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Abstract

Neural machine translation based on bilingual
text with limited training data suffers from
lexical diversity, which lowers the rare word
translation accuracy and reduces the general­
izability of the translation system. In this
work, we utilise the multiple captions from the
Multi-30K dataset to increase the lexical di­
versity aided with the cross­lingual transfer of
information among the languages in a multi­
lingual setup. In this multilingual and multi­
modal setting, the inclusion of the visual fea­
tures boosts the translation quality by a signif­
icant margin. Empirical study affirms that our
proposed multimodal approach achieves sub­
stantial gain in terms of the automatic score
and shows robustness in handling the rare word
translation in the pretext of English to/from
Hindi and Telugu translation tasks.

1 Introduction

The machine translation (MT) systems by (Koehn
et al., 2003; Sutskever et al., 2014; Gehring et al.,
2017; Vaswani et al., 2017) has been the de­facto
standard which are based on parallel dataset. But,
in recent times, use of monolingual data (Singh
and Singh, 2020) or incorporating multiple lan­
guages in a jointly trained single multilingual
model (Johnson et al., 2017; Fan et al., 2020)
has improved the translation quality of low re­
source languages. Compared to training separate
bi­lingual models with the same parameters, the
ability to handle translation between multiple lan­
guage pairs provides an inherent advantage of hav­
ing relatively compact model parameters. Typi­
cally, in such models, the encoder and decoders
are shared among all the languages and attention.
The sharing of the encoder is crucial to learn the ini­
tial multilingual cross­lingual information (Sachan
and Neubig, 2018) however, a single shared de­
coder is often insufficient in handling the transla­

tion of multiple languages. This decoder degener­
acy is addressed by partial sharing of decoder and
attention parameters (Sachan and Neubig, 2018)
or through a language­agnostic universal models
(Bapna and Firat, 2019).
Image features along with the text data has been

used in sequence generation tasks such as the im­
age caption generation (Singh et al., 2021a,b) and
multimodal machine translation (MMT) which in­
corporates visual features into ordinary NMT sys­
tems for low resource languages. With the intro­
duction of MMT datasets such as Multi-30k (El­
liott et al., 2016) and Hindi Visual Genome Parida
et al. (2019), MT researchers (Huang et al., 2016;
Caglayan et al., 2016, 2019; Meetei et al., 2019)
have highlighted improvement in translation qual­
ity by incorporating image features in the MT sys­
tems.
In this work, we adopt a single shared multilin­

gual machine translation system between English
and under resourced languages viz., Hindi and Tel­
ugu, aided by linguistic information in the form of
multiple captions. The inclusion of multiple cap­
tions during training makes the system implicitly
robust to lexical and syntactic diversity. In addi­
tion to the multiple captions, we infuse our multi­
caption multilingual model with the visual infor­
mation in a multimodal (Calixto et al., 2017a; El­
liott and Kádár, 2017; Yao and Wan, 2020) setting.
English and Hindi belong to the Indo­European
language family, while Telugu is a Dravidian lan­
guage. All three languages use different scripts;
Roman for English, Devanagari for Hindi and Tel­
ugu is written in Telugu script, an abugida writing
system from the Brahmic family of scripts.

2 Related Works

Callison­Burch et al. (2006) used paraphrase in a
phrase­based statistical machine translation model
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and found that their method improves over the sin­
gle parallel corpora PB­SMT baseline in terms of
the overall word coverage and the translation qual­
ity. Paraphrase has also been leveraged as a data
augmentation technique to improve dialog gener­
ation (Gao et al., 2020) and question generation
(Jia et al., 2020) tasks. More similar to our pro­
posed work Zhou et al. (2019) decomposed the
paraphrase as a foreign language in a multilingual
scenario. Similar to the findings of Callison­Burch
et al. (2006), Zhou et al. (2019) found that their
method improves the word coverage with diverse
lexical choices.
However, theseworks are purely uni­modal, and

on the other hand, a visually informed multimodal
system involves the extraction of the global se­
mantic features from the image and initialize ei­
ther the encoder or decoder to fuse the visual con­
text along with the textual input (Calixto et al.,
2017b). In cases where the textual context is re­
stricted, Caglayan et al. (2019) showed that vi­
sual features could help to generate better transla­
tions. Similar to the proposed work, (Chakravarthi
et al., 2019) trained a multimodal machine transla­
tion system in the pretext of Tamil, Kannada and
Malayalam by generating a synthetic dataset from
Flickr30k (Plummer et al., 2015). They showed
that transliteration of the Dravidian languages into
Latin script and the multilingual setup improves
the multimodal system over the bilingual multi­
modal baseline.

3 Methodology

The proposed multi­caption enabled multi­modal
multilingual machine translation system employs
two major steps: first, we create the training cor­
pus and then train the multi­caption multilingual
system fused with the visual features.

3.1 Corpus Creation
The creation of a training corpus for the experi­
mentation is the first step. Multilingual machine
translation with visual features for English (en)
to/from {Hindi (hi), Telugu (te)} is the experi­
ment’s premise. Multi-30K (Elliott et al., 2016),
on the other hand, lacks the hi and te data. As a
result, for training, validation, and test data, a pub­
licly available machine translation model (Ramesh
et al., 2021) generates the hi and te translations cor­
responding to the English captions1 (caption-1

1Further details are provided in the Dataset section.

and caption-2).
Initially, all the caption-1 instances are suf­

fixed with the prefix.lang1 while prefix.lang2 for
the caption-2 where prefix ∈ (train, validation,
test) and lang ∈ (en, hi, te). Furthermore, dur­
ing the many­to­one (m2o) training, all the en in­
stances of the train and validation are merged into
a single compound target language while all the
non­English instances aremerged as the source lan­
guage. Here, we do not append any artificial target
token at the source side to denote the target lan­
guage as English is the sole target language. On
the other hand, for the one­to­many (o2m) training
all the en instances of the train and validation are
merged into as the source language while all the
non­English instances are merged as the target lan­
guage. In this case, an artificial target language to­
ken <__tgt__lang> is appended at the beginning
of the source sentence to denote the target language
lang ∈ (hi1, te1, hi2, te2).

3.2 Neural Machine Translation (NMT)
NMT is an encoder­decoder based sequence­to­
sequence approach to machine translation which
jointly models the conditional probability p(y|x) to
translate a target sequence, y = {y1, . . . , ym} given
a source sequence, x = {x1, . . . , xn} as:

p(y|x; θ) =
m∏
j=1

p(yj |y<j , x; θ),

where θ is the set of learnable model parameters.
Furthermore, the model objective is to maximize
the log­likelihood L w.r.t θ by the following equa­
tion:

Lθ =
∑

(x,y)∈D

log p(y|x; θ), (1)

where D is the parallel corpus. RNN (Sutskever
et al., 2014; Bahdanau et al., 2014; Luong et al.,
2015), CNN (Gehring et al., 2017) and Transform­
ers (Vaswani et al., 2017) are the popular choice
of encoder­decoder models. In this work, we use
RNNwith cross attention between the encoder and
the decoder.

3.3 Multilingual NMT (MNMT)
Multilingual NMT facilitates the translation be­
tween multiple languages via pivot based (Dabre
et al., 2015), transfer learning (Zoph et al., 2016) or
through a jointly trained single NMT model (John­
son et al., 2017). In this work, we utilise the jointly
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trained single multilingual NMT model. Addition­
ally, this single MNMT can be further divided into
three types according to the mapping of the source
and the target languages:

1. Many­to­one (m2o). In this setting, the
model is trained to translate multiple source
languages into a single target language.

2. One­to­many (o2m). This MNMT model
translates from a single source language to
multiple target languages.

3. Many­to­many (m2m). Here, translation
between many source and many target lan­
guages is possible.

Moreover, as there are several target languages in
the o2m and m2m, a target language tag is ap­
pended at the beginning of the source sentence
to specify the predicted target language. Given
K sentence pairs and L language pairs the train­
ing objective of an MNMT model is to maximise
the log­likelihood over the whole parallel pairs
{x(l,k), y(l,k)}l∈(1,...,L)k∈(1,...,Kl)

as:

Lθ =
1

K

L∑
l=1

Kl∑
k=1

log p(y(l,k)|x(l,k); θ), (2)

where the total parallel sentences K =
∑L

l=1Kl.

3.4 Multimodal Machine Translation (MMT)
We follow the Calixto et al. (2017a) MMT model,
an expansion of the attention­based NMT frame­
work (Bahdanau et al., 2014), where visual fea­
tures are incorporated. Spatial features extracted
from the image using pre­trained CNNs are incor­
porated with an attention mechanism in the de­
coder. When generating the target words, the
model learns to independently input textual and
visual context using separate attention mecha­
nisms in a single decoder RNN. The decoder
RNN is conditioned on the image, source sen­
tence, previous hidden state, and previously emit­
ted words through an independent attention mech­
anism. Given a new multimodal hidden state sj ,
the previous emitted word y<j , context vector cj
from encoder source sentence and context vector
ij from image features, the decoder computes a
new probability to generate a target word using
Equation 3.

p(yj = k|y<j , C,A) = softmax(Lotanh(

Lssj +LwEy[yj−1]Lcscj +Lciij))
(3)

where Lo, Ls, Lw, Lcs, and Lci are projection
matrices.

3.5 Multilingual Multimodal MT (M2MT)
with Multiple Captions (MC)

Using the multilingual multi­caption augmented
corpus discussed in Section 3.1, a multi­modal ma­
chine translation model is trained in o2m andm2o
fashion. Both the visual information fused o2m
andm2omodels are trained by maximizing the fol­
lowing log­likelihood:

Lθ =
1

K

L∑
l=1

Kl∑
k=1

log p(y(l,k)|x(l,k), ik; θ), (4)

where ik is the image feature corresponding to the
kth caption.

4 Experimental setup

4.1 Dataset
In this work, we use the Multi-30K (Elliott et al.,
2016) corpus. Specifically, the first two caption de­
scriptions (caption-1 and caption-2) of task22
are used and evaluated upon the test_2016 test
set. Since our work is the multilingual machine
translation for en to/from {hi,te}, we use a publicly
available pre­trained machine translation model
(Ramesh et al., 2021) to translate the English data
of the Multi-30K to hi and te, which is further
used as the parallel corpus for our experimentation.
During the evaluation process, we use the

caption-1 instance of the test set only.

4.1.1 Text Preprocessing
The text preprocessing step initially tokenizes the
raw texts. English side data is tokenized using the
moses­scripts3 while the hi and te data are normal­
ized and tokenized using the IndicNLP toolkit4.
Additionally, the te side data is transliterated into
Devanagari script (the same script as the hi). Fi­
nally, sentencepiece (Kudo and Richardson, 2018)
BPE (Sennrich et al., 2016) of 10,000 subword
merge operations is learnt across all the training
data jointly from both the captions to increase
the vocabulary coverage. The transliteration of te
into the hi script further maximises the common

2https://github.com/multi30k/dataset/tree/
master/data/task2

3https://github.com/moses-smt/mosesdecoder/
tree/master/scripts

4https://github.com/anoopkunchukuttan/indic_
nlp_library

https://github.com/multi30k/dataset/tree/master/data/task2
https://github.com/multi30k/dataset/tree/master/data/task2
https://github.com/moses-smt/mosesdecoder/tree/master/scripts
https://github.com/moses-smt/mosesdecoder/tree/master/scripts
https://github.com/anoopkunchukuttan/indic_nlp_library
https://github.com/anoopkunchukuttan/indic_nlp_library
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word/subword overlaps even with smaller vocabu­
lary size. Furthermore, using a common script pre­
vents subword vocabulary fragmentation between
the hi and te and improves lexical sharing among
the languages (Ramesh et al., 2021). We use the
same vocabulary throughout the experimentation.

4.2 Training Settings
NMT System: We use attention (Luong et al.,
2015) based LSTM (Hochreiter and Schmidhuber,
1997) having 2 layers encoder­decoder network
with 500 word embedding vector and hidden vec­
tor size. Stochastic Gradient Descent is used to
optimise the training, which is trained for a maxi­
mum of 200,000 update steps, validated after every
10,000 update steps, and halted after 10 consecu­
tive stalls in the validation perplexity. During the
decoding time, the <UNK> tokens are replaced
by a source word with the highest alignment score,
and the translation is generated using beam search
(Tillmann andNey, 2003) with a beam size of 5. Fi­
nally, the training is done on OpenNMT-Py (Klein
et al., 2017).

MMT System: The MMT system is trained by
incorporating the image features extracted using a
VGG19­CNN pre­trained model and the processed
text with a batch size of 64 until validation perplex­
ity doesn’t improve for 10 consecutive epochs. A
bidirectional LSTM encoder with 2 layers and a
dropout with a probability of 0.2 in both source and
target word embeddings is used.

4.3 Baselines
We compare our approach with the following base­
lines:

1. Single caption bilingual models (NMT).
The first baseline is the four bilingual models,
i.e. en­hi, en­te, hi­en and te­en trained only
on caption-1.

2. Multiple caption bilingual models
(NMT+MC). The second baseline is
the four bilingual models trained on both
caption-1 and caption-2.

3. Single caption text only multilingual mod­
els (MNMT). The third baseline is the two
multilingual models (m2o and o2m) trained
on caption-1 only.

4. Multiple caption text only multilingual
models (MNMT+MC). Multilingual models

(m2o and o2m) jointly trained on both the
captions.

5. Single caption multilingual multimodal
models (M2MT). Multilingual models (m2o
and o2m) trained on caption-1 only along
with the visual features.

4.4 Evaluation

The systems are evaluated using both the auto­
matic and human evaluation approach.

4.4.1 Automatic Evaluation
To report the automatic evaluation score, we use
the BLEU (Papineni et al., 2002) and chrF both
computed using the SacreBLEU (Post, 2018) im­
plementation.

1. BLEU: The BLEU score is reported over the
geometric mean of the 4­gram precision or
BLEU­4, ranging from 0­100, with 100 being
the highest. The hypothesis is detokenized
and then retokenized using SacreBLEU’s in­
built mteval­13a tokenizer5 for the Indic to
English evaluation. Meanwhile, for the En­
glish to Indic translation evaluation, the hy­
pothesis is detokenized and then retokenized
using the IndicNLP tokenizer and then eval­
uated without using any tokenizer in Sacre­
BLEU6. Furthermore, the Telugu translation
is transliterated back to the Telugu script for
the assessment.

2. chrF: The processing step for reporting the
evaluation score of the chrF7 is similar to that
of the BLEU. Additionally, the chrF score
scales from 0­1, where the perfect translation
gets a score of 1.

4.4.2 Human Evaluation
Human evaluation is carried out by considering the
fluency and adequacy of the translated output. In
this pretext, a human translator fluent in English
and Hindi is assigned to separately rate each sen­
tence from 1­5 for the fluency and the adequacy
criteria. Finally, the sentence wise scores are av­
eraged to get the corpus level score for both the
criteria.

5BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+version.1.5.1
6BLEU+case.mixed+numrefs.1+smooth.exp+tok.none+version.1.5.1
7chrF2+numchars.6+space.false+version.1.5.1
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Systems en­hi hi­en en­te te­en
BLEU­4 chrF BLEU­4 chrF BLEU­4 chrF BLEU­4 chrF

NMT­full 35.3 0.52 38.9 0.57 27 0.56 38.8 0.58
MNMT­full 48.6 0.62 47 0.65 31.2 0.59 41.1 0.6
M2MT­full 54.4 0.7 55.1 0.72 37.8 0.66 48.3 0.67

Table 1: Overall scores of the systems

Systems en­hi hi­en en­te te­en
NMT 33.2 34.5 24.9 31.3
NMT + MC 35.3 38.9 27 38.8
MNMT 45.5 43.6 29 36.4
MNMT + MC 48.6 47 31.2 41.1
MNMT + V (M2MT) 51.9 53.3 35 46.1
MNMT + V + MC (M2MT + MC) 54.4 55.1 37.8 48.3

Table 2: Ablation study of the systems based on the BLEU­4 scores.

5 Results and Analysis

This section presents the quantitative results ob­
tained by all the models and their analysis.

5.1 Overall Result of the Automatic
Evaluation

Table 1 compares the overall scores of the pro­
posedmultimodal system (M2MT­full) to the bilin­
gual (NMT­full) and multilingual (MNMT­full)
baseline variants in terms of BLEU­4 and chrF
scores. M2MT­full significantly improves in
BLEU and chrF scores over the NMT­full and
MNMT­full baselines, with +19.1, +5.8 BLEU
and +0.18, +0.08 chrF improvements for the en­hi
translation, +16.2, +8.1 BLEU and +0.15, +0.07
chrf improvements for the hi­en translation. Simi­
larly, +10.8, +6.6 BLEU and +0.1, +0.07 chrf im­
provements for the en­te translation. And, +9.5,
+7.2 BLEU and +0.09, +0.07 chrf improvements
for the te­en translation.

5.2 Ablation Study

Table 2 summarises the ablation study and quan­
tifies the contribution of the components, namely
multilinguality, multiple captions (MC), and vi­
sual features (V).

1. Effect of the multiple languages: In Table
2, the multilingual system (MNMT) achieves
a substantial gain over the bilingual system
(NMT) in BLEU scores for all translation di­
rections. The en­hi translation benefits the
most from the MNMT with a +12.3 BLEU

improvement over the NMT followed by hi­
en translation with +9.1 increment. Hence
for this dataset, the multilinguality is effec­
tive for all the translation directions and more
prominent when hi language is involved. This
substantial gain in BLEU score in the mul­
tilingual setting can be credited to the cross­
lingual information shared betweenHindi and
Telugu. Furthermore, the transliteration of
Telugu into the Hindi script maximizes the
subword overlapping during the vocabulary
buildup, thus increasing the word coverage of
the model as a whole. We illustrate the word
coverage in the form of rare word translation
accuracy in Section 5.4.

2. Effect of the multiple captions: We utilise
the multiple captions (MC) provided in the
Multi-30K dataset in our models. In doing
so, a substantial gain in the BLEU score is ob­
served when multiple captions are added over
the single caption models for all the transla­
tion directions. We hypothesize that the mul­
tiple captions increase the models’ general­
izability by imposing a lexical enhancement
as it introduces diverse word forms for the
same context. Further, the increase in lexi­
cal choice makes the system more robust in
handling the rare word translation.

3. Effect of the visual features: The addition of
the visual features to the MNMT system fur­
ther outperforms all the text only models even
without the inclusion of the multiple captions.
Furthermore, the translation accuracy of the
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Systems Adequacy Fluency
NMT 1.85 2.95
NMT + MC 2.1 3
MNMT 2.65 2.95
MNMT + MC 3 2.85
M2MT 3.15 3.05
M2MT + MC 3.2 3.55

Table 3: Human evaluation of the systems for English
to Hindi translation.

words based on their frequency in the train­
ing corpus, which we discuss in Section 5.4,
reveals that visual features are beneficial for
handling the rare word translation.

5.2.1 Human Evaluation Results
Apart from the automatic scores reported in Ta­
ble 1 and Table 2, human evaluation result for the
English to Hindi translation of all the systems is
also reported in Table 3. The evaluation is con­
ducted based the fluency and adequacy criteria.
As such, both the human evaluation and the auto­
matic scores correlates well suggesting the effec­
tiveness of the proposed method. However, the
highest adequacy and fluency scores (3.2 and 3.55
of M2MT+MC) is far lesser than the upper limit
of the scores (a score of 5). On the other hand, the
automatic scores are relatively higher. This is due
to training the systems on the synthetic data as only
the English side training data is real, as a result the
errors in the training data are accumulated to the
translated outputs. However, the human evaluator
catches these errors and hence the low adequacy
and fluency scores.

5.3 Qualitative Analysis
We also present the qualitative analysis of the
models based on the translation outputs. In do­
ing so, we use certain abbreviations for the read­
ability purpose of the non­English sentences: TT
is the English transliteration, Gloss denotes the
word­to­word English translation, and ET denotes
the English translation for the same. Moreover,
texts are also colour coded based on the similar­
ity/dissimilarity of the translation with the refer­
ence. Blue colour depicts the exact match be­
tween the reference and the translation. Mean­
while, cyan and red are errors with red denoting
wrong translation and the outputs with good trans­
lation but absent in reference is denoted by cyan.
The first source sentence (English Source) in Fig­

ure 4 presents the English to Hindi translations
while the second source sentence (Hindi Source)
illustrates the Hindi to English translations of the
models.
In Figure 4 for the English to Hindi translation,

both the bilingual variants wrongly generates the
phrases “peeth karate hain” (with their backs) by
the NMT and “kaimare ke saath daudate hain”
(run with the camera) by the NMT+MC which
is highlighted in red color, thus changing the ac­
tual meaning of the source sentence. Addition­
ally, the M2MT system generates “yaard” (yard)
instead of the “maidaan” (field) as in the reference,
which is technically correct but penalised by the
automatic score. Finally,M2MT+MC is the only
system to generate the correct determiner “ek” (a).
Apart from these, all the system outputs follow the
subject­object­verb (SOV) word order of the tar­
get language (Hindi), irrespective of preserving the
actual context of the reference. However, there
are cases of interchanging the present continuous
tense to simple present tense form such as genera­
tion of “daudate hain” (run) instead of “daud rahe
hain” (running) as in the reference. In this regard,
MNMT, M2MT and M2MT+MC systems pro­
duce the correct generation.
On the other hand, the Hindi to English trans­

lation presented in Figure 4 highlights the effec­
tiveness of the multiple captions (MC) by maxi­
mizing the coverage of the reference words in the
output, thus making the translation more adequate.
Additionally, it is observed that except for the
MNMT+MC all other systems wrongly generates
the pronoun “his” instead of “its”, which further
highlights the gender biasedness of the systems.
However, the translated output of M2MT+MC
covers most of the reference words. It is syntacti­
cally correct (apart from the wrong pronoun “his”),
thus making the translation more adequate and flu­
ent than the outputs of the other baselines.

5.4 Error Analysis
We conduct the error analysis of the systems con­
sidering the translation accuracy of the words
based on their frequency in the training corpus,
which is illustrated in Figure 1. The translation
accuracy provides an insight into the word cover­
age and how well the system handles the transla­
tion of rare words. The proposed multimodal sys­
tem M2MT+MC improves the translation accu­
racy for the entire vocabulary and the rare words
to the training corpus in particular. The NMT
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Input Image Model Outputs

en­hi Translation

English Source: Three little children in a grassy yard running towards the camera.

Reference: एक घास के मदैान में तीन छोटे बच्चे कैमरे कɃ ओर दौड़ रहे हैं।
TT: ek ghaas ke maidaan mein teen chhote bachche kaimare kee or daud rahe hain.
Gloss: one grass’s field in three little children camera towards running.
ET: Three little children are running towards the camera in a grassy field.
NMT: घास में तीन छोटे बच्चे कैमरे कɃ ओर पीठ करते हैं।
TT: ghaas mein teen chhote bachche kaimare kee or peeth karate hain.
Gloss: grass in three little children camera towards back do.
ET: Three little children in the grass with their backs to the camera.
NMT+MC: घास के मदैान में तीन छोटे बच्चे कैमरे के साथ दौड़ते हैं।
TT: ghaas ke maidaan mein teen chhote bachche kaimare ke saath daudate hain.
Gloss: grass’s field in three little children camera with run.
ET: Three little children run with the camera in the grassy field.
MNMT: घास के मदैान में तीन छोटे बच्चे कैमरे कɃ ओर दौड़ रहे हैं।
TT: ghaas ke maidaan mein teen chhote bachche kaimare kee or daud rahe hain.
Gloss: grass’s field in three little children camera towards running.
ET: Three little children are running towards the camera in the grass field.
MNMT+MC: घास के मदैान में तीन छोटे बच्चे कैमरे कɃ ओर दौड़ते हैं।
TT: ghaas ke maidaan mein teen chhote bachche kaimare kee or daudate hain.
Gloss: grass’s field in three little children camera towards run.
ET: Three little children run towards the camera in the grassy field.
M2MT: घास के याडर् में तीन छोटे बच्चे कैमरे कɃ ओर दौड़ रहे हैं।
TT: ghaas ke yaard mein teen chhote bachche kaimare kee or daud rahe hain.
Gloss: grass’s yard in three little children camera camera towards running.
ET: Three little children are running towards the camera in the grassy yard.
M2MT+MC: घास के एक मदैान में तीन छोटे बच्चे कैमरे कɃ ओर दौड़ रहे हैं।
TT: ghaas ke ek maidaan mein teen chhote bachche kaimare kee or daud rahe hain.
Gloss: grass’s one field in three little children camera camera towards running.
ET: Three little children are running towards the camera in a grassy field.

hi­en Translation

Hindi Source: भूरे रगं का कुत्ता अपने दांतों के साथ दसूरे कुत्ते के गाल पर पकड़ रखता ह।ै
TT: bhoore rang ka kutta apane daanton ke saath doosare kutte ke gaal par pakad
rakhata hai.
Gloss: brown colour’s dog its teeth with other dogs cheeks on holds.
ET: The brown dog holds the other dog’s cheek with its teeth.
Reference: The brown dog has a hold of the other dogs cheek with its teeth.

NMT: The brown dog is holding the other dog on the other dog with his teeth.

NMT+MC: The brown dog has his teeth on the cheek of the other dog.

MNMT: The brown dog holds on the cheek of his teeth with his teeth.

MNMT+MC: The brown dog holds on to another dog with its teeth.

M2MT: The brown dog grabs the other dog with his teeth on the cheek.

M2MT+MC: The brown dog holds on to the cheek of another dog with his teeth.

Table 4: Sample input and output for the en­hi translation.
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Figure 1: F1 accuracy of target word translation based on the word frequency in the training corpus.

without any embellishments lags behind the accu­
racy of NMT+MC for the rare word translation.
Similarly, the performance of all other model vari­
ants degrades when the multiple captions are not
included and further strengthens the role of MC
in the improvement of the translation quality as
a whole. Additionally, the multilingual system
(MNMT) has higher accuracy for rare word trans­
lation than both the bilingual variants (NMT and
NMT+MC) for all translation directions. How­
ever for the te­en translation, NMT+MC gives
a competitive performance with MNMT for the
rarest word and sometimes better for relatively fre­
quent words.

6 Conclusion

This work presents the multimodal machine trans­
lation embellished with multiple captions in a mul­
tilingual setup. We find that the multiple captions
benefit both the text­only and the multimodal mod­
els by introducing lexical diversity, making the sys­
temmore robust to handle the rare word translation
and thus increasing the translation quality. Addi­
tionally, the visual features which provide the con­
text information further alleviate the translation
quality. However, this work is experimented on
synthetic data, hence the trained systems possesses

the accumulated errors present in the training data.
In our future work, we intend to address this issue
with some counter measures.
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