Semi-supervised Meta-learning for Cross-domain Few-shot Intent
Classification

Judith Yue Li

Jiong Zhang

Salesforce Research / Palo Alto, CA, USA LinkedIn AI/ Sunnyvale, CA, USA

yuel@alumni.stanford.edu

Abstract

Meta-learning aims to optimize the model’s
capability to generalize to new tasks and do-
mains. Lacking a data-efficient way to cre-
ate meta training tasks has prevented the ap-
plication of meta-learning to the real-world
few shot learning scenarios. Recent studies
have proposed unsupervised approaches to cre-
ate meta-training tasks from unlabeled data
for free, e.g., the SMLMT method (Bansal
et al., 2020a) constructs unsupervised multi-
class classification tasks from the unlabeled
text by randomly masking words in the sen-
tence and let the meta learner choose which
word to fill in the blank. This study proposes
a semi-supervised meta-learning approach that
incorporates both the representation power of
large pre-trained language models and the gen-
eralization capability of prototypical networks
enhanced by SMLMT. The semi-supervised
meta training approach avoids overfitting pro-
totypical networks on a small number of la-
beled training examples and quickly learns
cross-domain task-specific representation only
from a few supporting examples. By incor-
porating SMLMT with prototypical networks,
the meta learner generalizes better to unseen
domains and gains higher accuracy on out-of-
scope examples without the heavy lifting of
pre-training. We observe significant improve-
ment in few-shot generalization after training
only a few epochs on the intent classification
tasks evaluated in a multi-domain setting.

1 Introduction

Recent developments of large scale pre-trained
models, such as BERT (Devlin et al., 2019), GPT
(Brown et al., 2020) and XLNet (Yang et al., 2020),
have significantly advanced the natural language
processing (NLP) techniques. However, these mod-
els still rely on fine-tuning on a relatively large num-
ber of labeled samples (> 1000) to achieve high ac-
curacy even for tasks seen during training (Howard
and Ruder, 2018). Recent studies (Brown et al.,

67

jiozhang@linkedin.com

2020; Bansal et al., 2019; Dou et al., 2019) have
demonstrated that these large language models
have the potential to be few shot learners, i.e., ca-
pable of adapting to a new task or a new domain
by training only on a few examples with the aid
of meta-learning. Meta-learning tackles the few-
shot learning problem through learning a robust yet
flexible representation from a variety of tasks in a
so-called meta training stage, so that the model can
quickly adapt to new tasks with only a few exam-
ples. In addition, random sampling is introduced
in the design of meta training tasks to avoid memo-
rization, a phenomenon in which the meta learner
memorizes a function that directly associates an in-
put with the label when no real learning occurs (Yin
et al., 2019).

Meta-learning approaches such as the
optimization-based MAML (Finn et al., 2017), the
metric-based Prototypical Networks (ProtoNet)
(Snell et al., 2017) and etc., have been successfully
applied in NLP domain (Yin, 2020). Dou et al.
(2019) successfully applied MAML and its
variants to low-resource text classification tasks
on the GLUE dataset (Wang et al., 2018). It
showed models trained with MAML, first-order
MAML and REPTILE (Nichol and Schulman,
2018) outperform strong baseline models such as
BERT and MT-DNN (Liu et al., 2015). Bansal
et al. (2019) developed a method LEOPARD
that generalizes MAML to handle diverse NLP
tasks. They used pre-trained BERT (Devlin
et al., 2019) as the underlying task-agnostic base
model, coupled with a task-dependent softmax
classification parameter generator. The meta
trained BERT learns better initial parameters,
which helped to reach high accuracy across 17
down steam NLP tasks with very few examples per
class.

However, successful implementations of meta-
learning depend on the availability of a diverse
set of tasks with plenty of labeled data during

Proceedings of the 1st Workshop on Meta Learning and Its Applications to Natural Language Processing (MetaNLP 2021), pages 67-75

Bangkok, Thailand (online), August 5, 2021. ©2021 Association for Computational Linguistics

meta training. To create meta-learning tasks in
a data-efficient manner, a number of papers have
tried to explore the idea of unsupervised meta-
learning. These methods explore to learn repre-
sentations through automatically constructing tasks
from unlabeled dataset and utilize learned represen-
tation functions for specific task prediction. Hsu
et al. (2018) proposed to leverage clustering em-
beddings to construct tasks from unlabeled data
and then apply meta-learning method for explicitly
optimizing for adapting to new tasks. Khodadadeh
et al. (2020) proposed to sample objects with syn-
thetic labels from the latent space and generate
meta-tasks using generative models. In the do-
main of natural language processing, Bansal et al.
(2020b) proposed Subset Masked Language Mod-
eling Tasks (SMLMT), which automatically con-
struct self-supervised tasks by masking out certain
tokens from sentences as labels to create few shots
classification tasks from unlabeled data. The study
showed that meta training with these diverse unsu-
pervised tasks can prevent over-fitting to specific
supervision tasks, leading to better generalization
than pre-training language-model followed by fine-
tuning.

In this study, we focus on cross-domain few shot
classification with the goal to investigate whether
we can meta train a large pre-trained language
model (e.g., BERT) in a semi-supervised fashion
without access to a large number of labeled data
or meta training tasks. The resulting representa-
tion should generalize and adapt well to a new
domain, and provide clear separations between in-
domain and out-of-scope (OOS) examples (Zhang
et al., 2020). Our base meta learner consists of
an embedding function (e.g., BERT) and ProtoNet
(Snell et al., 2017) as the general supervised clas-
sifier, which can be fine-tuned either using the su-
pervised N-way K-shot classification tasks (su-
pervised meta training) or together with the self-
supervised SMLMT tasks (semi-supervised meta
training). We compares classifiers with supervised
meta-training against classifiers trained without the
diverse meta training tasks. We then compare the
semi-supervised meta-learner with the supervised
approach without adding additional labeled data.
The resulting text representations will be evaluated
in terms of their few-shot generalization accuracy,
their capability to detect OOS examples, and their
ability to adapt when more training examples are
included.

68

While Bansal et al. (2020b) focuses on the cross-
problem transfer capability of SMLMT trained
with a general-purpose corpus like Wikipedia, our
study further investigates the cross-domain trans-
fer capability of SMLMT within a problem, i.e.,
whether additional self-supervised training on the
unlabeled data from the domain of interest (e.g.,
dialogues) can help generalize a seen problem to a
new unseen domain. Moreover, SMLMT as a clas-
sification task combines well with metric-based
meta learners like ProtoNet (Snell et al., 2017).
Compared to optimization-based meta learners like
MAML (Finn et al., 2017), ProtoNet is easier to
optimize and scale, has a simpler inductive bias
therefore works well for very-few-shot classifica-
tion problems. These properties are complementary
to MAML and can provide good initialization for
the latter (Triantafillou et al., 2019).

2 Methods

2.1 Model architecture of ProtoNet with

BERT

Prototypical networks (ProtoNet) (Snell et al.,
2017) is a metric-based meta-learning approach
for the problem of few-shot classification, where
an encoder model learns to project samples to an
embedding space. In stead of training on batches of
training data, meta learners are trained on episodes
that contain support set D" for training and query
set D' for evaluation. The support set will be pro-
jected to the embedding space to formulate class
prototypes ¢, and then classification of the query
example is done by computing the softmax of the
negative distances between the embedded query
and each class prototype.

y"* = g(D",2") = softmaz(~d(fy(="), cn))
()

Compared to optimization-based MAML, Pro-
toNet is more memory efficient and easy to opti-
mize. Similar to Nearest Neighbor, ProtoNet is a
non-parametric method that can be integrated with
any embedding function fy, where 6 is the learn-
able meta parameters. This method reflects simpler
inductive bias and so far it is limited to classifica-
tion problems.

The design of the embedding function fy can
vary depending on the NLP applications. For in-
tent classification, we find the best performance
can be achieved by integrating the metric-based
meta-learning approach ProtoNet with the popu-
lar pre-trained model (e.g., BERT (Devlin et al.,

N=5, K=5 N=5, K=10
Dataset Meta-Test | Meta-Test | Meta-Test | Meta-Test
Accuracy | Std Accuracy | Std
l.unseen examples (banking) | 0.935 0.044 0.940 0.042
2.unseen examples 0.914 0.056 0.948 0.040
3.unseen classes 0.883 0.060 0917 0.049
4.unseen domains 0.870 0.066 0.908 0.055

Table 1: Meta test accuracy and standard deviations for ProtoNet on CLINC150 few shot intent classification

dataset.

2019), RoBERTa (Liu et al., 2019)). These large
pre-trained language models are quite effective for
learning task-agnostic features as well as the task-
specific representations with proper fine-tuning.
We take advantage of this transfer learning feature
of these pre-trained models and use it as the em-
bedding function fy. Here the meta parameters 6
are the weights of the pre-trained model which will
be fine-tuned during meta training to learn a task-
agnostic representation that should also generalize
well to a new domain during meta testing.

2.2 Subset Masked Language Modeling
Tasks

With the hope of further improving classification
accuracy, we would like to leverage the unla-
beled data set through self-supervision during meta
training stage. The key for self-supervised meta-
learning is how to construct self-supervised tasks
and how it can be combined with the supervised
tasks. Following the Subset Masked Language
Modeling Tasks (SMLMT) approach (Bansal et al.,
2020a), we first construct a vocabulary from tokens
in all the sentences except those labeled sentences
used as hold-out test set and calculate their fre-
quency. To balance the number of tokens and the
number of sentences associated to each token, we
select tokens appeared from 30 times to 100 times
to be labels and then masked these tokens in asso-
ciated sentences as training samples for SMLMT,
with the token as labels. Since SMLMT is also a
classification task, the meta-learner introduced in
the last section can be used to solve both the self-
supervised and the supervised classification tasks,
yielding a new semi-supervised meta training ap-
proach to tackle the few shot intent classification
problem.

69

2.3 Out-of-Scope Evaluation

In addition to the standard few shot learning evalu-
ation where the model is only evaluated on samples
from in-scope class distribution, a more realistic
evaluation setting involves the Out-of-Scope (OOS)
class, in which samples come from a different dis-
tribution, e.g., random utterances not related to any
registered intent class in a dialogue.

We adopt the OOS evaluation strategy (Zhang
et al., 2020; Larson et al., 2019) which adds an
additional OOS class in the meta testing stage,
while the meta training stage remains to be the
same. A sample is assigned to the OOS class if
the probabilistic prediction for the best class is un-
der a specified threshold 7" with value between 0
and 1. The threshold values is chosen to maxi-
mize Jin_s0s (Equation 4), the sum of In-Domain-
Accuracy (A;,, Equation 2) and OOS-Recall (Ry0s,
Equation 3).

where C;, is the number of correctly predicted in-
domain intent examples and V;, is the total number
of in-domain intent examples.

Roos = oos/(N(;os) (3)

where C,,s is the number of correctly predicted
OOS intent examples, N, is the number of OOS
intent examples and N/ . is the number of pre-
dicted OOS examples.

oos/NOOSa Poos =

S

Jin,oos = Am + Roos (4)

We also report the OOS precision P,,s; and OOS
F1 score F'1,,s for an optimized threshold 7T'.

3 Experiments, Results and Discussion

There have been a number of papers that have
explored the idea of unsupervised meta-learning,

where tasks are constructed automatically from an
unlabeled dataset and a meta-learner is pre-trained
on these tasks without using any labeled dataset.
Can we extend these ideas to the case where we
have a small number of supervised meta-training
tasks rather than zero meta-training tasks, to con-
struct a semi-supervised meta-learner? We hope to
explore answers to the following questions through
experiments: (a) Whether meta training effectively
improve domain adaptation? and (b) Will the semi-
supervised approach outperform the supervised
meta-learning given the same number of labeled
data?

3.1 CLINC150 Few Shot Intent Classification

The CLINCI150 (Larson et al., 2019) intent clas-
sification dataset consists of 150 different intent
classes across 10 different domains, i.e., Banking,
Credit Cards, Work and Travel. Each domain has
15 tasks, each comes with 150 labeled examples.
The data is split in the following ways to evalu-
ate meta-learning for different few shot learning
settings:

1. single domain unseen examples: Pick only
one domain Banking. The training data is sam-
pled from 15 classes from the banking domain,
where each class has 100 examples. The val-
idation and testing data is sampled from the
same class distributions with 20 and 30 exam-
ples per class respectively.

multi-domain unseen examples: Distribute
the 150 classes uniformly among training,
validation and testing splits, with a ratio of
100:20:30. The training data is sampled from
150 classes with 100 examples each class from
all domains. The validation and testing data
consist of 20 and 30 examples per class re-
spectively.

. multi-domain unseen classes: In order to
test the model’s generalization capability to
unseen new classes, the 15 classes under each
domain are separated according to 10:2:3 ra-
tio, so that no tasks in testing set or valida-
tion set will appear in the training time. The
training data, validation set and testing set
is sampled from 100, 20, 30 classes among
10 different domains respectively, where each
class contains 150 examples.

multi-domain unseen domain: The problem
is made more difficult by creating a data splits

70

in which the training, validation and testing
data all come from different domains, which
will test whether the model will efficiently
adapt to domains unseen. The training data is
sampled from 75 classes among 5 different do-
mains (banking, kitchen, home, auto commute
and small talk), where each class contains 150
examples. The validation and testing data is
sampled from the 2 (utility, credit cards) and
3 (travel, work, meta) domains respectively,
where each domain has 15 classes and each
class has 150 examples.

We run ProtoNet with BERT on each few shot
setting and the results are shown in Table 1. The
few shot test accuracy decreases when examples in
meta testing time come from a class or a domain
that is unseen during meta training time. Increase k
or the number of support samples per task improves
the test accuracy. For k = 5 the best results are
achieved by training with learning rate 4e — 6, 6
ways for 300 episodes during meta training. Note
the learning rate is reduced by half for every 50
episodes.

3.2 Cross Domain Intent Classification with
Limited Labeled Data

A more challenging but realistic few shot learning
setting is that during meta training we don’t have
enough labeled data available per class, and labeled
data in the same domain is not available. Yet we
have large amount of unlabeled data from the same
domain. How will the result change if we reduce
the available labeled examples per class during
meta training from 150 to 50 or less for the unseen
domain set up?

Following the set up of unseen domains, the
problem is made more challenging by sampling
training tasks from only 25 classes among 5 differ-
ent domains (banking, kitchen, home, auto com-
mute and small talk), where each class only con-
tains 50 labeled examples. The validation and test-
ing data is sampled from the 2 (utility, credit cards)
and 3 (travel, work, meta) other domains respec-
tively, where each domain has 15 classes and each
class has 50 examples. The rest of the examples is
aggregated into a pool of unlabeled data for unsu-
pervised training. Details about the data splits is
shown in Table 2. To evaluate model performance
on OOS examples, we also randomly sample OOS
intents from the 1200 Out-of-Scope examples that
are not belonged to the 150-intent classes provided

unlabeled train valid test
domains 10 5 2 3
classes 223 25 30 45
examples 11900 1250 1500 2250

Table 2: The data splits for meta training, meta valida-
tion and meta testing

ProtoNet with meta training
labeled data | Meta Test | Meta Test
per class Acc Std
20 0.832 0.077
50 0.851 0.068
100 0.846 0.073
150 0.864 0.073

Table 3: Meta test accuracy changes with the number
of available labeled data per class

by Larson et al. (2019) during meta testing time.
By varying the number of available labeled ex-
amples during meta training, we observe how meta
test accuracy and standard deviation changes in re-
spond to more labeled training data. As shown in
Table 3, increasing the number of labeled samples
per class from 20 to 150 improves the test accuracy
from 0.832 to 0.864 for 5-way 5-shot learning.

3.3 CLINC150 with ProtoNet + SMLMT

The next research question is whether we can lever-
age the unlabeled data to improve the meta test ac-
curacy. Here we create the unsupervised tasks fol-
lowing the SMLMT (Bansal et al., 2020b), where
additional meta training tasks are created by mask-
ing a randomly picked token (here we use [MASK]
from BERT’s vocabulary) and let the model clas-
sifies which token has been replaced. The token

ProtoNet
ProtoNet | ith SMLMT
learning rate 4e-6 8e-6
Nway =~ 6 9
(meta training)
K shots
(smlmt task) NA 15
of episodes 50 100
per epoch
of epoch 6 8
smlmt sample ratio | NA 0.6

Table 4: Hyperparameters used for ProtoNet

71

is selected to appear at least 30 times in the ex-
amples, but no more than 100 times, which filters
out common words and leaves enough examples
for the model to learn the representations of im-
portant words that differentiate different intents.
The most important hyperparameters to tune are
learning rate, sampling ratio and number of ways
during training. Sampling ratio controls when to
train with the SMLMT tasks and when to train with
the supervised tasks. The best validation accuracy
is reached at learning rate 8e — 6, sampling ratio
0.7 and 9 ways during meta training. Here the train-
ing “ways” is typically selected to be larger than
the testing “ways” to gain good performance (Snell
et al., 2017). The details on the hyper parameters
chosen for this experiment can be found in Table 4.
After running for 800 episodes, the test accuracy is
shown in Table 5. Note the learning rate is reduced
by half for every 100 episodes.

As suggested by Table 5 supervised meta train-
ing on diverse tasks from different domains (5"
and 8" row) improves generalization to tasks in un-
seen domains. Figure 1 highlights the meta test ac-
curacy and meta test standard deviation of three dif-
ferent approaches for 5 shots and 10 shots scenarios
with BERT as the embedding function. ProtoNet
with meta training consistently outperforms the
baseline results from the nearest neighbor and Pro-
toNet (meta test only), in which no meta training
involved. Even though Nearest Neighbor with the
BERT encoder is a strong baseline, which achieves
80% for 5 shots and 85% for 10 shots, the ProtoNet
improves the baseline by 5 points through meta
training on different tasks in different domains.

The results also suggest that additional self-
supervised training through SMLMT further im-
prove few-shot generalization if we compare the
ProtoNet results to the ProtoNet + SMLMT results.
The blue bar in Figure 1 shows the ProtoNet re-
sults, which trained using only supervised task, and
the orange bar shows the semi-supervised ProtoNet
results using both labeled and unlabeled data. Semi-
supervised ProtoNet improves the ProtoNet results
further by an additional 5 points, which achieves
90.6% for K = 5 and 93.9% for K = 10. Note
that the the semi-supervised ProtoNet with 50 la-
beled data outperforms the supervised ProtoNet
with 150 labeled data (86.4% in Table 3). These
results (details see Table 5) show that meta train-
ing on diverse tasks, especially the SMLMT tasks
generated from unlabeled data yield better general-

N=5, K=5 N=5, K=10

Approach Meta-Test | Meta-Test | Meta-Test | Meta-Test

pp Accuracy | Std Accuracy | Std
Nearest Neighbour + BERT 0.795 0.079 0.852 0.066
ProtoNet + BERT 0.795 0.083 0.842 0.073
(no meta training)
ProtoNet + BERT 0.851 0.068 0.891 0.061
(supervised meta training)
ProtoNet + BERT + SMLMT 1, 5 0.066 0.939 0.047
(semi-supervised meta training)
ProtoNet + RoBERTa 0.887 0.078 0.924 0.066
(no meta training)
ProtoNet + RoBERTa | 0.975 0.037 0.981 0.033
(supervised meta training)
ProtoNet + RoBERTa + SMLMT |, 5, 0.038 0.986 0.025
(semi-supervised meta training)

Table 5: Meta test accuracy and standard deviations of applying different meta-learning approaches with K=5 and
K=10 respectively for CLINC150 dataset.

Approach Threshold | OOS F1 | OOS Recall | OOS Precision | In-domain Accuracy
ProtoNet + BERT 1 , 0471 | 0.772 0.339 0.723
(no meta training)

ProtoNet + BERT 0.9 0.494 0.703 0.381 0.796
ProtoNet + BERT

+ SMLMT 0.9 0.601 0.787 0.487 0.856
ProtoNet + RoBERTa |) 5 0.286 | 1.000 0.167 0.200
(no meta training)

ProtoNet + RoBERTa | 0.9 0.632 0.562 0.722 0.958
ProtoNet + RoBERTa

+ SMLMT 0.9 0.766 0.771 0.761 0.959

Table 6: Evaluation statistics on OOS examples with N=5, K=10 respectively for protoNet with BERT and
RoBERTa

I Nearest Neighbour

1.01 mmm ProtoNet without meta-training
I ProtoNet with meta-training
I ProtoNet+SMLMT

e
©

Test Accuracy
e
1]

=
N

067 K=5 K=10

Figure 1: Meta test accuracy of applying four different meta-learning approaches with K=5 and K=10 respectively.

72

1.00

0.95

o
©
=]

/”’—T’/,'

0.80 ‘

o
=-]
a

Test Accuracy

—— ProtoNet
ProtoNet+SMLMT

0.75

K=5 K=10 K=15 K=20

Figure 2: Meta test accuracy of ProtoNet increases with
K shots, while performance plateaus around K = 20

ization capability.

Varying number of supporting examples K used
per task during meta testing also has an effect on
the meta testing accuracy. As shown in Figure 2,
increase K from 5 to 15 improves test accuracy
of ProtoNet with SMLMT from 85% to 94.5%,
and ProtoNet from 85.0% to 91.3% while the per-
formance plateaued for K = 20 (details see Ta-
ble 7). Changing embedding function from BERT
to RoBERTa (7", 8" 9t" rows in Table 5) signifi-
cantly improves the meta test accuracy, suggesting
that RoBERTa is a better pre-trained model for in-
tent classification.

3.4 Results on Out-of-Scope Examples

We also evaluate the performance of our meta learn-
ers on OOS examples by including an extra OOS
class during meta testing. Two embedding func-
tions, i.e., BERT and RoBERTa are evaluated in
three settings: no meta training, with supervised
meta training and with semi-supervised meta train-
ing (with SMLMT). The meta training procedure
remains the same as previous setup. During meta
testing, we first pick the threshold 7' (see sec-
tion 2.3) and then report the F1, precision, recall
for OOS and In-domain Accuracy with the selected
threshold. While OOS precision and recall usually
fluctuates a lot with thresholds, OOS F1 score is a
better indicator of OOS accuracy.

As shown in Table 6 meta training improves
OOS F1 score significantly and semi-supervised
meta training gives the best OOS F1 score, 0.601
with BERT and 0.766 with RoOBERTa. RoBERTa
as embedding function performs better than BERT
after meta training, with a nearly 10-point improve-
ment for in-domain accuracy (0.959 vs 0.856) and
OOS F1 score (0.766 vs 0.601). RoBERTa with-
out fine tuning performs worse than BERT when
OOS examples are included, probably due to the

73

selecting criterion for the threshold. The inclusion
of OOS examples clearly reduce the in-domain
accuracy. For example, the in-domain accuracy
for ProtoNet + BERT + SMLMT changes from
0.939 without OOS examples (Table 5) to 0.856
with OOS examples (Table 6). However, the ac-
curacy gain compared to no meta training (0.723)
and supervised-only meta training (0.796) is quite
significant.

3.5 Visualization of Word Importance

To have a better understanding of why meta training
on semi-supervised tasks yield better generaliza-
tion capability, we analyze the token importance
by plotting the gradients of the prediction with re-
spect to the token embedding for each token as
shown in Figure 3. The token with larger gradi-
ent indicates it’s more important for the prediction
result. Meta training changes the distribution of
word importance. For example, for the sentence “I
want to schedule a pto request on march 1 - 2. We
see that the meta learner shifts its attention from
“on march” before training, to the most important
word “schedule pto request” after training, which
helps it to effectively identify this sentence as a
pto_request intent. The same observation is
true for the sentence “tell me where my flight is
scheduled to start boarding”, where the top 3 im-
portant tokens has changed from “me, where, is” to
“my, flight, is” after training, leading to the predic-
tion of intent “flight_status”. Therefore, the better
generalization is powered by effective representa-
tion learning (a pre-trained BERT already yields
good representation for intent classification) and
also learning to attend to the right words.

4 Conclusion

We proposed a semi-supervised meta-learning ap-
proach for cross-domain few-shot intent classifica-
tion by incorporating the representation power of
pre-trained language model with the fast adapta-
tion capability of ProtoNet enhanced through self-
supervision. This methodology tackles the realistic
few shot learning setting where not enough meta
training tasks exist and meta learner trained only
on supervised tasks suffers from over-fitting on a
small number of labeled data. The experiments
have shown that meta learner generalizes better
to new domains and predicts more accurately on
out-of-scope examples if trained with additional
meta training tasks created through self-supervision

0,100 7

hefore training

-
0,095 after training

0,090
g
E 0,085
g[) i

O

E

0075

0070

0,065

i wanl to schedule a plo mgquest on march 1
0.137
before training
. after training

012
o1
g
=]
=Y
£ 0.10]

0,08 |

5 scheduled tw start boarding
Iukl_ns

T

0.13
before training
N after training
0121
g o1t
=}
=]
=
=]
[=3
2010
0.09{
0.08"
could vou please schedule a meeting with carrle and
0.207
before tralning
m— after training
0.181
g 016
=
o
£
=}
=2
E0.14{
0.121
o.10! ;

i3
Tokens

Figure 3: The importance of tokens of each sentence before and after training.

from unlabeled data. Compared to pre-training lan-
guage models using self-supervision, the volume
of unlabeled data required for our semi-supervised
meta training is rather small and the optimization
is much easier. However, it effectively improve the
few-shot generalization and out-of-scope accuracy
by learning a better cross-domain representation
and learning to quickly attend to the right word in
new domains. While ProtoNet has its limitations
due to simpler inductive bias, the resulting presen-
tation can be used to initialize more sophisticated
meta learner and extend beyond the classification
problems. Future directions include exploring dif-
ferent ways to combine various types of meta learn-
ers, different designs of self-supervised tasks as
well as validating our algorithms on other datasets.

5 Acknowledgement

This work is inspired by our CS330 course project
at Stanford. We would like to thank Professor
Chelsea Finn for the discussion of research direc-
tions and her wonderful lectures on meta-learning.

References

Trapit Bansal, Rishikesh Jha, and Andrew McCal-
lum. 2019. Learning to few-shot learn across di-

verse natural language classification tasks. CoRR,
abs/1911.03863.

Trapit Bansal, Rishikesh Jha, Tsendsuren Munkhdalai,

74

and Andrew McCallum. 2020a. Self-Supervised
Meta-Learning for Few-Shot Natural Language
Classification Tasks. arXiv.

Trapit Bansal, Rishikesh Jha, Tsendsuren Munkhdalai,
and Andrew McCallum. 2020b. Self-Supervised
Meta-Learning for Few-Shot Natural Language
Classification Tasks. arXiv.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Zi-Yi Dou, Keyi Yu, and Antonios Anastasopoulos.
2019. Investigating meta-learning algorithms for
low-resource natural language understanding tasks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1192—
1197, Hong Kong, China. Association for Computa-
tional Linguistics.

http://arxiv.org/abs/1911.03863
http://arxiv.org/abs/1911.03863
http://arxiv.org/abs/2009.08445
http://arxiv.org/abs/2009.08445
http://arxiv.org/abs/2009.08445
http://arxiv.org/abs/2009.08445
http://arxiv.org/abs/2009.08445
http://arxiv.org/abs/2009.08445
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/D19-1112
https://doi.org/10.18653/v1/D19-1112

ProtoNet with meta training | ProtoNet with SMLMT
Meta | Meta Meta | Meta

i;:]zfi:;l data N way | Kshot | Test | Test Test | Test
Acc Std Acc Std

50 5 5 0.850 | 0.072 0.906 | 0.066

50 5 10 0.894 | 0.056 0.939 | 0.047

50 5 15 0.900 | 0.055 0.946 | 0.044

50 5 20 0.913 | 0.052 0.945 | 0.045

Table 7: Meta test accuracy of ProtoNet increases with K shots, while performance plateaus around K = 20

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks.

Jeremy Howard and Sebastian Ruder. 2018. Universal
Language Model Fine-tuning for Text Classification.
arXiv.

Kyle Hsu, Sergey Levine, and Chelsea Finn. 2018.
Unsupervised learning via meta-learning. CoRR,
abs/1810.02334.

Siavash Khodadadeh, Sharare Zehtabian, Saeed Vahid-
ian, Weijia Wang, Bill Lin, and Ladislau Boloni.
2020. Unsupervised meta-learning through latent-
space interpolation in generative models.

Stefan Larson, Anish Mahendran, Joseph J. Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K. Kummerfeld, Kevin Leach, Michael A.
Laurenzano, Lingjia Tang, and Jason Mars. 2019.
An evaluation dataset for intent classification and
out-of-scope prediction. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 1311-1316, Hong Kong,
China. Association for Computational Linguistics.

X. Liu, Jianfeng Gao, X. He, L. Deng, Kevin Duh, and
Ye-Yi Wang. 2015. Representation learning using
multi-task deep neural networks for semantic classi-
fication and information retrieval. In HLT-NAACL.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach.

Alex Nichol and John Schulman. 2018. Reptile: a scal-
able metalearning algorithm. arXiv: Learning.

Jake Snell, Kevin Swersky, and Richard S. Zemel.
2017. Prototypical networks for few-shot learning.
CoRR, abs/1703.05175.

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pas-
cal Lamblin, Utku Evci, Kelvin Xu, Ross Goroshin,
Carles Gelada, Kevin Swersky, Pierre-Antoine Man-
zagol, and Hugo Larochelle. 2019. Meta-Dataset: A

75

Dataset of Datasets for Learning to Learn from Few
Examples. arXiv.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. CoRR,
abs/1804.07461.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2020.
Xlnet: Generalized autoregressive pretraining for
language understanding.

Mingzhang Yin, George Tucker, Mingyuan Zhou,
Sergey Levine, and Chelsea Finn. 2019. Meta-
Learning without Memorization. arXiv.

Wenpeng Yin. 2020. Meta-learning for few-shot
natural language processing: A survey. ArXiv,
abs/2007.09604.

Jian-Guo Zhang, Kazuma Hashimoto, Wenhao Liu,
Chien-Sheng Wu, Yao Wan, Philip S Yu, Richard
Socher, and Caiming Xiong. 2020. Discrimina-
tive Nearest Neighbor Few-Shot Intent Detection by
Transferring Natural Language Inference. arXiv.

http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1801.06146
http://arxiv.org/abs/1801.06146
http://arxiv.org/abs/1810.02334
http://arxiv.org/abs/2006.10236
http://arxiv.org/abs/2006.10236
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1703.05175
http://arxiv.org/abs/1903.03096
http://arxiv.org/abs/1903.03096
http://arxiv.org/abs/1903.03096
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1912.03820
http://arxiv.org/abs/1912.03820
http://arxiv.org/abs/2010.13009
http://arxiv.org/abs/2010.13009
http://arxiv.org/abs/2010.13009

