, A}, {J}, {A},?}

Then, the inquisitive disjunction of '1 and '4 cor-
responds to the polar question whether Mary is
sleeping:

J'1 _ '4K = {{J, A}, {M}, {J}, {A},?}

In inquisitive semantics, a proposition has both
an informative and an inquisitive content. For
instance, the informative content of proposition
'1 _ '2 is that Ash is not sleeping, and its inquis-
itive content is the issue whether Mary or John is
sleeping. The proposition may then be paraphrased
as follows: knowing that Ash does not sleep, one
wonders whether Mary or John is sleeping. A mere
assertion such as '1 has a trivial inquisitive con-
tent. Its paraphrase would be: knowing that Mary
is sleeping, one wonders whether she is sleeping.
Similarly, a mere question such as '1 _ '4 has
a trivial informative content: knowing that Mary
sleeps or does not sleep, one wonders whether she
is sleeping. Inquisitive semantics features two pro-
jection operators, ! and ?, that respectively trivialize
the inquisitive content and the informative content
of a proposition. Then, for any proposition ', one
has:

' = !' ^ ?'

We end this short introduction to inquisitive se-
mantics by presenting first-order inquisitive logic.

Let hF ,Ri be the signature of a first-order lan-
guage, where F is the set of function symbols, and
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R is the set of relation symbols. From this signa-
ture together with a set X of first-order variables,
the notions of terms and of first-order formulas are
defined in the standard way.

The notion of a model does not differ from the
one used for intensional logic. A model is a triple
hD,W, Ii, where D is the domain of interpretation,
W is the set of possible worlds, an I is the symbol
interpretation function such that:1

I(F ) 2 D
D

n
for F 2 F of arity n

I(R) 2 P(W )D
n

for R 2 R of arity n

Given a valuation ⇠ from X into D, the interpre-
tation JtK⇠ of a term t is defined as usual, and the
interpretation of a first-order formula is given by
the following equations:

JR(t1, . . . , tn)K⇠ = P(I(R)(Jt1K⇠, . . . , JtnK⇠))
J¬'K⇠ = {s | 8t 2 J'K⇠. s \ t = ?}

J' ^  K⇠ = J'K⇠ \ J K⇠
J' _  K⇠ = J'K⇠ [ J K⇠

J'!  K⇠ =
{s | 8t ✓ s. t 2 J'K⇠ ! t 2 J K⇠}

J8x.'K⇠ =
T

d2DJ'K⇠[x:=d]

J9x.'K⇠ =
S

d2DJ'K⇠[x:=d]

As for the projection operators ! and ?, they may
be added as defined connectives:

!' = ¬¬'

?' = ' _ ¬'

3 Type-theoretic setting

Since Montague (1973), it is usual in the field of
natural language semantics to use the simply typed
�-calculus as an object language to express the
compositional semantics of linguistic constructs.
In this paper, we adhere to this tradition, and we
take advantage of the present section to remind the
reader of some notions related to the simply typed
�-calculus, in order to fix the notations.

We take for granted the notions of (untyped)
�-term, �-redex, �-reduction, and �-equivalence.
The notations we use, when they are not explicitly
introduced, are taken from (Barendregt, 1984). In

1For the sake of simplicity, we use rigid models, i.e., mod-
els in which the interpretation of a term does not vary from
one possible world to the other. This assumption does not
affect the results we establish in this paper.

particular, we write t !!� u for the relation of
�-reduction.

A �-term that does not contain any �-redex is
called �-normal (or normal, for short). This notion
can be explicitly defined in a syntactic way.
Definition 1. The notions of a neutral �-term and
of a normal �-term are defined by mutual recursion
as follows:

1. every �-variable is a neutral �-term;

2. every constant is a neutral �-term;

3. if t a neutral �-term and u a normal �-term, then
t u is a neutral �-term.

4. every neutral �-term is a normal �-term;

5. if t a normal �-term, so is �x. t.

The object language we consider comprises two
atomic types: IND (the type of individuals) and
PROP (the type of proposition).2 Accordingly, the
definition of a simple type is the following one.
Definition 2. The set of simple types T is induc-
tively defined as follows:

1. IND, PROP 2 T ;

2. if ↵,� 2 T then (↵! �) 2 T .

We provide the �-terms with a type system à la
Church. To this end, we consider a pairwise disjoint
family of countable sets of �-variables, (X↵)↵2T ,
and a pairwise disjoint family of countable sets
of constants, (C↵)↵2T . Given these two families
of sets, the notion of a simply-typed lambda-term
obeys the next definition.
Definition 3. The family of sets (⇤↵)↵2T of
simply-typed �-terms of type ↵ is inductively de-
fined as follows:

1. For all ↵ 2 T , X↵ ✓ ⇤↵;

2. For all ↵ 2 T , C↵ ✓ ⇤↵;

3. For all ↵,� 2 T , if t 2 ⇤↵!� and u 2 ⇤↵

then (t u) 2 ⇤�;

4. For all ↵,� 2 T , if x 2 X↵ and t 2 ⇤� then
(�x. t) 2 ⇤↵!� .

We usually let x range over �-variables, c over
constants, and t, u (possibly with subscripts) over
�-terms. If t 2 ⇤↵, we say that the term t is of type
↵, or that ↵ is the type of t. In order to stress the

2IND and PROP are reminiscent of Montague’s e and t,
respectively. It is not the case, however, that PROP will be
semantically interpreted as the set {0, 1}.
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type of a term, we sometimes decorate it with types,
using an exponent like notation. For instance, we
write (�x↵. t�) when (�x. t) 2 ⇤↵!� .

The simply-typed �-terms enjoy several interest-
ing properties, in particular, the subject-reduction
property and the normalisation-property. The first
one says that the sets (⇤↵)↵2T are closed by �-
reduction. The second one says that every simply-
typed �-term has a normal form. We state them
explicitly because we will use them in the sequel.

Proposition 4 (Subject Reduction). Let t and u

be two �-terms such that t !!� u. If t 2 ⇤↵ then
u 2 ⇤↵.

Proposition 5 (Normalization). Let t 2 ⇤↵. Then
there exists a �-normal form u 2 ⇤↵ such that
t !!� u.

We end this section by providing the simple
types and the simply-typed �-terms with their set-
theoretic semantic interpretation.

In order to give a semantic interpretation to the
types, we posit two sets, D and W , that are used
to give an interpretation to the atomic types. D,
the domain of interpretation, is the semantic coun-
terpart of type IND. As for W , the set of possible
worlds, it is used to provide a semantic interpreta-
tion to type PROP.

Definition 6. The semantic interpretation [↵]i of a
simple type ↵ is inductively defined by the follow-
ing equations.

[IND]i = D

[PROP]i = P(W )

[↵! �]i = [�]i
[↵]i

According to the above definition, a type ↵! �

is interpreted in standard3 way as the set of set-
theoretic functions from the interpretation of ↵ into
the interpretation of �. The interpretation of type
PROP, however, is not the set of Booleans, {0, 1},
but the powerset of the set of possible worlds. This
corresponds to an intensional (or modal) interpreta-
tion, where a proposition is interpreted as a subset
of the set of possible worlds (hence, the subscript i
in the notation).

We now turn to the interpretation of the �-terms.
To this end, we introduce the notion of a model.

3We use the so-called standard interpretation just to keep
the definition of a model simple. In fact, everything we do in
this paper could be done in the more general setting of Henkin
models (Henkin, 1950).

Definition 7. A model M = hD,W, Ii consists
of:

1. a set D, called the domain of interpretation;

2. a set W , called the set of possible worlds;

3. a family I = (I↵)↵2T of interpretation func-
tions I↵ from C↵ into [↵]i.

From now on and throughout the rest of this
paper, we consider that a such a model M =
hD,W, Ii is given.

The third component of the model, namely I,
allows the constant to be given an interpretation.
We need a similar notion in order to interpret the
�-variables. Accordingly, we define a valuation
⇠ = (⇠↵)↵2T to be a family of functions ⇠↵ from
X↵ into [↵]i. Let ⇠ = (⇠↵)↵2T be such a valuation,
and let x 2 X↵ and a 2 [↵]i. Then, ⇠[x:=a] stands
for the valuation (⇠0↵)↵2T such that:

1. ⇠0↵(x) = a;

2. for every y 2 X↵, if y 6= x then ⇠0↵(y) = ⇠↵(y);

3. for every � 2 T , if � 6= ↵ then ⇠0
�
= ⇠� .

We are now in a position of defining the interpre-
tation of the �-terms.
Definition 8. Let ⇠ = (⇠↵)↵2T be a valuation.
The interpretation JtKi ⇠ of a �-term t is inductively
defined by the following equations:

Jx↵Ki ⇠ = ⇠↵(x)

Jc↵Ki ⇠ = I↵(c)

Jt↵!�
u
↵Ki ⇠ = Jt↵!�Ki ⇠(Ju↵Ki ⇠)

J�x↵. t�Ki ⇠ = a 2 [↵]i 7! Jt�Ki ⇠[x↵:=a]

The semantic interpretation of Definition 8 is
sound with respect to �-equivalence. We state this
proposition explicitly because we will use it later
on.
Proposition 9 (Soundness). Let ↵ 2 T , t, u 2 ⇤↵,
and ⇠ be any valuation. If t =� u then JtKi ⇠ =
JuKi ⇠.

The interpretation JtKi ⇠ of a closed �-term t does
not depend upon the valuation ⇠. Accordingly,
when t is a closed term, we simply write JtKi to
denote its interpretation.

A closed �-term of type PROP is called a formula.
Let ' be a formula. We say that ' is valid, and we
write |=i ', if and only if J'Ki = W . Similarly, we
say that a sequence of formulas '1, . . . ,'n entails
a formula ', which we write '1, . . . ,'n |=i ', if
and only if J'1Ki \ · · · \ J'nKi ✓ J'Ki .
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4 Inquisitivation

Definitions 6 and 8 provide to the types and the
terms of the object language an intensional inter-
pretation. As explained in the introduction, our
objective is to built from this intensional interpreta-
tion an inquisitive one.

A first step towards this goal is to provide the
type system with an inquisitive interpretation. This
consists mainly in interpreting type PROP as the set
of inquisitive propositions, i.e., as the set of sets
of sets of possible worlds. This motivates the next
definition.

Definition 10. The inquisitive semantic interpreta-
tion [↵]i of a simple type ↵ is inductively defined
by the following equations.

[IND]q = D

[PROP]q = P(P(W ))

[↵! �]q = [�]q
[↵]q

The next step would be to adapt Definition 8 to
the inquisitive case. This adaptation seems almost
straightforward, except for the constants. Indeed,
the interpretation function of the model interprets
a constant of type ↵ as an element of [↵]i, not as
an element of [↵]q. Consequently, what we need
is a way of transforming an element of [↵]i into an
element of [↵]q, while preserving the information
it carries.

In other words, what we need for each type ↵ is
an embedding E↵ from [↵]i into [↵]q. At the level
of type PROP, such an embedding exists. Indeed,
if A ✓ W is an intensional proposition, P(A) is
an inquisitive proposition that is purely informative
and that carries the same informative content as A.

Now, in order to lift up this embedding at every
type, we also need projection operators, P↵, from
[↵]q onto [↵]i. Again, at the level of type PROP,
such a projection exists. It consists of the opera-
tion that takes the union of all the elements of a
set of sets. Indeed, for every set A, we have thatS

P(A) = A. It remains to lift up this embedding-
projection pair at every type. This is achieved by
the next definition.

Definition 11. The family of embeddings
(E↵)↵2T and the family of projections (P↵)↵2T

are defined by mutual recursion over the types as

follows:

EIND(a) = a

EPROP(p) = P(p)

E↵!�(f)(a) = E�(f(P↵(a)))

PIND(a) = a

PPROP(p) =
S

p

P↵!�(f)(a) = P�(f(E↵(a)))

The operators E↵ are what we need to give an
inquisitive version of Definition 8. First, let us
define an inquisitive valuation to be a family of
functions ⇠ = (⇠↵)↵2T from X↵ into [↵]q. The
inquisitive interpretation of a �-term is then defined
as follows.

Definition 12. Let ⇠ = (⇠↵)↵2T be an inquisitive
valuation. The inquisitive interpretation JtKq ⇠

of
a �-term t is inductively defined by the following
equations:

Jx↵Kq ⇠
= ⇠↵(x)

Jc↵Kq ⇠
= E↵(I↵(c))

Jt↵!�
u
↵Kq ⇠

= Jt↵!�Kq ⇠
(Ju↵Kq ⇠

)

J�x↵. t�Kq ⇠
= a 2 [↵]q 7! Jt�Kq ⇠[x:=a]

It turns out that inquisitivation is a particular
case of de Groote (2015).4

The proof of Proposition 9 does not depend on
the interpretation of the constants. Consequently, it
also holds for Definition 12.

Proposition 13 (Soundness). Let ↵ 2 T , t, u 2

⇤↵, and ⇠ be any inquisitive valuation. If t =� u

then JtKq ⇠
= JuKq ⇠

.

As for the notions of inquisitive validity and
of inquisitive entailment, they are defined as ex-
pected: |=q ' if and only if J'Kq = P(W ), and
'1, . . . ,'n |=q ' if and only if J'1Kq \ · · · \

J'nKq ✓ J'Kq .

5 Preservation of validity and entailment

In this section, we prove that our inquisitivation pro-
cedure preserves the validity of the propositions,
that is, a proposition is valid according to its in-
tensional interpretation, if and only if it is valid
according to its inquisitive interpretation. We also
establish a similar result for entailment.

4In our case, the operators of de Groote (2015) are instan-
tiated so: T↵ = ↵, U t = t, t • u = t u and C t = t
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We start by showing that the operators of em-
bedding and projection are indeed embedding-
projection pairs, i.e., that P↵ �E↵ is the identity for
every type ↵.

Lemma 14. Let ↵ 2 T be any type. For all a 2

[↵]i, P↵(E↵(a)) = a.

Proof. The proof proceeds by induction on the
structure of ↵.
1. ↵ = IND.

PIND(EIND(a)) = EIND(a)

= a

2. ↵ = PROP.

PPROP(EPROP(a)) =
S

EPROP(a)

=
S

P(a)

= a

3. ↵ = ↵1 ! ↵2. For all x 2 [↵1]i, we have:

P↵1!↵2(E↵1!↵2(a))(x)

= P↵2(E↵1!↵2(a)(E↵1(x)))

= P↵2(E↵2(a(P↵1(E↵1(x)))))

= a(P↵1(E↵1(x))) by induction hypothesis
= a(x) by induction hypothesis

It is not the case that E↵(P↵(a)) = a for
every a 2 [↵]q. For instance, at type PROP,
EPROP(PPROP(a)) = P(

S
a), which is different

from a, in general. In fact, the only inquisitive
propositions for which EPROP(PPROP(a)) = a holds
are those propositions that are equal to P(b) for
some b ✓ W . These propositions are called purely
informative because they do not raise any issue.
We generalize this notion by defining an element
a 2 [↵]q to be purely informative if and only if
there exists some b 2 [↵]i such that a = E↵(b).

Lemma 15. Let ↵ 2 T be any type, and let a 2

[↵]q. E↵(P↵(a)) = a if and only if a is purely
informative.

Proof. If E↵(P↵(a)) = a then a is purely informa-
tive, by definition.

Now suppose that a is purely informative, i.e.,
that there exists b 2 [↵]i such that a = E↵(b).
Then, we have:

E↵(P↵(a)) = E↵(P↵(E↵(b)))

= E↵(b) by Lemma 14
= a

We are now in a position of stating and proving
the main technical lemma of this section, from
which we will derive conservativity results. We first
introduce some additional vocabulary and notation.

Let ⇠ = (⇠↵)↵2T be an inquisitive valuation.
We say that ⇠ is purely informative if and only if
for every ↵ 2 T and x 2 X↵, ⇠↵(x) is a purely
informative element of [↵]q.

For ⇠ = (⇠↵)↵2T an inquisitive valuation,
we write P � ⇠ for the intensional valuation
(P↵ � ⇠↵)↵2T , i.e., the intensional valuation ⇠0 =
(⇠0↵)↵2T such that ⇠0↵(x) = P↵(⇠↵(x)).

Lemma 16. Let t 2 ⇤↵ be any �-term of type ↵,
and let ⇠ be an inquisitive valuation that is purely
informative.

(a) If t is neutral, JtKq ⇠
= E↵(JtKi P�⇠).

(b) If t is normal, P↵(JtKq ⇠
) = JtKi P�⇠.

Proof. We prove both (a) and (b) by a simultaneous
induction on the structure of t.
1. t = x.

(a) JxKq ⇠
= ⇠↵(x)

= E↵(P↵(⇠↵(x))) by Lemma 15
= E↵(JxKi P�⇠)

(b) Follows from (a), by Lemma 14.

2. t = c.

(a) JcKq ⇠
= E↵(I↵(c))

= E↵(JcKi P�⇠)
(b) Follows from (a), by Lemma 14.

3. t = t1 t2, with t1 2 ⇤�!↵ and t2 2 ⇤� , for
some type �.

(a) Jt1 t2Kq ⇠
= Jt1Kq ⇠

(Jt2Kq ⇠
)

= E�!↵(Jt1Ki P�⇠)(Jt2Kq ⇠
)

by induction hypothesis (a)
= E↵(Jt1Ki P�⇠(P�(Jt2Kq ⇠

)))

= E↵(Jt1Ki P�⇠(Jt2Ki P�⇠))
by induction hypothesis (b)

= E↵(Jt1 t2Ki P�⇠)
(b) Follows from (a), by Lemma 14.

4. t = �x. t1, with x 2 X↵1 and t1 2 ⇤↵2 , for
some types ↵1 and ↵2.

(a) Holds vacuously beause t is not neutral.

(b) For every a 2 [↵1]i, we have:
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P↵1!↵2(J�x. t1Kq ⇠
)(a)

= P↵2(J�x. t1Kq ⇠
(E↵1 a))

= P↵2((a 7! Jt1Kq ⇠[x:=a])(E↵1(a)))

= P↵2(Jt1Kq ⇠[x:=E↵1 (a)]
)

= Jt1Ki (P�(⇠[x:=E↵1 a]))

by induction hypothesis (b)
= Jt1Ki P�⇠[x:=P↵1 (E↵1 (a))]

= Jt1Ki P�⇠[x:=a] by Lemma 14
= (a 7! Jt1Ki P�⇠[x:=a])(a)

= J�x. t1Ki P�⇠(a)

We may now establish our main result as an
immediate consequence of Lemma 16.

Proposition 17. Let ' be a proposition. Then,
J'Ki = a if and only if J'Kq = P(a).

Proof. Suppose J'Ki = a. Since ' is a simply-
typed �-term, it has a �-normal form '

0, which is
of type PROP by Proposition 4. Then, '0 being a
normal form of atomic type, it is neutral. Hence:

J'Kq = J'0Kq by Proposition 13
= EPROP(J'0Ki ) by Lemma 16(a)
= EPROP(J'Ki ) by Proposition 9
= EPROP(a)

= P(a)

Conversely, if J'Kq = P(a), we obtain the
expected result in a similar way, using Lemma
16 (b).

As a particular case of Proposition 17, we ob-
tain that our inquisitivation procedure preserves
validity.

Corollary 18. Let ' be a proposition. Then, |=q '

if and only if |=i '.

Finally, observing that A ✓ B if and only if
P(A) ✓ P(B), and that P(A) \ P(B) =
P(A \B), we obtain that entailment is also pre-
served.

Corollary 19. Let ','1, . . . ,'n be proposi-
tions. Then, '1, . . . ,'n |=q ' if and only if
'1, . . . ,'n |=i '.

6 Using inquisitive logic as the object
language

Our inquisitivation procedure, as defined by Defini-
tions 11 and 12, leaves the treatment of the logical
connectives completely implicit. Somehow, we

assumed that the set of constants CPROP!PROP con-
tains a constant corresponding to negation, that
CPROP!PROP!PROP contains constants correspond-
ing to conjunction, disjunction, and implication,
and that C(IND!PROP)!PROP contains constants cor-
responding to the quantifiers. In addition, we also
assumed family I = (I↵)↵2T of interpretation
functions assigns to the logical connectives their
standard intensional meaning. That is:

IPROP!PROP(¬) = a 7! W \ a

IPROP!PROP!PROP(^) = a b 7! a \ b

IPROP!PROP!PROP(_) = a b 7! a [ b

IPROP!PROP!PROP(!) = a b 7! (W \ a) [ b

I(IND!PROP)!PROP(8) = p 7!
T

d2Dp(d)

I(IND!PROP)!PROP(9) = p 7!
S

d2Dp(d)

Then, according to Definition 12, our inquisitive
interpretation of the logical connectives is given
by E � I, not by their very inquisitive meaning as
defined at the end of Section 2. Spelling it out, our
inquisitive interpretation of the logical connectives
is as follows:

J¬Kq = a 7! P(W \ (
S
a))

J^Kq = a b 7! P((
S
a) \ (

S
b))

J_Kq = a b 7! P((
S
a) [ (

S
b))

J!Kq = a b 7! P((W \ (
S
a)) [ (

S
b))

J8Kq = p 7! P(
T

d2D(
S
p(d)))

J9Kq = p 7! P(
S

d2D(
S
p(d)))

Let us call the above interpretation of the logical
connectives their weak inquisitive interpretation.
By contrast, let us call the very inquisitive inter-
pretation of the connectives, as given at the end
of Section 2, their strong inquisitive interpretation.
Then, given an inquisitive valuation ⇠, let us define
the strong inquisitive interpretation JtKsq ⇠

of a �-
term t as in Definition 12, except for the logical
connectives that are assigned their strong inquisi-
tive interpretation.

We now wonder whether the weak and the strong
interpretations of the connectives coincide. For
negation, this is indeed the case.

Lemma 20.

J¬Ksq = J¬Kq
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Proof.

J¬Ksq (a) = {s | 8t 2 a. s \ t = ?}

= {s | 8w 2 s. 8t 2 a.w 62 t}

= {s | 8w 2 s. w 62
S
a}

because a is downward-closed
= P(W \ (

S
a))

= J¬Kq (a)

For the other connectives, the weak and the
strong interpretations do not coincide in gen-
eral. Let us exhibit some counterexamples. Let
W = {w, v}, D = {1, 2}, and Define a to be
{{w}, {v},?}. For conjunction, we have:

J^Ksq (a)(a) = a \ a = a

which is different from:

J^Kq (a)(a) = P((
S
a) \ (

S
a))

= P(W )

For implication, define b to be P(W ). Then, we
have:

J!Ksq (b)(a)
= {s | 8t ✓ s. t 2 b ! t 2 a}

= a

which is different from:

J!Kq (b)(a) = P((W \ (
S

b)) [ (
S
a))

= P(W )

For universal quantification, define p to be
{(1, a), (2, a)}. We then obtain a counterexample
similar to the one for conjunction, with J8Ksq (p) =
a, which is different from J8Kq (p) = P(W ).

For disjunction, define c to be {{w},?}, and d

to be {{v},?}. Then we have:

J_Ksq (c)(d) = c [ d

= {{w}, {v},?}

which is different from

J_Kq (c)(d) = P((
S
c) [ (

S
d))

= P(W )

For existential quantification, one obtains a coun-
terexample similar to the one for disjunction by
defining q to be {(1, c), (2, d)}. Then we have that

J9Ksq (q) = {{w}, {v},?}, and that J9Kq (q) =
P(W ).

Because of the non-coincidence of the weak and
the strong inquisitive interpretations of the logical
connective, we do not have, in general, that for any
formula ':

J'Kq = J'Ksq (1)

Consequently, Proposition 17 in which J·Kq would
be replaced by J·Ksq does not hold.

In order to circumvent this problem, we will
introduce a syntactic translation of the �-terms, · ,
such that for every formula ', J'Ksq = J'Kq . With
such a translation, the picture of our inquisitivation
process is as follows:

⇤ ⇤

M M

·

J·Ki J·Kq J·Ksq

E

Remark, however, that an exact coincidence be-
tween the weak and the strong interpretation of
the connectives is not needed in order to have that
Equation 1 holds. What is needed is that the weak
and the strong interpretations coincide on the im-
age of the embedding E, that is that they coincide
for the purely informative elements. For conjunc-
tion, implication, and universal quantification, this
is the case, as shown by the next lemma.

Lemma 21. Let a, b 2 [PROP]q, and p 2

[IND ! PROP]q be purely informative elements.

(a) J^Ksq (a)(b) = J^Kq (a)(b)

(b) J!Ksq (a)(b) = J!Kq (a)(b)

(c) J8Ksq (p) = J8Kq (p)

Proof.

(a) Conjunction. Remark that a being purely in-
formative, we have that a = P(

S
a), and sim-

ilarly for b. Then, we have:

J^Ksq (a)(b) = a \ b

= P(
S
a) \ P(

S
b)

= J^Kq (a)(b)
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(b) Implication.

J!Ksq (a)(b)
= {s | 8t ✓ s. t 2 a ! t 2 b}

= {s | 8t ✓ s. t 2 P(
S
a) ! t 2 P(

S
b)}

= {s | 8t ✓ s. 8w 2 t. w 2 (
S
a) ! w 2 (

S
b)}

= {s | 8w 2 s. w 2 (W \ (
S
a)) [ (

S
b)}

= P((W \ (
S
a)) [ (

S
b))

= J!Kq (a)(b)

(c) Universal quantification. This case is similar
to conjunction.

As for disjunction and existential quantification,
their strong and weak interpretations do not coin-
cide, even for the purely informative elements. This
is shown, indeed, by the above counterexamples.
Nevertheless, we may simulate the weak interpre-
tations of these connective using the projection
operator !.

Lemma 22. Let ', 2 ⇤PROP, � 2 ⇤IND!PROP,
and ⇠ be an inquisitive valuation.

(a) If J'Kq ⇠
= J'Ksq ⇠

and J Kq ⇠
= J Ksq ⇠

then
J' _  Kq ⇠

= J!(' _  )Ksq ⇠
.

(b) If for all d 2 S, J�Kq ⇠[x:=d] = J�Ksq ⇠[x:=d]

then J9x. �Kq ⇠
= J!(9x. �)Ksq ⇠

Proof.

(a) Disjunction. Remark that for every inquisi-
tive proposition a 2 P(P(W )), J!Ksq (a) =
P(

S
a).

J' _  Kq ⇠
= P((

S
J'Kq ⇠

) [ (
S

J Kq ⇠
))

= P(
S
(J'Kq ⇠

[ J Kq ⇠
))

= P(
S

(J'Ksq ⇠
[ J Ksq ⇠

))

= P(
S

J' _  Ksq ⇠
)

= J!(' _  )Ksq ⇠

(b) Existential quantification. This case is han-
dled similarly.

Taking advantage of the above lemma, we define

the syntactic translation · as follows:

x = x

¬' = ¬'

' ^  = ' ^  

' _  =!(' _  )

'!  = '!  

8x.' = 8x.'

9x.' =!(9x.')

c = c for the other constants
t u = t u

�x. t = �x. t

Finally, we obtain the following proposition.
Proposition 23. For any �-term u, and any inquis-
itive valuation ⇠ that is purely informative,

JuKq ⇠
= JuKsq ⇠

Proof. By induction over the �-terms, using Lem-
mas 20, 21, and 22.

7 Application to an epistemic modality

Epistemic modalities are logical operators that can
be added to intensional logic to model natural lan-
guage expressions involving the knowledge of an
agent. In epistemic logic (Hintikka, 1962), the se-
mantics of know that + declarative subclause uses
an operator named K.

Ciardelli and Roelofsen (2015) developed a new
operator Kq in view of 1. adapting K to inquisitive
semantics and 2. modeling the semantics of know
+ interrogative subclause.

Let us take the following sentences as illustra-
tions:

(1) a. Kj (sleepm) . (John knows that
Mary sleeps)

b. Kj (? (sleepm)) . (John knows
whether Mary sleeps)

c. Kj (9x. sleep x) . (John knows who
sleeps)

These last two �-terms of ⇤sq have to be interpreted
by the strong inquisitive interpretation so that 9
generates an alternative for every d 2 D. Similarly,
we must interpret K as the inquisitive epistemic
operator of Ciardelli and Roelofsen (2015).

This raises the question whether the strong in-
quisitive interpretation of (1-a) is still consistent
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with the one obtained by embedding the intensional
version of K.

This section investigates to which group of logi-
cal constants K belongs.

7.1 Traditional modal knowledge
We expose here the traditional treatment of know
in modal logic (Kripke, 1959).

To interpret K we need an accessibility relation
indexed by individuals d 2 D:

�d : W ! P(W )

in any model M. In particular, w �d v iff agent d
cannot distinguish worlds w and v by her knowl-
edge.

Then we can define for every x
IND and proposi-

tion 'PROP,

JK x'Ki ⇠ = {w 2 W | �JxKi ⇠(w) ✓ J'Ki ⇠}

Embedding this operation yields

JK x'Kq ⇠
= P({w | �JxKq ⇠

(w) ✓
S

J'Kq ⇠
})

7.2 Inquisitive knowledge
We can see �d as a function from worlds to in-
tensional propositions. The idea of Ciardelli and
Roelofsen (2015) is to extend it to a function
⌃d : W ! P(P(W )), mapping worlds to in-
quisitive propositions, called the inquisitive states
of agent d. This way, the inquisitive knowledge
modality can take inquisitive propositions as in-
puts.

The intensional counterpart of ⌃d can be re-
trieved by taking the truth set of the inquisitive
state at world w:

�d(w) =
[

(⌃d(w))

⌃d(w) represents the issue P that agent d en-
tertains at world w. The informational content of
P is where d locates the current world, so what d
knows. The inquisitive content of P is related to
what d wonders. Therefore, to interpret knowledge,
we only need to use

S
⌃d(w), i.e. �d(w).

The strong inquisitive interpretation of the
knowledge operator is

JK x'Ksq ⇠
= {s | 8w 2 s.�JxKsq ⇠

(w) 2 J'Ksq ⇠
}

For K x' to be true at s, the knowledge of agent
x at every world w of s has to settle the proposi-
tion expressed by '. This way, K can be used to
interpret both know that + declarative and know +
interrogative in a single formulation.

7.3 Inquisitivation of K
The modality K belongs to group 2: JKKsq ⇠

coin-
cides with JKKq ⇠

) on the image of E.
Let us first provide a counterexample against

their coicidence in the general case.
Again, take the model having W = {w, v},

D = {d} and ⌃d(w) = ⌃d(v) = {{w}, {v},?}.
Therefore, �d(w) = �d(v) = W . Set Q = ⌃d(w).
Then,

JKKsq ⇠
(d)(Q) = P({w | �d(w) 2 Q}) = {?}

whereas

JKKq ⇠
(d)(Q) = P({w | �d(w) ✓

S
Q}) = P(W )

Proposition 24. Let P be a purely informative
issue and d 2 D.

JKKsq ⇠
(d)(P) = JKKq ⇠

(d)(P)

Proof. The derivation goes like this

JKKsq ⇠
(d)(P) = {s | 8w 2 s.�d(w) 2 P(

S
P)}

= {s | 8w 2 s.�d(w) ✓
S
P}

= P({w | �d(w) ✓
S
P})

= JKKq ⇠
(d)(P)

This proves that the inquisitive epistemic modal-
ity is indeed a “natural” extension of traditional K,
as suggested in Ciardelli and Roelofsen (2015).

8 Conclusion

We designed a transformation that creates inquisi-
tive lexical representations out of intensional lex-
ical interpretations. This transformation, called
inquisitivation, can be used as a procedure to em-
bed an intensional interpretation into the inquisitive
world, where more operations are available, e.g. to
express questions.

We proved that inquisitivation preserves validity
and entailment.
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We classified logical connectives into three
groups w.r.t. how their inquisitivation coincides
with their counterparts defined by inquisitive logic.
Group 1 includes negation and exhibits an exact
coincidence. In group 2, connectives (e.g. con-
junction) exhibit a coincidence on the image of
inquisitivation (i.e. on purely informative issues).
The connectives of group 3 (e.g. disjunction) do
not coincide in general. But they are definable by
their inquisitive counterpart.

We finally showed that the knowledge opera-
tor K shares properties with its adaptation to in-
quisitive logic defined by Ciardelli and Roelofsen
(2015). As such, it belongs to group 2.

Inquisitivation offers a tool to easily transfer any
system based on intensional semantics to inquisi-
tive semantics. Future works may focus on other
such systems, like dynamic semantics.

It would also be interesting to try to emulate an
inquisitive logic out of another basis than inten-
sional semantics. For example, events may have a
rich enough structure to allow an inquisitive logic
based on (set of) events instead of information
states.
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