More efficiently identifying the tiers of strictly 2-local tier-based functions

Phillip Burness
University of Ottawa
pburn036Q@uottawa.ca

Abstract

String-to-string functions that consider purely
local information have proven useful for mod-
elling local phonological processes, and sim-
ilar modelling of long-distance processes is
possible when the assessment of locality is rel-
ativized to subsets of the segment inventory
(usually called fiers). Such tier-based func-
tions can be learned in quadratic time and data
when the tier(s) are known in advance, but
existing methods for inducing the tier(s) run
in quintic time. Current algorithms tailored
specifically to learn tier-based functions are
thus much slower overall than the cubic upper
bound established for learning the superclass
of subsequential functions. We show that the
bottlenecks responsible for this comparatively
inefficient runtime can be circumvented by ju-
diciously using a Prefix Tree Transducer when
inducing the tier(s). Doing so brings us down
to a quadratic upper bound on overall runtime.

1 Introduction

It is generally accepted that the regular region of
the Chomsky hierarchy (Chomsky, 1956) is suf-
ficiently expressive to describe the attested range
of human phonological patterns (Johnson, 1972;
Kaplan and Kay, 1994). Equally well-established,
though, is that regular languages are not learnable
in the limit from positive data alone (Gold, 1967).
Accordingly, various subsets of the regular lan-
guages and functions (i.e., subregular classes) have
been explored as alternatives.

Local phonotactics and processes enjoy particu-
larly strong learning results in this regard, as they
can respectively be modelled using Strictly Local
languages (see for example Rogers and Pullum,
2011; Rogers et al., 2013) and Strictly Local func-
tions (see for example Chandlee and Heinz, 2018).
Strictly Local languages are those that ban partic-
ular contiguous sequences from appearing in raw

Kevin McMullin
University of Ottawa
kevin.mcmullin@Quottawa.ca

strings, and the runtime of their associated learning
algorithm is linearly proportional to the size of the
sample (Garcia et al., 1990). For their part, Strictly
Local functions are those where the transformation
of an input segment depends only on its immedi-
ately surrounding material in the raw string, and the
runtime of their associated learning algorithms is
quadratically proportional to the size of the sample
(Chandlee et al., 2014, 2015).

Non-local phonotactics also enjoy strong learn-
ing results, since they can be modelled as Tier-
based Strictly Local languages (see for example
McMullin and Hansson, 2016). These are essen-
tially relativized versions of Strictly Local lan-
guages that prohibit contiguous sequences after the
raw strings have been projected onto a tier (Heinz
et al., 2011; Lambert and Rogers, 2020). The run-
time of their associated learning algorithm is linear
in the size of the sample when the tier is known
beforehand, but is quadratic when the tier must
be identified (Jardine and McMullin, 2017). As
for non-local processes, they have commonly been
modelled as subsequential functions (Heinz and
Lai, 2013; Luo, 2017; Payne, 2017) which can be
learned in cubic time (Oncina et al., 1993).

A separate line of recent work, however, shows
that non-local processes can equally be modelled
using the weaker class of Tier-based Strictly Local
functions, which extend Tier-based Strictly Local
languages to functions in the same way that Strictly
Local functions extend Strictly Local languages
(see for example Andersson et al., 2020; Burness
et al., 2021). Previous work on learning tier-based
functions found that, while a transducer comput-
ing the function could be constructed in quadratic
time when the tier is known in advance, learning
the tier itself (where this is possible) took quintic
time (Burness and McMullin, 2019). This had the
odd consequence of making it less efficient to learn
a Tier-based Strictly Local function than a subse-

38

Proceedings of the 17th Meeting on the Mathematics of Language, pages 38—49, Montpellier (online),
December 13, 2021. © 2021 Association for Computational Linguistics

quential function, even though the former class
is strictly less expressive than the latter. In this
paper, we amend this discrepancy, showing that
inefficiencies in the existing tier induction meth-
ods can be eliminated by manipulating a Prefix
Tree Transducer, a data structure commonly used
in grammatical inference. Doing so reduces time
complexity by three polynomial degrees, making it
possible to identify a tier in quadratic time.

The rest of the paper is organized as follows. Sec-
tion 2 outlines notation and definitions to be used
throughout; it also provides formal background
on tier-based functions and important properties
thereof. Next, Section 3 discusses the first portion
of Burness and McMullin’s (2019) learning algo-
rithm which extracts particular information from
the training sample necessary for subsequent steps;
we identify the bottleneck responsible for the rel-
ative inefficiency of this procedure and show that
it can be avoided using a Prefix Tree Transducer.
Then, Section 4 discusses the portion of Burness
and McMullin’s (2019) algorithm that identifies the
target function’s tier; this procedure faces a similar
bottleneck to the preceding one which is also avoid-
able by using a Prefix Tree Transducer. Finally,
Section 5 concludes and discusses directions for
future research.

2 Preliminaries

2.1 Notation

Given a string w made of symbols from some al-
phabet 3, we write |w/| to denote the length of that
string. Below, strings will frequently be flanked by
the special non-alphabet symbols x and x, which
denote the start and end of a string, respectively.
Given an alphabet 3, we write >* to denote all pos-
sible strings made from that alphabet. The unique
string of length O (i.e. the empty string) is written
as A. Given two strings u and v, we write « - v to
denote their concatenation, though when context
allows, we will save space by simply writing uv.
A suffix of some string w is any string s such
that w = x - s and x, s € X*. Similarly, a prefix of
some string w is any string p such that w = p -z
and p, x € X*. Note that any string is a prefix and
a suffix of itself, and that the empty string) is a
prefix and a suffix of every string. When |w| > n,
suff"(w) denotes the unique suffix of w with a
length of n; when |w| < n, it simply denotes w
itself. Similarly, when |w| > n, pref”(w) denotes
the unique prefix of w with a length of n; when

|w| < n, it simply denotes w itself. We also write
pref*(w) to denote the set of all prefixes of any
length in w.

A string-to-string function pairs every w € »*
with one y € A*, where X and A are the input
alphabet and output alphabet respectively. Given a
set of input strings I C X%, f(I) = U {f(0)}
is the set of all outputs associated to at least one
of the inputs. Given a set of strings S, we write
1cp(S) to denote the longest common prefix of S,
which is the string u such that u is a prefix of every
w € S, and there exists no other string v such that
|v| > |u| and v is also a prefix of every w € S.

An important concept is that of the tails of
an input string w with respect to a function f.
In words, tailsy(w) pairs every possible string
y € ¥* with the portion of f(wy) that is directly
attributable to y. Stated differently, tailsf(w)
describes the effect that w has on the output of
any subsequent string of input symbols. When
tailsy(wy) = tailsy(wz) we say that w; and
wy are tail-equivalent with respect to f.

Definition 1. Tails (Oncina and Garcia 1991)
Given a function f and an input w € ¥*:
tailsp(w) = {(y,0)| flwy) =won
u = 1lcp(f(wX*))}
Throughout the rest of this paper, we will need
to be able to pick out the portion of the output
that corresponds to actual input material. Given a
transducer representation of the relevant function,
this boils down to a distinction between the writing
that occurs while reading segments from sigma >
and any writing that occurs when the end of the
word is reached (i.e., when K is read). To make
this distinction, Chandlee et al. (2015) defined the
prefix function fP associated with a subsequential
function f as below. An example where f(w) and
fP(w) differ would be a function that appends a
to the end of every input string. In this case, f? is
simply the identity map, so fP(abc) = abc whereas
f(abe) = abea.

Definition 2. Prefix function (Chandlee et al.
2015)

Given a function f, its associated prefix function
fP is such that:

fP(w) = Lep(f(wX"))

Finally, a useful concept related to tails, tail-
equivalency, and prefix functions is the contribu-
tion of a symbol o € X relative to a string w € ¥*
with respect to a function f. In words, for an input

39

string « that has the prefix wo, the contribution of
the o in wo is the portion of f(x) that is uniquely
and directly attributable to that instance of o. We
also define a special case for the word-end symbol
X that is not part of . The notation ! - w rep-
resents the string w with removed from its front,
so a~! - aba = ba for example.

Definition 3. Contribution
Given a function [and some w € ¥*:

» foro € X
contf(o,w) =
Lep(f(ws*)) ™" -

* For x ¢ %:
conty(x,w) = fP(w)™!

Lop(f(wx*)) ™t f(w)
2.2 Single-tiered functions

Where a Strictly Local (SL) function divides 3*
into tail-equivalence classes based on suffixes of
raw strings (Chandlee, 2014; Chandlee et al., 2014,
2015), a Tier-based Strictly Local (TSL) function’s
tail-equivalence classes are based on suffixes of
strings after masking irrelevant elements (Burness
and McMullin, 2019; Hao and Andersson, 2019;
Hao and Bowers, 2019). Relevant elements are
those that belong to the specified tier (a subset of
the alphabet) and the masking is accomplished with
an erasure function, sometimes also called a tier
projection.

fP(w)™r - fPwo) =
lep(f(woX®))

) =

Definition 4. Erasure function
Given a tier T' C %, the erasure function applied
by T on X% is such that:
eraser(\) = A
eraser(w) = eraser(u)-oif

w=u-cNoceT
eraser(u) if
w=u-cANo¢T

SL and TSL functions are really divided into
two types. On the one hand are the the Input (Tier-
based) Strictly Local or I(T)SL functions which
care about suffixes of the input string. On the other
hand are the Output (Tier-based) Strictly Local or
O(T)SL functions which care about suffixes of the
output string. For reasons of space, we focus on the
output-oriented OTSL functions in this paper, but
the results herein are easily extended to the input-
oriented ITSL case. As indicated in the following
formal definition, the OTSL functions are further
subdivided based on the length of suffix that is be-
ing tracked, although the learning results below ap-

eraser(w) =

ply only for £ = 2. Note that we write suf £/(w)
as shorthand for suff"(eraser(w)).

Definition 5. Output Tier-based Strictly k-Local
Functions (Burness and McMullin, 2019)

A function f is OTSLy, if there is a tier T C A such
that for all wy, we in X*:

suffg_l(fp(wl)) = suffgﬂ_l(fp(wz)) —

tailsf(wy) = tailsy(wa)

The tier-induction strategy of Burness and Mc-
Mullin (2019), which we optimize in this paper,
relies on some important properties of OTSLg func-
tions. First, many OTSL, functions can be de-
scribed using a variety of tiers (e.g., the identity
map can be described using any subset of the out-
put alphabet), but taking the union of two potential
tiers will always result in another potential tier (i.e.,
potential tiers can be freely combined).

Lemma 1. Free combination of tiers
Given an OTSLs function f, if AC Aand B C A
are both tiers for f, then Q0 = AU B is also a tier

for f.

Proof. See the proof of Lemma 4 in Burness and
McMullin (2019). O

The above Lemma implies the existence of a
unique largest tier for any OTSLs function that is
a superset of its other possible tiers (if any others
exist). Following Burness and McMullin (2019),
we call this the canonical tier for f.

Definition 6. Canonical tier

Given an OTSLs function f, the tier T' C A is the
canonical tier for f if and only if there is no other
tier Q@ C A for f such that || > |T)|.

Burness and McMullin (2019) go on to show
that, if one attempts to describe an OTSL, function
using a superset of its canonical tier, then there
will always be at least one input-output pair which
acts as evidence that one of the superfluous tier
elements cannot be a member of any tier for f.

Lemma 2. Absolute non-tier status

Let f be an OTSLy function where T C A is the
canonical tier. For every) such that T C ()
there will exist a € (Q — T), wy,we € X%,
and x € S U {x} such that suff,(fP(wy)) =
suffh(fP(we)) = a and contys(z,wy) #
cont ¢(x,wy).

Proof. See the proof of Lemma 5 in Burness and
McMullin (2019). O

40

Taking advantage of Lemma 1 and Lemma 2
together, we can begin by hypothesizing that the
canonical tier is equal to the entire output alphabet
A and whittle this hypothesis down as needed until
we converge on the canonical tier. To do so, we
look through our sample for evidence that some el-
ement cannot be on the tier, and if such an element
is found, we remove it from the hypothesized tier.
When no elements can be flagged for removal, we
will have found the canonical tier.

2.3 Multi-tiered functions

With a TSL function, we are limited to a single
tier. This is not necessarily an issue when we are
considering isolated long-distance processes, but
it severely limits our capacity to describe fuller
phonological systems. Burness and McMullin
(2021) address this issue at least partially by defin-
ing a class of Multi-Tiered Strictly Local (MTSL)
functions that tracks multiple independent tier pro-
jections in parallel. The class they develop imposes
a particular relationship between the tiers and the
input alphabet. Namely, the contribution (see Def-
inition 3) of a given input element can always be
linked back to the effects of a set tier, although
different input elements can be affected by differ-
ent tiers. Viewed another way, each input element
specifies a tier to which it pays exclusive attention.

In light of space limitations, and in order to cut
down on redundancy in the proofs below, we hence-
forth stick to single-tiered functions, noting that
the results herein are straightforwardly extended
to Burness and McMullin’s (2021) strongly target-
specified MTSL functions just described. The ma-
jor motivation behind this particular type of MTSL
function was that Burness and McMullin’s (2019)
method for learning the single tier of a TSL func-
tion readily generalizes to the “one tier per input el-
ement” case. Our changes to the single-tier learner
below do not affect any of the properties that al-
lowed for Burness and McMullin’s (2021) general-
ization to such multiple independent tiers.

3 Estimating the prefix function

Identifying the tier of a target function is done by
comparing contributions and checking for any that
do not match when the current hypothesis says they
should. Calculating contributions requires knowl-
edge of the target function’s associated prefix func-
tion fP, so the first step in the tier-learning pipeline
is to extract as much knowledge as possible about

fP from the given sample. Burness and McMullin
(2019) devised a method of doing so whose worst-
case run time is in O(|S|*), where | S| is the size
of the training sample. The relative inefficiency of
this method comes from the fact that it must read
through the sample once for each prefix in the sam-
ple, and must calculate the longest common prefix
of the set returned by each of these nested reads.
We present an alternative method in this section
whose worst-case run time is in O(|:S|?) and which
also allows us to greatly improve the efficiency of
later learning steps. By creating and manipulating
an auxiliary data structure, we completely elimi-
nate the need for the problematic nested reads.

3.1 Building an onward PTT

We start with what is known as a Prefix Tree
Transducer (PTT), defined in Definition 7 which
is adapted from Chandlee et al. (2014). The PTT
corresponding to a sample of input-output pairs
effectively generates all and only the pairs in the
sample, writing the entire output in one fell swoop
after reading the entire input. For example, the
PTT corresponding to {(s, s), (ss, ss), (s], ss), (so,
$0), (808, 808), (s0J0, $050), (s00, $008)} is shown
in Figure 1. To avoid visual clutter, all transitions
landing in the designated final state (qy) are incor-
porated into the label of their origin state.

Definition 7. Prefix Tree Transducer (adapted
from Chandlee et al. 2014)

A Prefix Tree Transducer (PTT) for the finite
set D of pairs (w,w’) from some function f is
PTT(D) = (Q, q,qf, %, A, 6) where:

* Q = Uppneplpret*(w)}

s Vue¥X)(Vaek)
[u,ua € Q <= (u,a, \,ua) € J]

e (w,w') € D<= (w,x,w,qf) €9
® (QOaN,)\a)\) 65

In this initial form, a PTT is maximally lazy,
waiting as late as possible before writing any out-
put. For tier learning, we need to modify the PTT
so that it is minimally lazy, producing as much out-
put as it can as early as it can. To perform such
a conversion, we can perform a depth-first parse
of the sample working backwards from the leaves
of the prefix tree towards the root. For each state
along the way, we calculate the longest common
prefix of the output edges on its outgoing transi-
tions, pushing that string onto the output edge of its

41

sofo
X :S0S0

Figure 1: The PTT for the sample {(s, s), (ss, ss), (s[, 88), (sa, sa), (sas, sas), (safa, sasa), (saaS, saas)}

lone incoming transition (de la Higuera, 2010, pp.
377-379). We use the term onward PTT to refer to
such a converted PTT and write onward(M) to
denote the process being applied to M. For the full
details of how to build a PTT and make it onward,
see chapter 18 of de la Higuera (2010). Figure 2
shows the result of onwarding the PTT in Figure 1.

Onward PTTs are used by the Onward Subse-
quential Transducer Inference Algorithm (OSTIA)
of Oncina et al. (1993) and are used by the learn-
ing algorithm for ISL functions (Chandlee et al.,
2014) but not the one for OSL functions (Chandlee
et al., 2015). Interestingly, both OSTIA and the ISL
function learning algorithm obtain a transducer rep-
resentation of the target function by applying a
process of state merging to an onward PTT. In con-
trast, the learning algorithm in this paper merely
uses an onward PTT as a sort of oracle, consult-
ing it for essential pieces of information without
modifying it in any way.

3.2 Extracting useful information

A PTT that has been made onward exhibits some
important properties that will be exploited below.
First, given a state ¢ € () that has an outgoing tran-
sition for all z € ¥ U {x }, we will have produced
exactly fP(q) so far when we enter the state g. We
call such a state a supported state. Assuming that
Y = {s, 0, [}, the supported states in Figure 2 are
‘s’ and ‘so’.

Definition 8. Supported state

Given an onward PTT P = (Q, qo,q5,%,A,9),
the state ¢ € @ is supported if and only if:

(Vz e SU{x}[3(q, v, y,q") € I

Lemma 3. Let P be the onward PTT constructed
according to sample S drawn from function f.
Given a supported state q € @, it is the case that
we will have written exactly fP(q) upon entering q
after starting in qq.

Proof. Since q is supported, it is the case that
(Ve € XU {x})[3(q,z,y,q") € d]. This in turn
means that we have (g, f(¢)) € S and for each
a € X we have (qab, f(qab)) € S for some
b € ¥*. An onward PTT is deterministic and
acyclic, so inputs will only pass through q if they
have q as a prefix, and all such inputs in S are guar-
anteed to do so. Let the set M, (for “matching ¢”)
be this subset of the inputs in .S. Because all and
only the inputs in S that are also in M, will pass
through ¢, the process of making the PTT onward
will push 1cp(f(M,)) past g towards the root such
that exactly this 1 cp will have been written when
q is entered after starting in gg. Now recall that
fr(w) = Lep(fu | u = flwy) Ay € S*). I
is sufficient to use a set containing f(w) and at
least one f(wv) = f(wab) for each a € ¥ (where
b € ¥*) because every v € ¥* is either A or begins
with some a € Y. The set M, fulfills this criterion
and so 1cp(f(My)) = fP(q). O

The other crucial property of an onward PTT fol-
lows from the first: given a transition (¢, z,y,q’) €
d such that ¢ is a supported state and ¢’ is either
another supported state or gy, the string y is guaran-
teed to be equal to cont ¢(z, ¢) provided that f is
a subsequential function. The transitions meeting
these criteria in Figure 2 are (s, %, A, ¢f), (s, 0, 0,
s0) and (so, X, A, gf).

42

Figure 2: The onward version of Figure 1

Remark 1. Let P be the onward PTT constructed
according to a sample drawn from function f. A
corollary of Lemma 3 is that, given a supported q:

* (g, %, u,qy)is suchthatu = cont¢(x,q) =

P~ flq)

* (q,0,v,1) for 0 € X is such that v =
conty(o,q) = fP(q)~' - fP(qo) if r is also
supported.

The procedure est imate_fp shown in Algo-
rithm 1 sends a sample S once through its onward
PTT and returns all pairs (g, fP(¢q)) such that ¢
is a supported state. This set will be exploited
along with the PTT when inducing the tier; the
tier-learning algorithm below essentially treats this
PTT and the constructed set as a sort of oracle that
it can consult for information about fP. We close
this section by showing that extracting information
about fP from a sample using Algorithm 1 takes
quadratic time in the worst case.

Lemma 4. Quadratic time (estimate_fp)
For any sample S of input-output pairs, Algorithm
1 runs in O(|S|? - %)) time.

Proof. Let | = 37, ,es|w| be the summed
lengths of all inputs in the sample, let 0 =
maz{|u| : (w,u) € S} be the longest output
length in the sample, and let s be the number of
pairs in the sample. These magnitudes are all linear
in the size of the sample.

Constructing P = PTT(S) requires a single
read through .S, taking ! steps. Making this P on-
ward takes at most ol steps (for details, see chapter
18 of de la Higuera, 2010). There are at most [non-
initial/non-final states in P and estimate_fp

starts by checking each of these once. For each,
it verifies whether all possible |X| 4+ 1 outgoing
transitions exist. There are at most [+ s tran-
sitions in P, meaning that checking whether a
transition exists takes at most [+ s steps. The
first portion of est imate_fp thus takes at most
I((I+s)(|2] +1)) steps. The second portion sends
the sample through P one input letter at a time,
checking on each step whether the landing state is
in A. Checking whether a state is in A takes at most
[steps, so the second portion of estimate_fp
takes at most [2 steps. Taken together, the run time
isin O(I+ol+1(I+s)|2|+12), which is quadratic
in the size of S and linear in the size of X. O

4 Identifying tier(s)

4.1 Overview of the process

The full tier induction process is shown in Algo-
rithm 2. This algorithm adapts the overall strategy
from Burness and McMullin (2019) so that it can
be used with the PTT objects described above. In
their original implementation of the strategy, the
learner had to (1) sift through the sample for pairs
meeting a certain criterion and (2) calculate con-
tributions relative to each member of the collected
subset. The latter step requires an additional scan
through the sample for each pair acting as the basis
of comparison, and like above, this nested reading
of the sample creates a significant bottleneck which
ultimately makes the process run in O(|S|°) time.

The key insight in this paper is that certain tran-
sitions in an onwarded PTT will be equal to their
corresponding contribution. Remark 1 tells us that
these are easily identified by checking them against
the set of pairs (g, f(q)) produced by the revised

43

Data: A sample S

Result: An onward PTT P and the set A
containing the pair (g, f?(q)) for
each supported ¢ € Q)

Function estimate_fp (5):

P« PTT(S) = (Qv(JanfaEaA?é);
P + onward(P);
A0
B + 0
for ¢ € Q do
if Vo e U {x},
A(q,z,y,q') € 6 then
| B+« BU{q}
for each (z,y) € S do
a < A;
b « z such that (qo, X, 2, \) € §;
if a € B then
| A« Au{(a,D)};
for n from 1 to |x| do
r < the n-th letter of z;
w <— u such that
(a,r,u,q) € 9;
a < ¢ such that
(a,r,w,q) € 0;
b+ b-w;
if a € B then
| A« Au{(a,p)};
return A, P

Algorithm 1: Prefix function estimation

estimate_fp. Instead of calculating and re-
calculating contributions to find mismatches, then,
we can simply cycle through the list of transitions
in the onwarded PTT, sorting them into bins based
on the current tier hypothesis. Doing so eliminates
the problematic nesting and accordingly reduces
the upper bound on runtime by three polynomial
degrees to O(|S|?).

This reduction in the degree of nesting is simi-
lar to how the ISL learning algorithm’s quadratic
time complexity relates to OSTIA’s cubic time com-
plexity. Both learning algorithms take an onward
PTT and merge pairs of states until they terminate.
Where n is the number of states in the provided
PTT, the number of possible merges performed by
OSTIA is in O(n?) since it can reject and undo
merges (Oncina et al., 1993); in contrast, the num-
ber of possible merges performed by the ISL learn-
ing algorithm is in O (n) since it cannot reject and
undo merges (Chandlee et al., 2014). For each
state merging, both algorithms apply operations

that run in O(|S]), and as a result, the overall com-
plexity of OSTIA and the ISL learning algorithm
are cubic and quadratic in the size of the sample,
respectively.!

We start by hypothesizing that T' = A (i.e., that
all members of the output alphabet are on the tier).
Then, for each transition (¢, z, y, r) in the onward
PTT, the algorithm checks whether ¢ is a supported
state (i.e., whether there is a pair in A associated
to it) and whether r is a supported state or g¢. If
both of these conditions hold, then the output edge
y of the transition is equal to cont ¢(z,q). Ac-
cordingly, the algorithm takes (g, fP(q)) € A, cal-
culates ¢ = suf £5.(fP(q)), and adds y to the bin
Cy,+ (the set of contributions for x when the tier
suffix is ¢) if it is not already there. If ¢ is on the
function’s canonical tier, the cardinality of this bin
should always be equal to or less than 1 since the
target function is OTSLy and so the contribution
should be the same whenever the output tier suffix
is equal to ¢.

After scanning through all transitions in the on-
ward PTT, the algorithm looks for any constructed
bins of contributions C;, ; with cardinality greater
than 1. If none of the bins associated with a specific
t € T has cardinality greater than 1, the element ¢
will get added to the auxiliary set K (for “keep”)
containing elements that are safe to keep on the tier
for now. If any of the bins associated to ¢ € T" have
cardinality greater than 1, the element ¢ is removed
from the tier hypothesis since it cannot possibly be
a member of the function’s canonical tier. If at any
point some symbol gets removed from 7, the set K
is immediately emptied. The algorithm repeatedly
alternates between scanning the PTT transitions
and checking the cardinality of contribution sets
until every ¢ in the current hypothesis for 7' gets
added to the set K, in which case it has found the
canonical tier of the target function.

4.2 Proofs of correctness/efficiency

In this subsection, we establish that our revision of
Burness and McMullin’s (2019) algorithm achieves
the same result in much less time.

Lemma 5. Quadratic time (get_tier)
For any input sample S, get_tier(S) produces
atier T in O(|S]? - |X| - |AJ?) time.

'"The quadratic time complexity of the OSL learning al-
gorithm, for its part, comes from repeatedly calculating the
longest common prefix of stringsets lifted from the sample
(Chandlee et al., 2015).

44

Data: A sample S
Result: A tier T C A
Function get _tier (5):
A, P < estimate_fp(S5);
T «— A;
K « 0
while K # T do
for eacht € T do
for each z € ¥ U {x} do

‘ Cr,t = 0
for each (q,x,y,r) € § from P do
if [3(¢g,a) € AJ A [[r =
qr] V [3(r,b) € A]] then

t <« sufflT(a);
Cr,t — Cx,t U {y},
for eacht € T do
for each z € ¥ U {x} do
if |Cy¢| > 1 then
T+ T—{t}
K + 0;

if t € T then

| K+ KU({t}

return 7'
Algorithm 2: Single tier induction

Proof. Let I = 37,)es|w| be the summed
lengths of all inputs in the sample, let o =
maz{|u| : (w,u) € S} be the longest output
length in the sample, let i = maz{|w| : (w,u) €
S} be the longest input length in the sample, and
let s be the number of pairs in the sample. These
are all linear in the size of the sample.

The first step is to run estimate_fp on the
sample which Lemma 1 already established as run-
ning in O(|S|?). Following that, the while loop can
run up to |A| times. The first for loop initializes
the contribution sets that will be constructed, of
which there are at most |A| - |X|. Then, for each
of the up to [+ s transitions in P, the second for
loop it searches A up to two times to check whether
the origin is supported and whether the destination
is supported or final. A single search of A take
at most [steps, and if both conditions are met we
calculate the relevant output tier suffix, taking at
most o steps. Finally, the third for loop inspects
all the transitions in P, we check the cardinality of
each contribution set, which takes at most |A| - ||
steps. The overall run time of get_tier(S) is
thus in O(|A]2|Z] + |A|(I + s)(I + 0)), which is
quadratic in the size of .9, linear in the size of X
and quadratic in the size of A. O

The remaining lemmata of this section will show
that for each total OTSLs function f, there is a
finite kernel of data consistent with f that is a char-
acteristic set for the algorithm (i.e., if the training
set subsumes this kernel, the algorithm is guaran-
teed to succeed). The OTSL,, functions divide >*
into a finite number of equivalence classes accord-
ing to sets of tails, meaning that the OTSL;, func-
tions are also subsequential functions. Oncina and
Garcia (1991) show how the finite partition of >*
lets us build the smallest finite-state transducer that
computes a given subsequential function. Given
a state ¢ in this canonical transducer F, we write
wy to denote the length-lexicographically earliest
input string that reaches the state ¢, and define the
characteristic set as follows. Note that this same
characteristic set is used by Burness and McMullin
(2021) for their multi-tier learner; they showed that
its size is in O(|F|?).

Definition 9. Characteristic set
A sample S contains a characteristic set iff it con-
tains the following for each state q in F:

1. The input-output pair (wy, f(wg)).
2. For all triples a, b, c € %:

i. some pair (wqa, f(wqa)),
it. some pair (wqab, f(wqab)), and
iii. some pair (wqabcv, f(wqabcv)),
where v € X*

Lemma 6. Quadratic data
There exists a characteristic set whose size is in

O(|F).

Proof. See the proof of Lemma 17 in Burness and
McMullin (2021). O

Lemma 7. Evidence availability

If a learning sample S contains a characteristic
set and P is the onward PTT for S then for all
w € X* and all pairs x,y € X there is at least
one transition in P corresponding to each of the
following that (1) leaves a supported state and (2)
ends in qy or a supported state:

* conty(x,w)

(
* conty(x,w)
* conty(y, wx)
(

* cont (X, wx)

45

Proof. For any input string w € ¥, reading w
will lead to some non-initial and non-final state ¢
in F. The target function is subsequential which
means that that either w = w, or else can be re-
placed thereby since subsequentiality implies that
cont f(i,w) = cont s (i, wy) forany i € ZU{x}.
By the definition of the seed, for every state ¢ in F
and for every triple x, y, z € X, the learner will see
Wy, We, wexy, and wyxryzv where v € X*. This
means that the states wy, wqr, and wyxy in P are
all supported. As Remark 1 notes, Lemma 3 then
implies that:

* (wg,x,a1,wqz) in P is such that a; =
fp(wq)_1 - fP(wgx) = cont ¢(x,wq)

* (wg, X,a2,q¢) in P is such that ay =
fP(wg) ™"+ f(wg) = cont f(x, wg)

* (wqz,y, a3, wgry) in P is such that ag =
FP(wgz) - fP(wqry) = cont 4(y, wez)

* (wqx, X, a4,qf) in P is such that ay =
JP(wgz) ™!+ f(wgzw) = cont p(X, wez)

O]

Lemma 8. Tier convergence

Given a learning sample S that contains a char-
acteristic sample, get_t ier(S) will produce the
canonical tier of f.

Proof. Let T be the canonical tier of f, and let
H be the tier constructed by the algorithm. The
algorithm begins with H = A, and so either
H = T already, or else H D T'. The algorithm
is designed to consider all and only the transitions
(¢,z,y,7)in P = onward(PTT(S)) such that ¢
is a supported state and r is a supported state or
qr. As Remark I notes, Lemma 3 implies that
y = conty(x,q) for all such transitions. For
each considered transition (g, z,y,r) in P, the al-
gorithm sorts y into the bin associated simultane-
ously with z and with z = suffL(p), where p
is equal to the output produced upon reading ¢ in
P. Note that the algorithm has easy access to the
string p because it is paired with ¢ in the auxiliary
set A. Note also that since ¢ is a supported state,
Lemma 3 tells us that p = fP(q).

Now, we know from Lemma 2 that if H D T,
there will exist a pair of input strings w; and
wy in the domain of f such that cont ¢(x,w:)
cont ¢(x, wy) even though suf £}, (fP(w)) =
suff(fP(ws)) = aforsome a € (H —T) and

some x € ¥ U {x }. Furthermore, Lemma 7 tells
us that for all non-initial/non-final states s in the
minimal FST F producing f, each transition along
every possible sequence of two or fewer steps out
of s will have at least one equivalent transition in
P that is considered by the algorithm. If the first
transition along one of these paths produces any
elements not in 7', we stand the chance of incor-
rectly binning the second transition when H D T
Since we see all possible paths of two transitions,
at least one pair of unequal contributions (which
should be placed into two different bins linked to
two different members of T, since f is OTSLy)
will be placed together into a bin that should not
exist (because that bin is linked to a non-member
of TYwhen H D T.

Accordingly, at least one of the bins associated
with some b € (H — T) will have a cardinal-
ity greater than 1 (assuming repeated strings are
counted only once) when H D T'. The algorithm
will thus flag and remove at least one b € (H — T))
when H D T'. Conversely, there will be no pair
of input strings w3 and w4 in the domain of f
such that cont ¢(x,w3) # cont ¢(z,ws) when
suffh(fP(ws)) = suffh (fP(w4)) = c for any
¢ € T and any x € ¥ U {ix }. Consequently, none
of the bins associated with any ¢ € T" will ever sur-
pass a cardinality of 1 (assuming repeated strings
are counted only once). When H = T, then, the
algorithm will add all d € H to K, at which point
K=H=T. O

Theorem 1. get_tier identifies the canonical
tier of any total OTSLy function in O(|S|?) time
and O(|F|?) data.

Proof. Immediate from Lemmata 5, 6, and 8. [

The sample and the tier returned by
get_tier(S) can then be fed to the trans-
ducer building algorithm from Burness and
McMullin (2019), which is a generalization of
the transducer building algorithm from Chandlee
et al. (2015) and whose worst-case runtime is
also in O(|S|?). Since all three components of
the tier-based function learning pipeline now
have a quadratic upper bound on runtime, the
overall process from start to finish now also has a
quadratic upper bound.

5 Discussion and conclusion

SL functions, aside from closely approximating the
typology of local processes (Chandlee and Heinz,

46

2018), are highly useful from a learnability stand-
point. With their quadratic upper bounds on run-
time, it can be preferable to use the SL function
learning algorithms (Chandlee et al., 2014, 2015)
over the Onward Subsequential Transducer Infer-
ence Algorithm (OSTIA) of Oncina et al. (1993).
While OSTIA can learn all the same functions as
the SL function learners and more (since the sub-
sequential functions properly contain the SL func-
tions), its run time is cubic in the worst case. Sac-
rificing expressiveness, in this case, is offset by a
gain in efficiency, making it worthwhile in appro-
priate circumstances.

Prior to this paper, the same tradeoff was only
true for TSL and MTSL functions when the learner
already knew the necessary tier(s). Such advance
knowledge permits basic generalizations of the SL.
learning algorithms that preserve their complexity
bounds (Burness and McMullin, 2019). Of course,
it is not realistic for a learner to come equipped
with foreknowledge of the relevant tier(s), so a fo-
cus of research on tier-based functions has been
whether and how tiers can be identified from posi-
tive examples drawn from the target function. Ini-
tial methods from this enterprise were limited in
that they (i) only work for functions with a win-
dow length (the parameter k) of 2 and (ii) are less
efficient than OSTIA by two polynomial degrees,
with a quintic worst-case runtime. Accordingly, the
fact that some tiers could be learned from positive
data was effectively a technical curiosity from the
perspective of learning performance.

Practically speaking, a learner was better off
attempting to build a subsequential function than
a TSL or MTSL function when an SL function
was not sufficient. Our contribution here was to
show that the inefficiencies of tier learning could
be overcome by manipulating a Prefix Tree Trans-
ducer (a data structure also used by OTSIA and
the ISL learning algorithm) rather than just ma-
nipulating the sample. Doing so circumvents the
need for nested reading of the sample, which we
identified as the major bottleneck of previous meth-
ods. Our revision of the methods from Burness and
McMullin (2019, 2021) reduces their upper bound
on runtime by three polynomial degrees. As was
the case for the SL functions, then, the sacrifice
in expressiveness from eschewing a subsequential
function in favour of a TSLy function (or a strongly-
target specified MTSLsy function; Burness and Mc-
Mullin, 2021) is offset by an appreciable gain in

efficiency.

While we have focused mainly on concerns of
practicality in this paper, we do note that there are
also conceptual grounds for using TSL and MTSL
functions over subsequential functions as models
of long-distance phonological process. It is well-
established that subsequential computation is suf-
ficiently expressive to model non-local vowel har-
mony (Heinz and Lai, 2013), consonant harmony
(Luo, 2017), and consonant dissimilation (Payne,
2017) with a handful of exceptions in the form of
unbounded circumambience (Jardine, 2016; Mc-
Collum et al., 2020). That being said, the rela-
tivized locality underpinning tier-based functions
has been shown to more intuitively capture attested
long-distance behaviours (Andersson et al., 2020;
Burness et al., 2021), while excluding some patho-
logical behaviours like modulo counting which
are otherwise amenable to a subsequential anal-
ysis (Burness et al., 2021). Combining this work
with the learnability results in the current paper
solidifies the appropriateness of TSL and MTSL
functions as models of long-distance phonological
processes.

Several hurdles, however, still remain to be over-
come in the area of tier-based function learning.
First and foremost, the results herein require a
window size (k) of 2; the properties exploited by
the learner do not hold for larger window sizes.
This is in stark contrast to tier-based languages,
whose tiers are efficiently learnable for arbitrary
window sizes (Jardine and McMullin, 2017; Lam-
bert, 2021). Second, the learner developed above is
a batch learner (as are OSTIA and the SL learners),
making it unlikely as a model of real human phono-
logical learning. In this regard as well, the existing
work on languages outpaces the work on functions,
since an online learner was recently developed for
TSL languages (Lambert, 2021). Finally, the way
in which we manipulate the PTT during tier learn-
ing assumes that the function is total. To learn
partial functions, it may be necessary to provide
the learner with some additional information, like
how Oncina and Varé (1996) and Castellanos et al.
(1998) augment OSTIA by giving it access to do-
main and range information, respectively.

References

Samuel Andersson, Hossep Dolatian, and Yiding Hao.
2020. Computing vowel harmony: The generative

47

capacity of search and copy. In Proceedings of the
2019 Annual Meeting on Phonology.

Phillip Burness and Kevin McMullin. 2019. Efficient
learning of Output Tier-Based Strictly 2-Local func-
tions. In Proceedings of the 16th Meeting on the
Mathematics of Language, pages 78-90. Associa-
tion for Computational Linguistics.

Phillip Burness and Kevin McMullin. 2021. Learning
multiple independent tier-based processes. In Pro-
ceedings of the Fifteenth International Conference
on Grammatical Inference, volume 153 of Proceed-
ings of Machine Learning Research, pages 66—80.
PMLR.

Phillip Burness, Kevin McMullin, and Jane Chandlee.
2021. Long-distance phonological processes as tier-
based strictly local functions. Glossa, 6.

Antonio Castellanos, Enrique Vidal, Miguel A. Varo,
and José Oncina. 1998. Language understanding
and subsequential transducer learning. Computer
Speech and Language, 12:193-228.

Jane Chandlee. 2014.
Processes.
Delaware.

Strictly Local Phonological
Doctoral dissertation, University of

Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz.
2014. Learning Strictly Local subsequential func-
tions. Transactions of the Association for Computa-
tional Linguistics, 2:491-503.

Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz. 2015.
Output Strictly Local functions. In Proceedings of
the 14th Meeting on the Mathematics of Language
(MOL 2015), pages 112-125.

Jane Chandlee and Jeffrey Heinz. 2018. Strict Locality
and phonological maps. Linguistic Inquiry, 49:23—
60.

Noam Chomsky. 1956. Three models for the descrip-
tion of language. IRE Transactions on Information
Theory, 2:113-124.

Colin de la Higuera. 2010. Grammatical Inference:
Learning Automata and Grammars. Cambridge Uni-
versity Press, New York.

Pedro Garcia, Enrique Vidal, and José Oncina. 1990.
Learning Locally Testable languages in the strict
sense. In Proceedings of the Workshop on Algorith-
mic Learning Theory, pages 325-338. Japanese So-
ciety for Artificial Intelligence.

E. Mark Gold. 1967. Language identification in the
limit. Information and Control, 10:447-474.

Yiding Hao and Samuel Andersson. 2019. Unbounded
stress in subregular phonology. In Proceedings of
the 16th SIGMORPHON Workshop on Computa-
tional Research in Phonetics, Phonology and Mor-
phology, pages 135-143, Florence, Italy. Associa-
tion for Computational Linguistics.

Yiding Hao and Dustin Bowers. 2019. Action-sensitive
phonological dependencies. In Proceedings of the
16th SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology and Morphol-
ogy, pages 218-228, Florence, Italy. Association for
Computational Linguistics.

Jeffrey Heinz and Regine Lai. 2013. Vowel harmony
and subsequentiality. In Proceedings of the 13th
Meeting on the Mathematics of Language (MOL 13),
pages 52-63, Sofia, Bulgaria. Association for Com-
putational Linguistics.

Jeffrey Heinz, Chetan Rawal, and Herbert G. Tan-
ner. 2011. Tier-based strictly local constraints for
phonology. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics,
pages 58—64, Portland, OR. Association for Compu-
tational Linguistics.

Adam Jardine. 2016. Computationally, tone is differ-
ent. Phonology, 33:247-283.

Adam Jardine and Kevin McMullin. 2017. Efficient
learning of Tier-Based Strictly k-Local languages.
In International Conference on Language and Au-
tomata Theory and Applications (LATA 2017), pages
64-76.

C. Douglas Johnson. 1972. Formal Aspects of Phono-
logical Description. Mouton, The Hague.

Ronald M. Kaplan and Martin Kay. 1994. Regular
models of phonological rule systems. Computa-
tional Linguistics, 20:331-378.

Dakotah Lambert. 2021. Grammar interpretations and
learning TSL online. In Proceedings of the Fifteenth
International Conference on Grammatical Inference,
volume 153 of Proceedings of Machine Learning Re-
search, pages 81-91. PMLR.

Dakotah Lambert and James Rogers. 2020. Tier-Based
Strictly Local stringsets: Perspectives from model
and automata theory. In Proceedings of the Society
for Computation in Linguistics (SCiL) 2020, pages
330-337, New Orleans, Louisianna.

Huan Luo. 2017. Long-distance consonant agreement
and subsequentiality. Glossa: A Journal of General
Linguistics, 2:1-25.

Adam G. McCollum, Eric Bakovi¢, Anna Mai, and
Eric Meinhardt. 2020. Unbounded circumambi-
ent patterns in segmental phonology. Phonology,
37:215-255.

Kevin McMullin and Gunnar Olafur Hansson. 2016.
Long-distance phonotactics as Tier-Based Strictly 2-
Local Languages. In Proceedings of the 2014 An-
nual Meeting on Phonology, Washington, DC. Lin-
guistic Society of America.

José Oncina and Pedro Garcia. 1991. Inductive learn-
ing of subsequential functions. Technical Report
DSIC II-34, University Politecnia de Valencia.

48

José Oncina, Pedro Garcia, and Enrique Vidal.
1993. Learning subsequential transducers for pat-
tern recognition tasks. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 15:448—
458.

José Oncina and Miguel A. Var6. 1996. Using do-
main information during the learning of a subsequen-
tial transducer. In Laurent Miclet and Colin de la
Higuera, editors, Grammatical Interference: Learn-
ing Syntax from Sentences, number 1147 in Lec-
ture Notes in Artificial Intelligence, pages 301-312.
Springer, Berlin.

Amanda Payne. 2017. All dissimilation is computa-
tionally subsequential. Language, 93:353-371.

James Rogers, Jeffrey Heinz, Margaret Fero, Jeremy
Hurst, Dakotah Lambert, and Sean Wibel. 2013.
Cognitive and sub-regular complexity. In Formal
Grammar, number 8036 in Lecture Notes in Artifi-
cial Intelligence, pages 90—108. Springer.

James Rogers and Geoffrey K. Pullum. 2011. Aural
pattern recognition experiments and the subregular

hierarchy. Journal of Logic, Language and Informa-
tion, 20:329-342.

49

	Proceedings of the 17th Meeting on the Mathematics of Language
	ISBN
	Preface
	Programme Committee
	Table of Contents
	A Generative Process for Lambek Categorial Proof Nets
	German Verb Particle Constructions in CCG
	Strong Learning of some Probabilistic Multiple Context-Free Grammars
	More Efficiently Identifying the Tiers of Strictly 2-Local Tier-Based Functions
	Tier-Based Modeling of Gradience and Distance-Based Decay in Phonological Processes
	Embedding Intentional Semantic into Inquisitive Semantics

