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The NAACL 2021 Workshop on Multimodal Artificial Intelligence (MAI-Workshop) offers a unique
opportunity for interdisciplinary researchers to study and model interactions between (but not limited
to) modalities of language, vision, and acoustic. Advances in multimodal learning allows the field of
NLP to take the leap towards better generalization to real-world (as opposed to limitation to textual
applications), and better downstream performance in Conversational AI, Virtual Reality, Robotics, HCI,
Healthcare, and Education. We invite researchers from NLP, Computer Vision, Speech Processing,
Robotics, HCI, and Affective Computing to submit their papers.

• Neural Modeling of Multimodal Language
• Multimodal Dialogue Modeling and Generation
• Multimodal Sentiment Analysis and Emotion Recognition
• Language, Vision and Speech
• Multimodal Artificial Social Intelligence Modeling
• Multimodal Commonsense Reasoning
• Multimodal RL and Control (Human-robot communication and multimodal language for robots)
• Multimodal Healthcare
• Multimodal Educational Systems
• Multimodal Affective Computing
• Multimodal Fusion and Alignment
• Multimodal Representation Learning
• Multimodal Sequential Modeling
• Multimodal Co-learning and Transfer Learning
• Multimodal Active Learning
• Multimodal and Multimedia Resources
• Creative Applications of Multimodal Learning in E-commerce, Art, and other Impactful Areas.
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Abstract

The Multimodal Transformer showed to be
a competitive model for multimodal tasks in-
volving textual, visual and audio signals. How-
ever, as more modalities are involved, its
late fusion by concatenation starts to have a
negative impact on the model’s performance.
Besides, interpreting model’s predictions be-
comes difficult, as one would have to look
at the different attention activation matrices.
In order to overcome these shortcomings, we
propose to perform late fusion by adding a
GMU module, which effectively allows the
model to weight modalities at instance level,
improving its performance while providing a
better interpretabilty mechanism. In the ex-
periments, we compare our proposed model
(MulT-GMU) against the original implementa-
tion (MulT-Concat) and a SOTA model tested
in a movie genre classification dataset. Our ap-
proach, MulT-GMU, outperforms both, MulT-
Concat and previous SOTA model.

1 Introduction

Information on the internet has grown exponen-
tially. Much of this information is multimodal (e.g.
images, text, videos, etc.). For example, in plat-
forms like YouTube and Facebook, multiple modal-
ities can be extracted like video frames, audio and
captions on different languages. In this context,
it becomes increasingly important to design new
methods that are able to analyze and understand au-
tomatically these type of multimodal content. One
popular scenario is the movie streaming service
(e.g. Netflix, Prime Video, etc.), where there is
also an increasing interest in performing automatic
movie understanding. In this paper we take as a
case study the task of movie genre prediction. Our
proposal exploits movie trailer frames and audio,
plot, poster and a variety of metadata information,
via Deep Learning techniques that have enough

flexibility to fuse and learn to weight from all these
modalities in a simultaneous way.

The success of the Transformer architecture
(Vaswani et al., 2017) and its variants in NLP, has
also inspired researchers to propose and extend
these architectures in multimodal settings. Some
examples include ViLBERT (Lu et al., 2019), MulT
(Tsai et al., 2019), VisualBERT (Li et al., 2019),
UNITER (Chen et al., 2020), MMBT (Kiela et al.,
2019) and LXMERT (Tan and Bansal, 2019). How-
ever, the vast majority of these multimodal archi-
tectures were designed and tested only on bimodal
data, more specifically, on text and visual infor-
mation. Besides, models that only allow for early
fusion, have the disadvantage that they rely solely
on this mechanism that hinders the interpretability.
While in models that output a feature per modal-
ity, an additional late fusion mechanism can be
implemented to further fuse modalities and learn
a richer representation, which is the case for the
MulT model. Nonetheless, late fusion in this model
was originally performed by means of concatena-
tion, diminishing its fusion capacity.

Contributions of this work are twofold: We first
adapt the MulT model (Tsai et al., 2019) to sup-
port additional number of modalities. Then, we
consider a mechanism that learns to fuse all the
modalities dynamically before making the predic-
tion over each particular instance. This is a crucial
step, given that for movies belonging to different
genres, the relevant modalities could be quite dif-
ferent. For example, in Animation movies, visual
information might be more relevant given the vi-
sual style, while for Drama movies, sound may be
more helpful because of loud noises and screams.

In order learn to fuse the final representation of
each modality we propose to adapt the GMU mod-
ule (Arevalo et al., 2019). These units are highly
interpretable gates which decide how each modal-
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ity influences the layer output activation units, and
therefore, decide how relevant each modality is in
order to make the prediction. This is a crucial step,
given that for this task, not all modalities are going
to be equally relevant for each observation, as has
been shown is previous work like (Mangolin et al.,
2020) and (Cascante-Bonilla et al., 2019). Our eval-
uation shows that our MulT-GMU model, which
uses weighted fusion by GMU, can outperform
SOTA results in the movie genre classification task
by 4%-10% on all metrics (µAP, mAP and sAP).

We explore for the first time the use of the MulT
in the movie genre prediction task. We demonstrate
that the original MulT model, which uses late fu-
sion by concatenation (MulT-Concat) can achieve
SOTA results task for this . Then, we show that
further improvements can be achieved by our pro-
posed model with the GMU module (MulT-GMU).
The contributions can be summarized as follows:

• We introduce the use of the Multimodal Trans-
former architecture (MulT) to the task of
movie genre prediction.

• We improve the MulT model by including a
GMU module on the top, which allows to suc-
cessfully fuse more modalities and improve
its prediction performance.

• We show that the interpretability of the MulT
model increases by incorporating the GMU
module, allowing to better understand the rel-
evance of each modality for each instance.

2 Approach

In Sections 2.1 and 2.2, we briefly describe the
MulT architecture and then explain how to adapt
the GMU units at the top of the model to perform a
more robust late fusion of modalities.

2.1 Multimodal Transformer (MulT)

In (Tsai et al., 2019) the MulT model was pro-
posed in the context of human multimodal lan-
guage understanding, involving a mixture of natu-
ral language, facial gestures, and acoustic behav-
iors. Thus, it operates with three different modali-
ties, Language (L), Video (V) and Audio (A).

Each modality is represented as a sequence of
features Xα ∈ RTα×dα with α ∈ {L, V,A} being
the modality. T(.) and d(.) are used to represent se-
quence length and feature dimension, respectively.
Sequences are fused by pairs through crossmodal

attention modules. These modules take two input
modalities, α, β ∈ {L, V,A}, and their respective
sequences, Xα ∈ RTα×dα and Xβ ∈ RTβ×dβ . The
crossmodal attention block will try to adapt latently
the modality β into α. To achieve this, queries from
one modality are combined with keys and values
from the other modality. D crossmodal transformer
layers are stacked to form a crossmodal transformer.
Another crossmodal transformer is used to provide
the latent adaptation of modality α into β. Yielding
representations Zβ→α and Zα→β , respectively.

In the case of three modalities (L, V, A), six
crossmodal transformers are needed in order to
model all pair interactions. Interactions that share
the same target modality are concatenated. For ex-
ample, the final representation of Language will
be ZL = [Z

[D]
V→L, Z

[D]
A→L] ∈ RT{L,V,A}×2d. Finally,

each modality is passed through L transformer en-
coder layers, separately. The last element of each
sequence is concatenated and passed through fully
connected layers to make predictions.

2.2 MulT-GMU: Extending MulT through
GMU-based late fusion

The MulT model expects the inputs to be sequences
of features, but there could be modalities that are
not sequences but a fixed vector (e.g. an image).
A simple approach would be to concatenate them
alongside the MulT outputs (ZL, ZV , ZA) just be-
fore the fully connected layers. We argue that this
is not optimal given that the fully connected layers
will not be able to properly weight the relevance of
each modality. In this work, we propose to adapt
the MulT model by changing the concatenation
fusion with a GMU module, as shown in Figure 1.

The GMU module receives a feature vector xi ∈
Rdi associated to modality i. Then the associated
gate, zi ∈ Rshared, controls the contribution of that
modality to the overall output of the GMU module.
For this, the first step is to calculate an intermedi-
ate representation, hi = tanh(Wix

T
i ) ∈ Rshared

with Wi ∈ Rshared×di , where all modalities have
the same dimension so they can be added and
weighted by zi. The next step is to calculate the
gates zi = σ(Wzi [xi]

N
i=1) ∈ Rshared where N

is the number of modalities and [xi]
N
i=1 means

the concatenation of vectors from x1 to xn. Fi-
nally, given the gates z1, z2, ..., zN and hidden fea-
tures h1, h2, ..., hN , fusion is performed through
h =

∑n
i=1 zi�hi, where� represents component-

wise vector multiplication. This operation allows
2



the GMU module to have a global view of all
modalities, whereas MulT only allows for early
fusion by modality pairs.

Prediction ŷ
Te

xt

V
id

eo

A
ud

io

MulT

GMU

Meta

Poster

Figure 1: Proposed extension to the MulT architecture
with a GMU module.

3 Evaluation

3.1 Datset

We base all of our experiments in the dataset Movi-
escope (Cascante-Bonilla et al., 2019). This is a
large-scale datset comprising around 5,000 movies
with corresponding movie trailers (video and au-
dio), movie posters (images), movie plots (text),
and metadata. The available data is already pre-
processed. For the trailer video, we have 200 fea-
tures vectors of size 4096, associated to 200 video
frames subsampled by taking 1 every 10 frames.
For the audio, log-mel scaled power spectrograms
are provided. Poster images are provided in both,
raw format and as a feature vector of size 4096.
For the plot and metadata, raw data is provided. In
the case of text, we use the pre-trained BERT-base
model to extract features. For the metadata we fol-
low (Cascante-Bonilla et al., 2019), extracting 13
different metadata values concatenated as a vector.

3.2 Experimental Framework

We compare three different models. The MulT
model that works by concatenation of modalities
(MulT-Concat), the extension of the MulT model
with the GMU module (MulT-GMU), and the base-
line model proposed in (Cascante-Bonilla et al.,
2019), which is inspired by fastText (Joulin et al.,
2017) to encode a sequence of features from text
into a single vector, and a sequence of video fea-
tures extracted from a pre-trained CNN also into
single vector. The fusion of modalities is performed
through a weighted regression, which could be con-
sidered as a form of modal attention. We refer to
this model as Fast Modal Attention (Fast-MA).

In the case of the MulT-Concat and MulT-GMU,
we show their mean performance over 5 runs with
different random seeds. For the Fast-MA model we
include the original results presented in (Cascante-
Bonilla et al., 2019). The different modalities are
denoted as V (Video), A (Audio), P (Poster), T
(Text) and M (Metadata). The Fast-MA model
was only tested in four of the presented settings
(VA, VAP, TVAP and TVAPM). Furthermore, to
investigate the impact of the GMU module we also
include a more exhaustive list of experiments.

3.3 Results

We compared both baseline models, Fast-MA,
MulT-Concat (late fusion by concatenation) with
our proposed architecture MulT-GMU. Results on
four different modality settings are shown in Ta-
ble 1. They indicate that both MulT-Concat and
MulT-GMU were able to outperform the state-of-
the-art model Fast-MA when several modalities
are considered. These results also show that Fast-
MA outperformed both MulT-Concat and MulT-
GMU in two of the modality settings, namely VA
(Video and Audio) and VAP (Video, Audio and
Poster). Note that these two settings are the only
ones where Text (T) is not included, which con-
firms previous studies showing that for this task,
text is the most relevant modality while audio is
the least relevant (Mangolin et al. (2020), Cascante-
Bonilla et al. (2019)). This explains in part, the low
performance of the MulT models in these two set-
tings. Once text is included, performance in MulT
models increases dramatically. For example, from
Table 2, we show that either bimodal MulT model
that included text (TV or TA) already outperformed
the best Fast-MA model (TVAPM).

Once we show the outstanding performance of
3



both MulT models, in Table 2 we further compare
them on more modality settings. We can see that
MulT-GMU outperforms MulT-Concat in almost
all the settings except in TV (Text and Video). For
example, from experimental settings TVPM and
TVAPM, we can observe that MulT-Concat has
difficulty handling the Metadata features, dropping
quite considerably the performance. In contrast,
MulT-GMU is able to handle these features and
maintain or even increase its performance.

Modality Model µAP mAP sAP

VA Fast-MA 70.3 61.5 78.8
MulT-Concat 59.2±0.3 53.1±0.5 71.1±0.7
MulT-GMU 58.9±0.7 52.5±0.6 70.6±0.6

VAP Fast-MA 70.4 61.7 78.8
MulT-Concat 63.1±0.5 54.3±0.5 73.9±0.5
MulT-GMU 64.1±0.9 55.0±0.7 74.5±0.5

TVAP Fast-MA 74.9 67.5 82.3
MulT-Concat 78.9±0.3 75.7±0.5 85.6±0.3
MulT-GMU 79.8±0.4 76.0±0.9 86.1±0.4

TVAPM Fast-MA 75.3 68.6 82.5
MulT-Concat 64.8±5.8 61.3±7.2 76.9±4
MulT-GMU 79.5±0.5 76.4±0.3 85.6±0.3

Table 1: Comparison against MulT-Concat (Tsai et al.,
2019) and Fast-MA (Cascante-Bonilla et al., 2019) on
different modality combinations. Metrics reported cor-
respond to average precision, micro (µAP ), macro
(mAP ) and sample (sAP ) averaged.

Modality Model µAP mAP sAP

TV MulT-Concat 77.5±0.5 73.5±0.2 84.4±0.2
MulT-GMU 76.9±0.3 73.2±0.2 84.2±0.4

TA MulT-Concat 76.2±0.7 72.4±0.8 84±0.5
MulT-GMU 76.3±0.4 71.1±0.4 84.1±0.2

TVA MulT-Concat 77.2±0.7 74.8±0.4 84.2±0.5
MulT-GMU 78.2±0.5 74.9±0.5 85±0.3

TVP MulT-Concat 78.4±0.5 75.1±0.4 85.1±0.5
MulT-GMU 78.9±0.1 75.2±0.4 85.7±0.3

TVPM MulT-Concat 46.1±11 43.2±10.7 62.8±8.8
MulT-GMU 79.1±0.3 75.4±0.2 85.4±0.4

Table 2: Comparison of the proposed model MulT-
GMU and MulT-Concat (Tsai et al., 2019) with addi-
tional modality combinations. Metrics reported cor-
respond to average precision, micro (µAP ), macro
(mAP ) and sample (sAP ) averaged.

4 Qualitative analysis

To understand how the GMU units are weighting
the relevance of each modality according to each

instance (movie) i, we inspected the gates zi of the
GMU module for all the observations in the test
set. To achieve this, we selected the observations
that contained each of the genres and averaged the
gate activations per modality. We show results for
5 different movie genres in Figure 2, where each
row already takes into account the average of all
test movies of the corresponding genre.

In general, text and visual modalities were the
most relevant according to the GMU module. We
can see relatively low activations for the audio
modality compared with the other ones. This is
expected as it has been shown that audio modal-
ity is not as useful as the other ones, for this task
(Mangolin et al. (2020), Cascante-Bonilla et al.
(2019)). There is also a relationship between audio
and video signals. In genres where video is the
strongest, audio is the weakest.

Taking the Audio modality as an example, where
Horror and Drama had the highest GMU activa-
tions overall, we could think that this was the case
given that this kind of movies usually have loud
noises like screams in the trailers, so this could be
a good indicator that the movie is likely to belong
to one of these two genres. There are other inter-
esting scenarios, for example the text modality had
the highest activation for genres like Comedy and
Drama. In the case of the video modality, Comedy
and Family genres had the highest activation.

Figure 2: Average proportion of GMU unit activations
normalized by genre for all the observations in test set.
We only show the activations for 5 movie genres.

5 Conclusion

We proposed an adapted version of the Multimodal
Transformer, MulT-GMU, by performing weighted
late fusion with a GMU module. This approach
achieved SOTA results in the multimodal movie
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genre classification task. Moreover, we improved
the interpretability of the MulT model by perform-
ing a qualitative analysis, visualizing the activa-
tions of the GMU module, which allowed us to
have a better understanding about relevant modali-
ties for the model, depending on the genre of the
movie. To the best of our knowledge, this is the first
time multimodal transformer-based architectures
are tested in the task of movie genre classification.
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Abstract

In natural language generation tasks, a neu-
ral language model is used for generating a
sequence of words forming a sentence. The
topmost weight matrix of the language model,
known as the classification layer, can be
viewed as a set of vectors, each representing
a target word from the target dictionary. The
target word vectors, along with the rest of
the model parameters, are learned and updated
during training.

In this paper, we analyze the properties en-
coded in the target vectors and question the
necessity of learning these vectors. We sug-
gest to randomly draw the target vectors and
set them as fixed so that no weights updates are
being made during training. We show that by
excluding the vectors from the optimization,
the number of parameters drastically decreases
with a marginal effect on the performance. We
demonstrate the effectiveness of our method in
image-captioning and machine-translation.

1 Introduction

Deep neural networks enabled breakthroughs in
natural language generation tasks such as machine-
translation (Zhang and Zong, 2015), image caption-
ing (Hossain et al., 2019), and more. Generating
the text is done by employing a conditional lan-
guage model as the decoder component, responsi-
ble for predicting the next word at each step during
decoding, as depicted in Fig-1. For predicting the
next word, the language model first encodes into a
vector f ∈ Rd, denoted as context representation,
both the previously predicted words, and the task’s
related input (such as source sentence in machine-
translation or input image in image-captioning).
Then, at the classification layer, the context repre-
sentation is projected onto a set of weight vectors,
resulting in a vector termed as logits vector. Af-
terward, a softmax function is applied to output a
distribution over the target vocabulary words. The

input
wordi-1

Decoder
block

predicted
wordi

logits
target

embeddings
context

representation

Figure 1: Scheme of a decoding step for predicting
the i-th word. The colored boxes and edges represent
the logits of two different target words and their corre-
sponding embedding vectors, respectively.

set of weight vectors used for producing the logits,
denoted here as matrix W ∈ Rd×|V |, where V is
the target vocabulary. Matrix W can be viewed as
|V | vectors, where each is a d-dimensional vector
representing a specific word from the target vocab-
ulary, we term these vectors through the paper as
target word embeddings and target vectors, inter-
changeably. The target embeddings, along with the
rest of the model parameters, are estimated so as to
minimize the loss function.

During training, an additional set of |V | vec-
tors are being learned to represent the previously
predicted words when given to the decoding step.
These vectors are referred as input word embed-
dings. Learning the input embeddings during train-
ing was shown to improve the performance of NLP
classifers and allows achieving a level of general-
ization that is not possible with classical n-gram
language models (Mikolov et al., 2013). Their main
advantages are capturing the relationship between
words and allowing similar words to have embed-
ding vectors close in space. While a large amount
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of work has done to understand the properties and
demonstrate the effectiveness of learning the in-
put word embeddings, the benefits of learning the
target word embeddings remain unexplored.

In this paper, we show that by randomly drawing
the target word embeddings and excluding them
from training, the number of trained parameters
are drastically decreased with a marginal effect
on the performance. By this, we show that the
properties captured in the target word embeddings,
such as word frequencies and relationships, are
surprisingly redundant and may be ignored in low
resource environments.

2 Background, Notations and Definitions

Consider a NLG task, such as machine-translation
or image-captioning, where for a given input in-
stance xi, a corresponding sentence Si should be
generated. Typically, an encoder-decoder based
neural network is trained for solving the task. The
encoder is responsible for encoding the input in-
stance into a vector, while the decoder responsible
for generating the next word given the input vec-
tor and previously generated words. Commonly,
an attention mechanism is incorporated during the
decoding (Bahdanau et al., 2014; Xu et al., 2015).

Denote by Dtrain = {(xi, Si)}Ni=1 a training
dataset where xi is the input to the model, Si is the
corresponding sentence, and N is the number of
training examples. Training the model is done by
maximizing the following objective function:

argmax
w1,...,w|V |,θ

∑

(xi,Si)∈Dtrain
logP (Si|xi) ,

where θ and w1, ..., w|V | are the learnable parame-
ters of the model. Since Si composed of a sequence
of words si1, ..., sij , where j is the length of Si, a
chain rule is applied to model the joint probability
over the sentence words as follows:

logP (Si|xi) =
j∑

z=1

logP (siz|xi, si1, ..., siz−1) .

For generating the next word, a context vector
fθ ∈ Rd is learned and is responsible for encoding
the given input along with the previously predicted
words. Then, the context vector is projected onto
each of the target word vectors wj ∈ Rd where j =
1, ..., |V |, by calculating the dot-product between
the vectors. Afterward, a bias term b ∈ R|V | is

added, and a softmax function is applied, resulting
in a distribution over the target words. Formally:

P (siz|xi, si1, ..., siz−1) = softmax(W · fθ + b)

Since wj · fθ = ||wj || · ||fθ|| · cos(αwj ,fθ), where
αwj ,fθ is the angle between the vectors, the pre-
dicted probability of the word sj can be written as:

e
||wj ||·||fθ||·cos(αwj,fθ )+bj

∑|V |
m=1 e

||wm||·||fθ||·cos(αwm,fθ )+bm
(1)

Notice that both the angles and magnitudes of the
target word vectors are influencing the predicted
probability in Eq-1. The cosine of the angle be-
tween wj and fθ measures how well the word sj
fits into the context. Hence, interchangeable words
have their corresponding target vectors directed at
the same angle. The magnitudes of the target vec-
tors control on the predicted probability, in a way
that they have a stronger effect on words whose
embeddings have direction similar to fθ, and less
effect or even a negative effect on words in other
directions. Consider a case where the cosine of the
angle between wj and fθ is close to 1, meaning that
the angle between them is close to 0. In this case,
increasing the magnitude ||wj || would result in an
increased probability for the word sj . However,
when wj is directed in an opposite direction to f ,
the cosine of the angle between them would be
close to -1, and therefore, increasing the magnitude
would result in a lower probability. By fixing the
target vectors and the bias term, the model can max-
imize the probability in Eq-1 only by optimizing
the vector fθ.

In recent work, Press and Wolf (2016) proposed
tying the target and input embeddings by using the
same vectors to represent both. The paper showed
that the performance of weight tied models are on
par with learning two separate vectors in machine-
translation. However, the method forces the target
vectors to have the same dimension as the input em-
beddings and adds additional computational costs.
More recently, several works (Shalev et al., 2020;
Hoffer et al., 2018; Shalev et al., 2018) explored
the effects of fixing the classification layer in im-
age classification models and demonstrated that
the accuracy, number of parameters and out-of-
distribution detection ability improve.

In this paper, we empirically show that randomly
drawn, fixed target word embeddings allow models
to achieve high performance in natural language
generation tasks. From an efficiency perspective,
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Model B4 B3 VU R-L ME
Tell 27.28 36.59 721 49.72 23.09
Tell-Tied 27.11 36.23 699 49.21 22.83
Tell-Fixed 27.01 36.08 1378 49.34 22.99
Attend 29.12 38.51 784 50.91 24.02
Attend-Tied 29.01 38.11 773 50.76 23.90
Attend-Fixed 28.75 37.93 1026 50.96 23.91

Table 1: Image-captioning evaluation results. B3-4 re-
fer to BLEU3-4. R-L refers to ROUGE-L. ME refers
to METEOR. VU refers to vocabulary usage.

fixing these vectors decrease the number of param-
eters in the classification layer by d · |V |. Since
the target vocabulary typically contains thousands
of words, and the dimension of the context vector
fθ is in hundreds or thousands, the reduction in
parameters is significant.

3 Experiments

In this section, we present our experimental results.
We evaluate our approach on image-captioning and
machine-translation tasks. We start by describing
the experimental setup; then, we present the results
and analyze the target embeddings.

3.1 Experimental Setup

Image-captioning: For evaluating our approach in
image-captioning, we implemented LSTM-based
sentence generator as described in (Vinyals et al.,
2015), denoted as tell. We also implemented an
attention-based model as described in (Xu et al.,
2015), denoted as attend. Additionally, we created
identical models where the target embedding vec-
tors are tied (tell-tied and attend-tied) and also the
same models with randomly drawn target vectors
without being updated during training (tell-fixed
and attend-fixed). For the fixed target embeddings
models, we randomly draw per each cell in the
vectors a number in the range of [-10,10]. We eval-
uated the models on MSCOCO dataset (Lin et al.,
2014) and used the standard, publicly available
splits, as in previous work (Karpathy and Fei-Fei,
2015). For all models, we set a pre-trained Resnet-
101 (He et al., 2016) as the image encoder, pro-
vided by the TorchVision package. Due to space
limitations, we describe the training procedure in
the appendix.

Machine-translation: For evaluating our ap-
proach in machine-translation, we used MultiK30
(Elliott et al., 2016), IWSLT 2014 (Cettolo et al.,
2014) and WMT-14 datasets. For MultiK30 and
IWSLT 2014 sets, we trained an attention-based

Dataset Translation Non-Fixed Tied Fixed

Multi30k DE-EN 33.02 33.08 33.17
EN-DE 31.63 31.49 32.12

IWSLT 2014 DE-EN 28.77 28.94 29.03
EN-DE 25.48 25.66 25.97

WMT-14 EN-DE 25.84 25.62 25.49

Table 2: BLEU4 results for machine-translation.

Figure 2: Left is the magnitude of the target vectors
learned by tell model versus the corresponding word
frequencies. Right is the magnitude of the randomly
drawn vectors of the fixed tell model versus the word
frequencies.

encoder-decoder model, as described in (Bahdanau
et al., 2014). We evaluated the models on English-
German and German-English translations. For the
WMT-14 EN-DE set we trained a convolutional se-
quence to sequence model as described in (Gehring
et al., 2017). Additionally, we trained the same
models with randomly drawn, fixed target vectors,
and also with tied-embeddings. The training proce-
dure described in detail in the appendix. We found
that translation models with fixed target vectors
perform best when the magnitude of the vectors is
small, thus we normalized the vectors by dividing
them with their L2 norm.

3.2 Results

The results for image-captioning and machine-
translation are shown in Table-1 and Table-2, re-
spectively. Results suggest that our method of ran-
domly drawing the target embeddings and fixing
them during training allows the models to achieve
high results in both tasks.

Next, we analyze the learned target word vectors.
We find that the word frequencies are reflected in
the magnitude of these vectors. As can be seen
in Fig-2, target vectors with large magnitude are
representing less frequent words. We measured the
spearman’s rank correlation coefficient between
the magnitude of the target vectors ,‖wj‖, and the
number of appearances of the corresponding word
sj in the training set. We obtain a strong corre-
lation between the two in all settings. In image-
captioning, we obtain a correlation of 0.79 and
0.77 when considering the target vectors of tell and
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attend, respectively. In machine-translation, for
Multi30K DE-EN and EN-DE, we obtain a corre-
lation of 0.84 and 0.93, respectively. For IWSLT
DE-EN and EN-DE, we find a correlation of 0.76
and 0.83, respectively. For WMT-14 EN-DE we
find a correlation 0f 0.81.

In addition, we observe that the target vectors
are able to capture word relationships. Recently,
(Press and Wolf, 2016) showed that the target and
input vectors of word2vec skip-gram are correlated
similarly with human judgments of the strength of
relationships between concepts. We followed the
same experiment, and found that the target vectors
correlate better with the human judgements than
the input vectors in 3 out of the 4 tested models.
Due to space limitations, results are shown in the
appendix.

Interestingly, we noticed that the image-
captioning models with fixed target embeddings
had an increased vocabulary usage rate (see Table-
1) and generated low-frequency words more often
compared to the equivalent non-fixed models. In
Fig-3, we demonstrate two images for which the
non-fixed tell model generated the frequent word
bird (appearing in 5135 training sentences), while
the fixed model generated the words seagull (ap-
pearing in 201 training sentences) and duck (ap-
pearing in 263 training sentences). More exam-
ples can be seen in the appendix. We suspect that
the increased usage of low-frequency words might
be due to the randomization of the target vectors,
which forces visually similar concepts to have
their target vectors far in space. As a result, the
model is encouraged to find a more discriminative
representations to distinguish between the concepts.
Recall that the cosine-similarity between fθ and wj
measures how well word sj fits into the context. If
wj and wi represent concepts sj and si which are
visually close but the vectors are far in space, the
model would have to find better representations for
fθ to determine whether it should be close in angle
to wj or wi, as fθ is the only term that can be opti-
mized in Eq-1 when the target vectors are fixed. In
the example above, the non-fixed tell model placed
the vectors representing the concepts close in space.
The cosine-similarity between wduck and wbird is
0.82, and is 0.81 between wseagull and wbird. In
contrast, the cosine-similarity between the equiva-
lent target vectors in the fixed models are roughly
0 due to the randomization.

Fixed:	a	seagull	is	standing	in	the
sand	on	a	beach

Non-Fixed:	a	bird	that	is
flying	over	the	water

Fixed:	a	duck	swims	through	the
body	of	water

Non-Fixed:	a	bird	that	is
standing	in	the	water

Figure 3: Captions generated by fixed and non-fixed
tell models.

Model Non-Fixed Fixed %
Tell 18,001,171 13,142,291 27%
Attend 25,342,739 20,483,859 19%
Multi30K DE-EN 13,893,381 10,870,272 22%
Multi30K EN-DE 14,898,861 10,870,272 28%
IWSLT DE-EN 20,237,792 14,307,512 30%
IWSLT EN-DE 21,158,627 14,307,512 33%
WMT-14 EN-DE 36,267,832 28,043,832 21%

Table 3: The number of learnable parameters in each
model with the relative decrease percentage.

3.3 Parameters and Computation Efficiency
Recall that the classification layers contains d · |V |
parameters, where V is the target vocabulary and d
is the dimension of the context vector fθ. Table-3
demonstrates the significant reduction in the num-
ber of learnable parameters. Our method also re-
sults in improved computational efficiency com-
pared to the tied-embeddings method (Press and
Wolf, 2016). When using tied-embedding, the tar-
get vectors are the same as the input vectors, and
therefor their dimensions are equal. As a result,
the context vector, fθ, should also be adjusted to
have the same dimension as the input and target
vectors. In contrast, our proposed method allows to
set low dimensional representations, which results
in increased computational efficiency at inference.
Additionally, the fixed target vectors can be ini-
tialized with sparse vectors which can result in
memory efficiency. An example is the Hadmard
matrix, used by (Hoffer et al., 2018) as the last fully
connected layer in image classification models.

3.4 Conclusions and Future Work
In this paper, we demonstrated that by randomly
drawing the target embeddings, and setting them as
fixed during training, the number of learnable pa-
rameters is significantly decreased while allowing
to achieve high performance in machine-translation
and image-captioning.
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4 Appendix

4.1 Training procedures
Image-captioning Training descriptions were
preprocessed with basic tokenization, keeping all
words that appeared at least 5 times in the train-
ing set. Words appearing less are map into UNK
symbol. For training the models, we use Adam opti-
mizer and set the initial learning rate to 0.0004. We
multiply the learning rate by 0.8 for every 8 epochs
without improvement in the BLEU score. Training
is ended once the model achieves 20 epochs with-
out improvement in the BLEU score. The batch
size is set to 32 instances. At training, we apply
teacher-forcing by feeding at each time step the
ground-truth word. During decoding, we use beam-
search as the decoding strategy, with a beam size
of 10.
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Machine-translation Training procedure for
MultiK30 dataset is as follows: the training sen-
tences were preprocessed with basic tokenization,
keeping all words that appeared at least 2 times
in the training set. Words appearing less are map
into UNK symbol. For training the models, we use
Adam optimizer and set the initial learning rate to
0.001. We multiply by 0.8 the learning rate for
every 8 epochs without improvement in the BLEU
score. Training is ended once the model achieves
20 epochs without improvement in the BLEU score.
The batch size is set to 128 instances. At training,
we apply teacher-forcing by feeding at each time
step the ground-truth word.

For training the models on IWSLT we use the
same procedure as in MultiK30 with the following
modifications: We keep words that appeared at
least 5 times in the training set, and filter data to
have sentences with max length of 20. The initial
learning rate is set to 0.002 and multiplied by 0.25
for every 8 epochs without improvement in the
BLEU score. The batch size is set to 64 instances.

4.2 Word Relationships

For evaluating the quality of the non-fixed target
vectors in both image-captioning and machine-
translation, we follow the evaluation proposed in
the tied embeddings paper. We calculate the pair-
wise (cosine) distances between embeddings and
correlate these distances with human judgments
of the strength of relationships between concepts.
Results are shown in Table-4.

Model Simlex999 MEN MTurk-771
tell 0.30/0.24 0.26/0.46 0.20/0.34
attend 0.38/0.26 0.49/0.45 0.40/0.32
IWSLT DE-EN 0.07/0.07 0.16/0.07 0.14/0.11
MultiK30 DE-EN 0.19/0.04 0.36/0.01 0.31/0.06

Table 4: Spearman’s correlation between word vectors
and human judgments of the strength of relationships
between concepts. The correlation of the target vector
are in the left column. The correlation of the input vec-
tors are in the right column.

4.3 Diversity

Despite the substantial progress in recent years,
sentences produced by existing image captioning
methods are still often overly rigid and lacking in
variability. Several works (Shetty et al., 2017; Dai
et al., 2017; Sadeh et al., 2019) address these issues
with an alternative training and inference methods
to generate more natural and diverse image descrip-

tions. In Fig-4 we show how simple technique such
as fixing the classification layer, which does not
require any additional computational cost, might
improve the diversity and accuracy of the generated
captions.

NF: a cat that is sitting on
a chair. 
F: two tabby cat sitting on
a blue bench.       

NF: a truck that is sitting
in the grass.
F: an old rusty truck
parked in the grass.

NF: a man standing in
front of a bathroom
mirror.
F: a man taking a selfie in
a bathroom.

NF: a group of people
standing next to each
other.
F: two men in suits
standing next to each
other

NF: a group of men
standing next to each
other.
F: a group of men cutting
a sheet cake on top of a
table.

NF: a man riding on the
back of a motorcycle
F: a police officer is riding
a yellow motorcycle

NF: a pile of luggage
sitting on top of a bed
F: an	open	suitcase	is
packed	with	various
items.

NF: a bird sitting on top of
a wooden post.
F: a brown and gray bird
sitting on a window sill.

NF: a display case filled
with lots of donuts.
F: a display case in a
bakery filled with donuts
and pastries

NF: a cat laying on top of
a wooden desk.
F: an orange cat sitting
on top of a dresser.

NF: a tall building with a
clock on the top
F: the big ben clock tower
towering over the city of
london

NF: a train that is on a
train track.
F: a train traveling
through a lush green
countryside.

Figure 4: Examples of captions generated by tell and
attend models. NF and F refer to models with non-
fixed and fixed target embeddings, respectively. Low-
frequency words are underscored.
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Abstract

Emotion recognition in conversation has re-
ceived considerable attention recently because
of its practical industrial applications. Exist-
ing methods tend to overlook the immediate
mutual interaction between different speakers
in the speaker-utterance level, or apply single
speaker-agnostic RNN for utterances from dif-
ferent speakers. We propose COIN, a con-
versational interactive model to mitigate this
problem by applying state mutual interaction
within history contexts. In addition, we intro-
duce a stacked global interaction module to
capture the contextual and inter-dependency
representation in a hierarchical manner. To
improve the robustness and generalization dur-
ing training, we generate adversarial examples
by applying the minor perturbations on mul-
timodal feature inputs, unveiling the benefits
of adversarial examples for emotion detection.
The proposed model empirically achieves the
current state-of-the-art results on the IEMO-
CAP benchmark dataset.

1 Introduction

Emotion recognition in conversation (ERC) has at-
tracted extensive interests due to the prevalence of
user-generated contents on social media platforms,
such as conversational messages and videos (Po-
ria et al., 2017; Hazarika et al., 2018b; Poria
et al., 2019; Hazarika et al., 2021), which aims
to detect the speaker’s emotions and sentiments
within the context of human conversations. Re-
cent works on ERC adopted recurrent neural net-
works (RNNs) to firstly learn the sequential utter-
ances in conversations and then leveraged high-
level context extractor, such as CMN (Hazarika
et al., 2018b), DialogueRNN (Majumder et al.,
2019), DialogueGCN (Ghosal et al., 2019), to cap-
ture the global contextual representation for emo-
tion detection.

∗Equal contribution

This two-step scheme has proven to be effec-
tive to achieve success in ERC and can be divided
into two categories: one is modeling each speaker
with one RNN, such as (Hazarika et al., 2018b; Ma-
jumder et al., 2019); the other is speaker-agnostic,
i.e., modeling each utterance using one RNN irre-
spective of its speaker, such as (Poria et al., 2017;
Majumder et al., 2019). However, there is no direct
dyadic interaction between speaker-specific RNNs
in previous work. Different RNNs corresponding to
different speakers have been used without mutual
interaction (Hazarika et al., 2018b) or interacting
through a mediate global RNN (Majumder et al.,
2019).

In this paper, the proposed Conversational
Interactive Networks (COIN) employs immediate
coupling interaction at each state of different speak-
ers and adopts a global extractor to capture the
contextual and self-dependency representation for
emotion classifier. To enhance the generalization
and robustness of our model, we generate adversar-
ial examples by applying minor perturbations on
multi-modal embeddings for adversarial training
(AT) (Goodfellow et al., 2014).

Our work illustrates that dyadic interaction ad-
vances the performance of multimodal emotion
recognition in conversation by incorporating mu-
tual interaction and applying adversarial training.
Our key contributions are in threefold:

• We introduce state mutual interaction compo-
nents to allow for the immediate state inter-
action between different speakers, and global
stacked interaction to capture the contextual
and inter-dependency representations.

• We unveil the importance of adversarial train-
ing in ERC by promoting the model perfor-
mance with generated adversarial examples
on extracted multimodal embeddings.

• We propose a competing model that achieves
the state-of-the-art (SOTA) performance on
the IEMOCAP dataset, showing that textual
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and audio features play the most important
role in ERC.

2 Methodology

This section is orgnized as follows: Sec. 2.1 de-
scribes the definition of ERC task; Sec. 2.2 intro-
duces the approach to extracting multimodal fea-
tures; Sec. 2.3 gives a detailed description of the
proposed model.

2.1 Task Definition

Let there be M parties or speakers
{p1, p2, · · · , pM} in a human conversation
(M = 2 in our experiments). Given the utterances
{u1, u2, · · · , uN} from a conversation where the
utterance ut is from the corresponding speaker
ps(ut), the task of ERC is to detect the most
likely class from emotion category set C. Here s
represents the mapping between the utterances and
users.

2.2 Multimodal Feature Extraction

We extract multimodal features using the same set-
ting as (Majumder et al., 2019) for a fair compari-
son. Multimodal features are simply concatenated
along the feature dimension in our systems.

Textual Feature We employ multi-channel 1-D
convolutional neural networks (CNNs) along the
sequential dimension to extract n-gram lexical fea-
tures with kernel sizes of {3, 4, 5}. Then a global
max-pooling layer followed by a linear projection
produces the utterance representation. This CNN
is trained on emotion classification at the sentence
level.

Acoustic Feature We use openSMILE (Eyben
et al., 2010) toolkit§ to extract speech features such
as Mel-frequency cepstral coefficients (39 features)
and pitch. Z-standardization is applied to normalize
the low dimensional feature vectors.

Visual Feature 3D-CNN (Tran et al., 2015) is
leveraged to obtain visual features from dialogue
videos, followed by a ReLU and max-pooling op-
eration.

2.3 Model Architecture

Fig. 1 illustrates the overview of proposed COIN
architecture with the history length of K = 6.
The multimodal inputs of utterances are firstly

§https://www.audeering.com/opensmile/

fed into feature extractor to obtain the multimodal
features. Then we adopt Gated Recurrent Units
(GRUs) (Chung et al., 2014) to capture the history
dialogue of dyadic speakers A/B, followed by the
mutual interaction for each state at utterance level.
Afterward, the concatenated bidirectional mutual
history vectors are fed into a stacked contextual
interaction module to capture the inter-dependency
between current and history dialogue states.

Speaker Mutual Interaction for Dialogue His-
tory Let ui ∈ Rd represent the extracted d-
dimensional multimodal features for i-th speech
uttered by speaker P , K be the dialogue his-
tory length. We use GRUs in two directions to
capture the utterance-level speaker dialogue con-
text. For the forward GRU, we have:

−→
h i
P =−−→

GRUi
P(ui),P ∈ {A,B}, i ∈ [t−K, t−1], where

hP ∈ Rd indicates the hidden state of speaker P
at the step i. The history utterance sequences for
speaker P are denoted as UP .

We compute the mutual interaction for each his-
tory step i by linearly regulating each output of
GRU with the previous hidden state of another
speaker. In the forward direction, we have:

−→mi =

{ −→
h i

Aσ(
−→
h i−1

B
−→
WB +

−→
b B) if P = A−→

h i
Bσ(
−→
h i−1

A
−→
WA +

−→
b A) if P = B

}
,

(1)

where h0
P represents the initial hidden state of

speaker P , the sigmoid function σ(x) = 1/(1 +

exp(−x)), {−→WA,
−→
WB} ∈ Rd×d, {−→b A,

−→
b B} ∈

Rd represent the trainable parameters. The identi-
cal but reversed operation is applied in the back-
ward direction. The output of both forward and
backward direction at step i are concatenated
along the feature dimension, denoted as ←→mi =[−→mi;

←−mi

]
∈ R2d.

Stacked Contextual Interaction The contex-
tual encoder consists of L identical stacks. In the
l-th layer, we feed the history dialogue representa-
tions Ml into a bi-GRU followed by a self-attention
(SA) layer to capture the inter-dependency se-
mantics. In the first layer, Ml is the sequence
of encoded context ←→mi, and is bi-GRU’s output
from previous layer for intermediate stacks, i.e.,
Ml−1

g (l > 1).

Denoting the output of bi-GRU as Ml
g, the
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Figure 1: Schematic illustration of the proposed model.

scaled dot product self attention is calculated as:

Q,K,V = Ml
gWQ,M

l
gWK ,M

l
gWV , (2)

Ml
att = softmax(d−1/2QK>)V, (3)

where Matt ∈ RK×2d is passed into the bi-GRU in
the next interaction stack as the dialogue context.

Given the encoded utterance ul
t ∈ R2d at l-th

layer (linearly projected multimodal features when
l = 0), we calculate the context vector for history
dialogues:

cl = Ml
attsoftmax(Ml

attu
l
t), (4)

u′t = tanh(ul
t + c), (5)

where the output u′t is used as the input of {l+1}-th
layer (i.e., ul+1

t ).

Emotion Classifier We use L-th stack’s out-
put vector u′t to get the final emotion pre-
diction through a linear transformation: ŷ =
argmax(Wou

′
t + bo), where Wo ∈ Rd×|C| and

bo ∈ R|C| are parameters.

2.4 Training
Let u represent the multimodal features. The
cross entropy loss Lxe between ŷ and golden la-
bel y is used for training. To improve the gen-
eralization, we generate adversarial examples us-
ing the model parameterized by θθθ as in (Goodfel-
low et al., 2014)–adding perturbations on extracted
multimodal features: uadv = u + ε g

‖g‖2 , where
g = ∇Lxe(θθθ;u), ε ∈ R is selected on the held out
set. The final training objective is defined as:

L = L(θθθ;u) + L(θθθ;uadv). (6)

3 Experiments

3.1 Experimental Setup
Dataset We evaluate our model on the IEMO-
CAP dataset (Busso et al., 2008) by reporting the

accuracy (acc.) and F1 score on single and over-
all emotion class. IEMOCAP dataset contains
dyadic dialogue videos for ten unique speakers,
two of which are used for testing. We maintain the
same 80/20 split for training/test set, consisting of
5,810/1,623 utterances respectively. The utterances
are annotated as six emotion labels, i.e., happy, sad,
neutral, angry, excited, and frustrated.

Implementation Details We experiment using
the batch size 512, contextual interaction layer
number L ∈ {1, 2, 3, 4, 5, 6}, embedding size
d ∈ {50, 100, 150, 200}, history context size K ∈
{20, 30, 40, 50}, the extracted textual/audio/visual
feature dimensions of 100/100/512 respectively.
We use Adam optimizer (Kingma and Ba, 2015)
with initial learning rate of 1e-3. We employ the
exponential annealing with base 2 to adjust the
learning rate. For adversarial training, we select
ε = 5 using validation set. To avoid overfitting,
we applies dropout keep rate p ∈ {0.2, 0.3, 0.4}
and early stopping patience of 10 epoch during
training. The optimal hyperparameter settings are:
L = 3, d = 100,K = 40, p = 0.3. We use an
NVIDIA 2080 Ti GPU for experiments.

3.2 Results

Table 1 summarizes the performance of the pro-
posed model compared with baseline models, in
which our model overshadows previous baselines
on both averaged accuracy and F1 metric. We
found that the performance of our model ranks first
for “angry” and “frustrated” sentiment prediction
and achieves similar results on the other emotion
classes.

Ablation Study We conduct ablation study on
multi-modality (Fig. 2a), adversarial training and
Speaker Mutual Interaction (SMI) module (Fig. 2b).
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Model
Happy Sad Neutral Angry Excited Frustrated Average

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

CNN (Kim, 2014) 27.77 29.86 57.14 53.83 34.33 40.14 61.17 52.44 46.15 50.09 62.99 55.75 48.92 48.18
MemNet (Sukhbaatar et al., 2015) 25.72 33.53 55.53 61.77 58.12 52.84 59.32 55.39 51.50 58.30 67.20 59.00 55.72 55.10
bc-LSTM (Poria et al., 2017) 29.17 34.43 57.14 60.87 54.17 51.81 57.06 56.73 51.17 57.95 67.19 58.92 55.21 54.95
bc-LSTM+Att (Poria et al., 2017) 30.56 35.63 56.73 62.90 57.55 53.00 59.41 59.24 52.84 58.85 65.88 59.41 56.32 56.91
CMN (Hazarika et al., 2018b) 25.7 32.6 66.5 72.9 53.9 56.2 67.6 64.6 69.9 67.9 71.7 63.1 61.9 61.4
ICON (Hazarika et al., 2018a) 23.6 32.8 70.6 74.4 59.9 60.6 68.2 68.2 72.2 68.4 71.9 66.2 64.0 63.5
DialogueRNN (Majumder et al., 2019) 25.69 33.18 75.10 78.80 58.59 59.21 64.71 65.28 80.27 71.86 61.15 58.91 63.40 62.75
DialogueGCN (Ghosal et al., 2019) 40.62 42.75 89.14 84.54 61.92 63.54 67.53 64.19 65.46 63.08 64.18 66.99 65.25 64.18
IterativeERC (Lu et al., 2020) - 53.17 - 77.19 - 61.31 - 61.45 - 69.23 - 60.92 - 64.37

COIN 53.12 42.50 85.71 73.07 60.05 62.23 66.48 68.75 69.13 69.01 61.73 66.99 66.05 65.37

Table 1: Overall performance of emotion recognition models on IEMOCAP dataset.
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Figure 2: Visualization of experimental analysis.

Fig. 2c and Fig. 2d show the influence of embed-
ding size and stack number of context interactions.
It can be seen model performance reaches its peak
by taking the embedding size of 100 (Fig. 2c) and
layer numberL = 3 (Fig. 2d). Fig. 2b witnesses the
influence of adversarial training and SMI on emo-
tion detection. We further conduct experiments by
applying adversarial training on various baselines,
finding that our model achieves the best results
among them. See Appendix B for discussion.

Fig. 2a show that among uni-modality, textual
features contribute most followed by the acoustic
setting whereas video features perform worst in
our system. We guess high-level visual features
extracted from CNN-3D lack of fine-grain facial
representations, which requires further improve-
ment. In dual modality settings, textual and acous-
tic features make the most contribution to predict
emotion categories in comparison with tri-modal
fusion settings.

Case Study Fig. 3 shows an instance of dialogue
snippet, where our model captures the emotion dy-
namics of the male speaker during the conversation
process. Using different RNNs to modeling various
speaker utterances may circumvent the fluctuation
of emotion transitions and effectively capture the
emotion transition of disparate speakers. It is also
observed in more examples in Appendix C.

…

Happy

Excited

Excited

Happy

I mean, I have some duty to the man I was 

going to marry if nobody else came up.

Exactly, "laugh".

Sorry.

ahh I was always worried you'd be a little bit jealous 

of me, but I was never quite that lucky.

There's still time for that.

Perfect, okay, good. "sigh"

[BREATHING]

…

I don't feel so bad then.  Well, I'm excited for you.

I know. I can't believe it.

I can't believe it.

Oh, thanks. move here before you 

get married. [LAUGHTER]

…Yeah, don‘t go and disappear like everyone else after they 

get married and I never see them again.  That’ll make me mad.

Figure 3: Case study.

4 Conclusion

We propose a new dialogue contextual interaction
architecture to focus on the compact interaction
for both speaker-level dialogue history and cur-
rent utterance. By adopting adversarial training,
our model achieves the SOTA performance on the
IEMOCAP dataset for emotion recognition in con-
versation. In the future, multimodal fusion methods
could be investigated to capture richer modelily-
interactive representations at modality level.
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A Qualitative Analysis

Fig. 4 illustrates the confusion matrix of predicted
emotions. We found that negative sentiments such
as “sad”, “angry” can be easily mispredicted as
“frustrated”, and vice versa. “Happy” emotions
exhibit the worst performance among all of six
categories, which is difficult for the model to distin-
guish from “excited”. This is in line with our manu-
ally observed prediction results because sometimes
it is even not obvious for a human to distinguish the
emotions with similar polarities, such as “sad” and
“frustrated”, “happy” and “excited”. Further study
on learning sentiments of similar polarity may be a
solution to such misunderstanding.
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Figure 4: Confusion matrix of emotion predictions.

B Experiments on Adversarial Training

To verify the advantage of our model using ad-
versarial training (AT), we further conduct experi-
ments on different baseline models and report the
result in Table 2. It is clear that our model out-
ranks other models in terms of the overall perfor-
mance, demonstrating the advantage of our model.
Also, it is observed that emotion recognition mod-
els do not necessarily improve after incorporating
the AT method. Specifically, models using single
RNNs to simulate the speaker utterances, such as
DialogueRNN and DialogueGCN, show the perfor-
mance drop after adding AT, whereas models using
separate RNNs to model different speakers, like
ICON and ours, illustrate the advancement. We
extrapolate that the emotion dynamics of different
speakers may vary, thus the sensitivity of emotion
models is affected by the adversarial noise derived
from the conversational context. If different RNNs
are adopted for various speaker utterance model-

ing, the noise would greatly rely on the current
speaker’s utterances despite the noise from noisy
dialogue context, which eases the learning process
of emotion transition.

C Case Study

Fig. 5 illustrates examples of our case study, which
demonstrates that our model can capture the emo-
tion dynamics during the conversation process.
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Model
Happy Sad Neutral Angry Excited Frustrated Average

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

ICON +AT 47.93 43.77 84.69 75.28 58.71 60.05 63.49 66.85 72.31 67.26 60.00 65.31 64.98 64.18
DialogueRNN +AT 36.04 31.17 91.10 79.82 53.53 55.35 65.32 65.89 65.65 65.09 55.08 59.22 61.48 60.72
DialogueGCN +AT 60.38 32.49 69.23 76.10 61.31 59.92 53.65 56.91 62.36 74.87 57.79 47.20 60.99 59.38

Ours (w/ AT) 53.12 42.50 85.71 73.07 60.05 62.23 66.48 68.75 69.13 69.01 61.73 66.99 66.05 65.37

Table 2: Performance of emotion recognition models with Adversarial Training (AT) on the IEMOCAP dataset.

…

…

FrustratedNo.

You want to get married again?

FrustratedNo, no.

Angry

No, I want something to turn out the 

way it is suppose to turn out.

What? You want a divorce?

A vacation? A new carpet, a poodle?  A bag of ice cream, a 

suicide pack, what Carla?  What the hell do you want?

What.  Welcome to the human race.

Frustrated

You think this is what I had in mind?  You think that when I 

propose I had this great fantasy going that four years down 

the road, we will end up on a beach arguing over fish. You 

think that I knew that there would be times when you will look 

at me like I am used Kleenex?  Or that I will look at you and 

think, holy hell what's the next flight to Alaska. Happy

Sad

Sad

But this isn't anything like I thought it would be.

No, I know me either.

I mean it is just this , I mean it includes a lot and everything 

and you know it's the sand and it's the full moon and I just-I 

am sorry but I couldn't help wishing I was somewhere else.

Maybe if you are with somebody else too?

I didn't say that..

No, I know, but.  I know I don‘t make you happy.

For heaven's sake Augie, wherever I am 

I always wanted to be with you.

Yeah?

For heaven's sake, don't you know that?

Whatever I am doing, I wanted to be with you.  I mean you 

are probably the one who wishes you were with somebody 

else, somebody who didn't take everything so hard and who 

knows how to enjoy herself.

…

Augie, do you remember the first time we came to see it?  It was about 

four years ago right after we got married and we thought I was pregnant. 

We had a bottle of champagne but no glasses and you ask me to dance 

so we took off our shoes. …

No.

You want me to go get some champagne?

This is standing.  This is waiting.  This is fighting.

Right.

(a)

…

Frustrated

…

Well, what of it.

He let him kiss you.  You said you did.

Well it gave him a lot of pleasure and it didn't hurt me.

Angry

Well, if you hadn't been so nosey and suspicious 

you never would have known about it.

What of it?

What about me?

Well, that's a nice point of view I must say.

Neural

Frustrated

You know why I asked Annie here, don't you?

why?

You know.

Well I got an idea.  But what's the story?

I'm going to ask her to marry me.

Well that's nobody's business but yours, Chris.

You know that's not just my business.

What- What am - what are you going to do, I mean you're 

old enough to make up your own mind?

So it's all right.  I can go ahead with it then?

…

AngryI'm getting very bored with this conversation.

Neural

Me, too, bored stiff.

Do you want some brandy?

No thanks.

Well you're want to make sure your father 

isn't you know going to--lose them.

So it's all right.  I can go ahead with it then?

Oh You knew there was nothing in that.

Come to think of it the real cause of that roue was Peter Burden.

I knew nothing of the sort.  You accepted presents from him.

Sit down, mom.  I want to talk to you.

The trouble with the god damned newspapers, … 

All right, All right mom.  Listen!

(b)

…

…

FrustratedNo.

You want to get married again?

FrustratedNo, no.

Angry

No, I want something to turn out the 

way it is suppose to turn out.

What? You want a divorce?

A vacation? A new carpet, a poodle?  A bag of ice cream, a 

suicide pack, what Carla?  What the hell do you want?

What.  Welcome to the human race.

Frustrated

You think this is what I had in mind?  You think that when I 

propose I had this great fantasy going that four years down 

the road, we will end up on a beach arguing over fish. You 

think that I knew that there would be times when you will look 

at me like I am used Kleenex?  Or that I will look at you and 

think, holy hell what's the next flight to Alaska. Happy

Sad

Sad

But this isn't anything like I thought it would be.

No, I know me either.

I mean it is just this , I mean it includes a lot and everything 

and you know it's the sand and it's the full moon and I just-I 

am sorry but I couldn't help wishing I was somewhere else.

Maybe if you are with somebody else too?

I didn't say that..

No, I know, but.  I know I don‘t make you happy.

For heaven's sake Augie, wherever I am 

I always wanted to be with you.

Yeah?

For heaven's sake, don't you know that?

Whatever I am doing, I wanted to be with you.  I mean you 

are probably the one who wishes you were with somebody 

else, somebody who didn't take everything so hard and who 

knows how to enjoy herself.

…

Augie, do you remember the first time we came to see it?  It was about 

four years ago right after we got married and we thought I was pregnant. 

We had a bottle of champagne but no glasses and you ask me to dance 

so we took off our shoes. …

No.

You want me to go get some champagne?

This is standing.  This is waiting.  This is fighting.

Right.

(c)

…

Frustrated

…

Well, what of it.

He let him kiss you.  You said you did.

Well it gave him a lot of pleasure and it didn't hurt me.

Angry

Well, if you hadn't been so nosey and suspicious 

you never would have known about it.

What of it?

What about me?

Well, that's a nice point of view I must say.

Neural

Frustrated

You know why I asked Annie here, don't you?

why?

You know.

Well I got an idea.  But what's the story?

I'm going to ask her to marry me.

Well that's nobody's business but yours, Chris.

You know that's not just my business.

What- What am - what are you going to do, I mean you're 

old enough to make up your own mind?

So it's all right.  I can go ahead with it then?

…

AngryI'm getting very bored with this conversation.

Neural

Me, too, bored stiff.

Do you want some brandy?

No thanks.

Well you're want to make sure your father 

isn't you know going to--lose them.

So it's all right.  I can go ahead with it then?

Oh You knew there was nothing in that.

Come to think of it the real cause of that roue was Peter Burden.

I knew nothing of the sort.  You accepted presents from him.

Sit down, mom.  I want to talk to you.

The trouble with the god damned newspapers, … 

All right, All right mom.  Listen!

(d)

Figure 5: Case study examples.
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Abstract

Explainable deep learning models are advanta-
geous in many situations. Prior work mostly
provide unimodal explanations through post-
hoc approaches not part of the original system
design. Explanation mechanisms also ignore
useful textual information present in images.
In this paper, we propose MTXNet, an end-to-
end trainable multimodal architecture to gen-
erate multimodal explanations, which focuses
on the text in the image. We curate a novel
dataset TextVQA-X, containing ground truth
visual and multi-reference textual explanations
that can be leveraged during both training and
evaluation. We then quantitatively show that
training with multimodal explanations com-
plements model performance and surpasses
unimodal baselines by up to 7% in CIDEr
scores and 2% in IoU. More importantly, we
demonstrate that the multimodal explanations
are consistent with human interpretations, help
justify the models’ decision, and provide use-
ful insights to help diagnose an incorrect pre-
diction. Finally, we describe a real-world e-
commerce application for using the generated
multimodal explanations.

1 Introduction

The ability to explain decisions through voice, text
and visual pointing, is inherently human. Deep
learning models on the other hand, are rather
opaque black boxes that don’t reveal very much
about how they arrived at a specific prediction. Re-
cent research effort, aided by regulatory provisions
such as GDPRs “right to explanation” (Goodman
and Flaxman, 2017), have focused on peeking be-
neath the hood of these black boxes and designing
systems that inherently enable explanation. Ex-
plainable multimodal architectures can also be used
to reduce the effort required for manual compliance

¶ Product Assurance, Risk, and Security
https://www.amazon.jobs/en/teams/
product-assurance-risk-security

Figure 1: Sample Ground Truth Labels

checks of products sold by online retailers. Further,
explanations can be provided as evidence to jus-
tify decisions and help improve customer and seller
partner experiences.

We choose the TextVQA task proposed by Singh
et al. (2019) for realizing the system, motivated by
two reasons. First, the task is multimodal and is
naturally suited for generating multimodal expla-
nations. Second, the task specifically focuses on
the text in the image, known to encode essential
information for scene understanding and reasoning
(Hu et al., 2020), and allows for better quality of
explanations including the text recognized. Several
approaches have been proposed for the TextVQA
task (Singh et al., 2019; Hu et al., 2020; Mishra
et al., 2019; Biten et al., 2019; Kant et al., 2020),
but they do not include a means for explaining the
model decision. In addition to allowing humans
to interpret the model’s decision, we believe the
explanations can also provide valuable insight into
what component could be improved.

Most prior explanation approaches (Hendricks
et al., 2016, 2018; Li et al., 2018) have been uni-
modal and do not focus on the text in the image.
Only recently, Huk Park et al. (2018) and Wu and
Mooney (2019) generated multimodal explanations
for the VQA and Activity Recognition tasks. They
curated datasets (VQA-X, ACT-X) consisting of
single reference ground truth textual explanations
and relied on implicit attention-based visual expla-
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nations without any access to labeled visual ground
truth. However, their models cannot read and in-
corporate text in the image into the explanations.
In addition, it is debatable whether attention mech-
anisms are indeed explanations (Wiegreffe and Pin-
ter, 2019; Jain and Wallace, 2019). Moreover, other
works (Das et al., 2017) have shown that current
VQA attention models do not seem to look at the
same regions as humans, resulting in inconsistent
explanations.

The goal of our work is two-fold. First, to collect
a multimodal explanations dataset (TextVQA-X)
thereby highlighting the need to curate datasets
where explanations are not post-hoc but part of
the initial interpretable model design. Non post-
hoc explanations which may not be faithful to the
model decision but are in line with human expla-
nations are still beneficial to end users. Figure
1 provides a representative example. Second, to
implement a multimodal explanation system that
has the ability to not only read and reason about
the text in the image, but more importantly jus-
tify its decision with natural language and visually
highlight the evidence, useful to even non-experts
(Miller et al., 2017). The explanations and model
decision must be tightly coupled and mutually in-
fluence each other through an end-to-end trainable
architecture. In summary, our contributions are as
follows:

• We present TextVQA-X, a novel dataset of
human-annotated multimodal explanations
that includes ground truth segmentation maps
and multi-reference textual explanations con-
taining text in the image. The raw dataset is
available publicly 1. (Section 3)

• We propose the first end-to-end trainable
MTXNet architecture that produces high qual-
ity textual and visual explanations, focusing
on the text in the image. (Section 4)

• Qualitative and quantitative results show that
textual and visual explanations help justify a
model’s decision and help diagnose the rea-
sons for an incorrect prediction. (Section 5)

• We describe a real-world e-commerce system
that can leverage the multimodal explanations
and also highlight its challenges. (Section 6)

2 Related Work

VQA / TextVQA. The VQA task (Antol et al.,
2015) has received a lot of research attention in

1https://github.com/amzn/
explainable-text-vqa

terms of both datasets (Antol et al., 2015; Johnson
et al., 2017; Hudson and Manning, 2019) and meth-
ods (Anderson et al., 2018; Ben-Younes et al., 2017;
Lu et al., 2019). Oftentimes however, these models
predict an answer without completely understand-
ing the question and do not change answers across
images (Agrawal et al., 2016). Further, they ignore
the text in the image and tend to focus on visual
components such as objects. To address this limi-
tation, the TextVQA task was proposed by Singh
et al. (2019) and has received recent research at-
tention (Kant et al., 2020; Hu et al., 2020; Biten
et al., 2019; Mishra et al., 2019). However, not
having reliable explanation mechanisms that fo-
cus on the text in the image, as part of the system
design makes it difficult to diagnose prediction fail-
ures. Our work, thus allows for better diagnosis
of model failures through explanations in line with
human interpretations and focus on the text in the
image.

Explanations. Prior explanation approaches
(Shortliffe and Buchanan, 1975; Van Lent et al.,
2004; Zeiler and Fergus, 2014; Goyal et al., 2016;
Ribeiro et al., 2016; Selvaraju et al., 2017; Das
et al., 2017) focus on parts of the input that is rele-
vant to the model’s decision, but not on explicitly
generating explanations as model predictions. Hen-
dricks et al. (2016, 2018) were the first to generate
natural language justifications for image classifiers.
Unlike our model however, explanations are uni-
modal and there are no reference human explana-
tions. Closer to our objective Huk Park et al. (2018)
generate multimodal explanations and curate a new
VQA-X dataset. Wu and Mooney (2019) extend
their work to ensure explanations can be traced
back to an object ensuring local faithfulness. How-
ever, their explanations do not contain the text in
the image. They use implicit attention for visual
explanations and have no access to visual ground
truth during training. Further, they use a single
textual explanation reference during training. In
contrast, our work incorporates multimodal expla-
nations which focuses on the text in the image.

3 TextVQA-X Dataset

To train and evaluate multimodal explanation mod-
els that focus on the text in the image, we collect the
TextVQA-X dataset by human annotation of a sub-
set of samples from the TextVQA dataset (Singh
et al., 2019).

20



Figure 2: TextVQA-X Dataset Statistics

3.1 Ground Truth Label Collection

We used the Sagemaker Ground Truth (Amazon-
AWS, 2018) platform to create a labeling task for
gathering visual and textual explanations. Human
annotators were asked to provide a single textual
explanation that answers the question "Why do you
think <answer> is the correct answer for the given
question and image pair?". Specific instructions
added that annotators should try to incorporate the
answer and/or the text in the image as part of their
explanation. The annotators were also asked to
make use of a brush to segment image regions rel-
evant to both the answer and written explanation.
Sample annotations are shown in Figure 1. Each
image and question pair can have up to 5 distinct hu-
man annotators allowing for multi-reference train-
ing and evaluation (Zheng et al., 2018). A single
segmentation map is obtained by using a threshold
of 0.5 obtained as an average over all annotations.
Bad actors were identified and most were removed
through a combination of heuristics and manual
checks. Overall, we collected more than 67K ex-
planations among over 800 unique workers.

3.2 TextVQA Explanation Dataset
(TextVQA-X).

Dataset Statistic Value
Num. Unique Images 11681
Num. Questions 18096
Num. Unique Questions 15374
Num. Visual Explanations 67055
Num. Textual Explanations 67055
Num. Unique Textual Explanations 61999
Avg. Num Textual Explanations per Question 3.71
Avg. Words per Textual Explanation 7.36
Avg. Characters per Textual Explanation 36.92
Textual Explanation Vocab Size 17910

Table 1: TextVQA-X Dataset Summary

In order to obtain a measure of the quality of
explanations and to help filter out bad actors, we
make use of the Self-BLEU-4 metric (Zhu et al.,

2018). The Self-BLEU score is used to measure
how one sentence resembles the rest in a gener-
ated collection by regarding one sentence as the
hypothesis and the rest as references. A higher
Self-BLEU score implies higher similarity of the
hypothesis with all the references. A lower Self-
BLEU implies higher diversity and lesser overlap.
Although we would like to have several diverse
textual explanations, we noticed that most good
textual explanation annotations have overlap with
others. The average Self-BLEU-4 across all anno-
tations was 0.21 indicating consistent overlap and
quality.

Comparison with VQA-X and VQA-HAT
datasets. With respect to textual explanations, the
TextVQA-X includes multi-references with an av-
erage of 3.71 explanations for each QA pair that
can be utilized for both training and testing. In
contrast, VQA-X (Huk Park et al., 2018) contains
an average of 1.27 explanations with a single tex-
tual explanation for QA pairs in the training set
and three textual explanations for test/val QA pairs.
VQA-HAT (Das et al., 2017) does not include tex-
tual explanations. As far as visual explanations
are concerned, there are a number of distinctions
among these datasets. First, both VQA-X and
VQA-HAT are defined on the VQA task, which
does not require reading text in the. In contrast,
the TextVQA-X is specifically designed to focus
on the text in the image. Second, TextVQA-X in-
cludes one ground truth visual explanation for both
training and testing (total 67K), whereas VQA-X
includes explanations only as part of testing for a
small random subset (total 6K). And third, similar
to VQA-X, TextVQA-X annotators were asked to
directly segment the relevant image region. On the
contrary, VQA-HAT annotations were collected by
having humans unblur the images and are more
likely to introduce noise when irrelevant regions
are uncovered.
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4 Multimodal Text-in-Image
Explanation Network (MTXNet)

We design our Multimodal Text-in-Image Explana-
tion Network (MTXNet) to allow for end-to-end
multitask training of answer prediction, text gen-
eration and semantic segmentation extending the
M4C model proposed in (Hu et al., 2020). In the
subsequent subsections we describe each of the
individual components in more detail.

4.1 Graph Attention Network (GAT)

Figure 4: An example of how to build the graph

Many questions in the TextVQA dataset require
the model to acknowledge the spatial relationship
between objects and OCR tokens. To better encode
the relationship between objects and OCR tokens
and subsequently generate better quality explana-
tions, we leverage graph neural networks. The
ideal way to build the graph is to link together rel-
evant components such as question words, OCR
tokens and object labels. However, there are two
limitations in the existing TextVQA dataset that
prevent us from adopting this approach. First, the
OCR tokens may be misspelled due to an inaccu-
rate OCR system. And second, the object labels
are not included and only the bounding box coor-
dinates are present. Thus, for our model we build
the graph using only the visual inputs (object and
OCR region bounding boxes). Each object location
and OCR token is treated as a node in the graph.
Whenever the bounding box associated with node i
is contained in node j, we add an edge from node
j to node i. An example is presented in Figure 4.
We then make use of the Graph Attention Network
(GAT) (Veličković et al., 2017) to operate on the
structured data. Unlike Graph Convolutional Net-
works (GCN) (Kipf and Welling, 2016) that treat
each adjacent node equally, GATs incorporate at-
tention into the layer-wise propagation rule and
allows the model to variably weigh adjacent nodes
based on relevancy.

4.2 Multimodal Transformer (MMT)

The multimodal transformer operates on three
modalities - question words, visual objects and
OCR tokens. The feature definitions are identical
to that proposed in M4C (Hu et al., 2020) with the
addition of textual explanation embeddings whose
embedding process resembles that of the question
words. The object embedding is obtained as a com-
bination of the 2048-dim Faster R-CNN detector
output and 4-dimensional relative location feature
[xmin/Wim, ymin/Him, xmax/Wim, ymax/Him].
The OCR token embedding is obtained as a com-
bination of 300-dim FastText vector (Bojanowski
et al., 2017), 2048-dim output from fc6 features/
fc7 weights from Faster R-CNN detector for
the bounding box region, 604-dim Pyramidal
Histogram of Characters (PHOC) vector (Almazán
et al., 2014), and 4-dim relative location feature
[xmin/Wim, ymin/Him, xmax/Wim, ymax/Him].
Features are projected to a common d-dimensional
semantic space used for decoding and prediction.
The prediction takes place through a dynamic
pointer network (Vinyals et al., 2015) that allows
to either predict from a fixed vocabulary or from
OCR tokens extracted from the image.

4.3 Multireferences for Textual Explanations

Neural text generation tasks such as machine trans-
lation, image captioning and summarization typi-
cally only consider a single reference for each ex-
ample during training (Zheng et al., 2018). In our
case however, considering just a single reference
for training is insufficient because of the inherently
subjective nature of textual explanations. Thus we
leverage the multi-references we have collected in
the TextVQA-X dataset during both training and
evaluation. We use the sample one technique for
incorporating multi-references during training. We
randomly pick one of the available references in
each training epoch.

4.4 Visual Explanations through Semantic
Segmentation

Visual explanations are obtained through a seman-
tic segmentation module (Feature Pyramid Net-
work - FPN (Kirillov et al., 2017)). They are made
an explicit and natural component of end-to-end
training by leveraging ground truth label supervi-
sion. Incorporating explicit visual explanations
is known to achieve state-of-the-art results on se-
mantic segmentation benchmarks (Li et al., 2018).
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Figure 3: Our Multimodal Text-in-Image Explanation Model (MTXNet) architecture generates multimodal expla-
nations. Explanations and Answers are utilized as a part of the iterative autoregressive decoding procedure.

Moreover, this allows the model to explain the im-
age region in focus, while also providing a means
for feedback. On another note, in the complimen-
tary domain of NLP, the use of attention as a means
of model explanation has been a topic of consider-
able debate (Wiegreffe and Pinter, 2019; Jain and
Wallace, 2019). We thus leverage ground truth
label supervision and explicitly ensure the visual
explanation to be part of the training objective. To
incorporate the multimodal embedding from the
MMT into the segmentation module, we reshape,
pad and concatenate the output with the raw input
image along the channel. Thus, the overall input
channels for the segmentation module increases
to five, with 3 color channels and 2 multimodal
channels. The output of the segmentation model
is a continuous mask with a higher value implying
greater relevancy to the inputs. The mask may be
binarized through thresholding.

4.5 Training

The MTXNet architecture is end-to-end trainable
with three distinct tasks (1) answer prediction (2)
textual explanation generation and (3) visual expla-
nation through semantic segmentation. We ensure
cross-modal feedback between the textual explana-
tions and predicted answers by leveraging a phased
training process where we randomly choose be-
tween one of three choices (1) predict answer then
textual explanation (2) predict textual explanation
then answer and (3) predict both answer and textual
explanation independently. Each task corresponds
to an individual part of the training objective. For
the losses of answer prediction (Lans) and textual
explanation generation (Ltext) we use the binary

cross entropy with logits 2. For semantic segmen-
tation (Lvis) we use the dice loss (Sudre et al.,
2017). The naive approach to combine multiple
losses is to use a predetermined weighted linear
sum of the individual losses. However, the model
performance is sensitive to the weights which are
hyperparameters and expensive to tune. We thus
use a multitask learning loss with homoscedastic
uncertainty as proposed by Kendall et al. (2018).
The overall objective is present in Equation 1. The
weights {wans, wtext, wvis} corresponding to the
loss terms of the three individual tasks are learned.

L =
∑

i

Liexp(−wi) + wi, i ∈ {ans, text, vis} (1)

5 Experiments

In this section, we detail the experimental setup,
present quantitative results with ablations and fi-
nally analyze qualitative results.

5.1 Experimental Setup
This subsection discusses the dataset splits, model
training, hyperparameter settings and evaluation
metrics.
Dataset Splits. We use the TextVQA-X dataset
described in Section 3. We choose a random 80/20
split for train and test. The dataset split statistics
are present in Table 2. Each question is associated
with a single image, one or more textual explana-
tions and a single visual explanation. The OCR
tokens and object regions are already present in the
original TextVQA dataset.

2https://pytorch.org/docs/stable/
generated/torch.nn.BCEWithLogitsLoss.
html
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Split #Img. #Ques. #Text Expl. #Vis. Expl.
train 10379 14475 53536 14475
test 3354 3619 13507 3619

Table 2: Train / Test Splits of TextVQA-X Dataset

Preprocessing. The dynamic pointer network is
allowed to choose between a fixed 5000 word vo-
cabulary and a maximum of 100 OCR tokens per
image. For each image, we use the top 36 possible
objects extracted by Faster R-CNN sorted in de-
scending order of confidence score attribute. The
average number of edges per image was 104. Each
image included an average of 13 OCR tokens. The
text explanations and answers are capped to a max-
imum length of 16 and 12 tokens respectively. For
the visual explanations, we use a FPN decoder with
ResNeXt50 encoder and 320 × 320 × 5 input fea-
ture size. The MMT consists of 4 layers and 12
attention heads. The dimension of the joint em-
bedding space is 184 × 768 which is padded and
resized to 320×320×2 and concatenated with the
3-channel image input.

Model training and hyperparameters. We train
the MTXNet model end-to-end in a supervised set-
ting using the Pythia 3 framework. We use a batch
size of 128 and train for a maximum of 8500 epochs
using Adam optimizer. The learning rate is set to
1e − 4 with no weight decay. The best model is
chosen corresponding to the lowest train loss at an
evaluation granularity of every 100 epochs. The
entire training task varies from 14-20 hours on 8
Nvidia K80 GPUs.

Evaluation Metrics. Each question in the
TextVQA dataset has 10 human-annotated answers,
and the predicted answer accuracy is measured via
a soft voting in accordance with the VQA task eval-
uation script 4. We evaluate the textual explanations
using the standard BLEU-4 (Papineni et al., 2002),
ROUGE (Lin, 2004), METEOR (Banerjee and
Lavie, 2005) and CIDEr (Vedantam et al., 2015)
metrics computed with the coco-caption 5

code . All the text generation metrics account for
multi-references by averaging the individual scores.
Finally, we evaluate the visual explanations using
IoU (Intersection over Union) score with a thresh-
old of 0.5.

3https://github.com/facebookresearch/
mmf

4https://visualqa.org/evaluation
5https://github.com/tylin/coco-caption

5.2 Ablation Study

We ablate MTXNet and compare quantitatively
with a related model on our TextVQA-X dataset
through automatic evaluations for answers and ex-
planations. The results are present in Table 3.
Comparison with existing baselines. We com-
pute the performance of the baseline model M4C
(Hu et al., 2020) on the TextVQA-X test set (with-
out explanations) and obtain an answer accuracy
of 35.23%. Using the MTXNet architecture and
evaluating on the TextVQA-X test set, we obtain
an answer accuracy of 36.27%. The addition of
explanations thus complements the MTXNet per-
formance.
Unimodal vs. Multimodal explanations We no-
tice that each modality mutually influences the
other as the model learns to jointly optimize for
both modalities of explanations and the answer pre-
diction. Excluding visual explanations results in
the largest drop of up to 7% in CIDEr scores of the
textual explanations. Similarly, the absence of text
explanations results in a 2% drop in IoU of visual
explanations. More importantly, we notice that the
multimodal explanations provide visual and tex-
tual rationale into a models decision. This further
accentuates the value of designing multimodal ex-
planation systems.
GAT better captures structural dependencies.
The removal of GAT from the MTXNet architec-
ture adversely impacts the quality of explanations
and answers. The greatest drop of 7% is observed
for the CIDEr metric. We believe the GAT helps
better encode the relationship between objects and
OCR tokens enhancing the relationship reasoning
ability. The image region corresponding to the text
is also highlighted better as seen in the 2% increase
in IoU when GAT is included in MTXNet.
Multi-reference training improves text genera-
tion. Training with multi-references significantly
outperforms training with a single randomly chosen
sample fixed for all epochs. The largest increase
of up to 25% was noticed in CIDEr score, with the
increase being consistent across all text generation
metrics. This underscores the benefits of having
multi-references for both training and evaluation
and designing systems that utilize this effectively.

5.3 Qualitative Samples

As can be seen in Figure 5, the MTXNet is able
to accurately answer the given question while also
justifying its decision through textual and visual
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Ablation Approach Visual Explanation Textual Explanation
IoU B R M C

No visual explanation (VE) MTXNet (GAT + MR + TE ) - 25.16 47.63 21.76 88.43
No textual explanation (TE) MTXNet (GAT + MR + VE ) 16.10 - - - -
No graph attention (GAT) MTXNet (MR + TE + VE ) 16.55 27.87 49.28 21.61 88.57
No multireferences (MR) MTXNet (GAT + TE + VE ) 17.52 5.92 28.05 11.65 70.60
Consolidated architecture MTXNet (GAT + MR + TE + VE ) 18.86 31.07 53.87 22.06 95.07

Table 3: Quantitative Evaluation of Answer and Explanations. All metrics are in %. VE: visual explanation, TE:
textual explanation, GAT: graph attention network, MR: multi-references. Evaluated automatic metrics: Intersec-
tion over Union (IoU), BLEU-4 (B), METEOR (M), ROUGE (R), CIDEr (C).

Figure 5: Examples where the MTXNet model pro-
duces high quality explanations.

Figure 6: Examples where the MTXNet model fails.

explanations. In certain cases, the OCR engine
could be inaccurate and lead to wrong tokens being
predicted, but the overall answer and explanations
are correct. Figure 6 depicts two failure cases. The
upper subimage indicates this could be due to incor-
rect visual localization while the lower subimage in-
dicates a potential OCR prediction error, although
the visual explanation is correct. Despite being
generic and dull the textual explanations are cor-
rect. In other cases, the model fails due to incorrect
visual localization as seen in Figure 7.
Explanations help explain incorrect decisions
of model. In Figure 7, we see that the right answer
to the question is “target”. However, the model

Figure 7: Example where the explanation is consistent
with an incorrect prediction.

predicts “dollar tree”. From the visual and textual
explanations we see that the image region local-
ized is incorrect and the model fails to grasp the
meaning of “fading”. This potentially results in it
focusing on the more prominent “dollar tree” text.
Such an analysis provides insights into the com-
ponent of the system that is failing and deserves
further attention.

6 Applications to E-Commerce
Businesses

E-commerce businesses need to comply with
industry-wide, and country-specific regulations, to
provide accurate and useful information of prod-
ucts to improve customer experience that leads to
more business. Our long-term goal with explain-
able multimodal architectures is to automate and
reduce manual effort required for compliance and
product detail checks. This will enable businesses
to scale compliance and customer experience im-
provement efficiently without linear increases in
cost. Further, these architectures help validate if
models are performing as intended and used for the
right purposes.

A potential customer experience issue arises
when the physical product in a warehouse is dif-
ferent from that uploaded by a seller on the prod-
uct details page. A possible reason could be that
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the seller or manufacturer labeled the product er-
roneously when they packaged it. Many sellers
taking advantage of lower cost of manufacturing
in a global supply chain, may not be able to audit
every batch of product leaving the factory. Such
discrepancies will almost certainly lead to prod-
uct returns, because the customer didn’t get what
they wanted and increases costs. Such discrepan-
cies may also be due to more nefarious reasons,
such as opportunistic bad actors taking advantage
of sellers that have successful products by intro-
ducing poorer quality or mismatched offers at a
lower price to unsuspecting customers. Examples
of compliance issues include detecting products
that contain batteries and chemicals to comply with
transportation and logistics regulations, as well as
identifying products that require additional safety
documentation and checks, such as products that
may have unintended use by children (e.g. toys and
products that may end up as toys should not have
heavy metals or other poisons that cause illness or
death when accidentally ingested). While not all
answers can be obtained with product images alone,
manual investigation processes utilize these images
to identify potential risks that warrant additional
steps in the process (e.g. lab testing).

Rather than manually auditing products in a
warehouse, product images can be automatically
captured at scale, and passed through models that
detect such discrepancies. With the help of subject
matter experts, attributes such as quantity, color
and brand names, and other common misleading
attributes are identified apriori. Relevant questions
that target these attributes are formulated. The im-
age and question are then inputs to a multimodal
explainable system (such as MTXNet) that can pro-
vide an answer and justify its prediction through
multimodal explanations. Answers can then be
compared against the information extracted from
the product detail pages on the website. Any dis-
crepancies found can be noted and a selling partner
can be provided evidence through the multimodal
explanations to take corrective steps.

An example use-case is as follows. Given a large
container of cereal, with smaller boxes within, a
potential question is: “How many cereal boxes are
within the container?” . This information is usu-
ally written on the larger container present in the
warehouse and can be answered based on reading
the text in the image. If there is any discrepancy
encountered in the number of boxes of cereal in the

warehouse and that listed on the website, appropri-
ate action can be taken. Other similar questions
include: “How heavy is the product?”, “Is the chair
red?”, “Does the item contain allergens?”, and “Did
the product pass the lead test?”.

The challenges with the use of such explainable
systems are two-fold. First, since there can be
multiple stakeholders with diverse expertise and
expectations, we need to clearly define the level of
abstraction at which they interact with the system.
For instance, while a scientist can use the explana-
tions to improve the model, a business operations
associate may use the explanations to identify and
audit product discrepancies. Second, we need fine
grained evaluation methodologies and metrics that
take into account the stakeholders as well.

7 Conclusion
A central tenet of explainable AI is to create a suite
of tools and frameworks that result in explainable
models without sacrificing learning performance
and allow humans to understand and trust AI mod-
els. As Miller et al. (2017) argues, for explain-
able AI to succeed, we should draw upon exist-
ing principles and create strategies that are more
people-centric. Unfortunately most prior expla-
nation approaches have been post-hoc, unimodal,
ignore text present in the image and not always
in accordance with human interpretation. Further,
there is a paucity of labeled multimodal explana-
tion datasets. The research presented in this pa-
per shows that existing TextVQA systems can be
rather easily adapted to produce multimodal expla-
nations that focus on the text in the image when
given access to ground truth annotations. We cu-
rate the TextVQA-X dataset consisting of visual
and textual explanations. We then present a novel
end-to-end trainable architecture, MTXNet, that
generates multimodal explanations focusing on the
text in the image, in line with human interpretation
and surpasses unimodal baselines (7% in CIDEr
scores and 2% in IoU) while complimenting model
performance. We also show how the system may
be applicable in the e-commerce space to reduce
effort for manual audit of compliance checks and
improve customer experience. Results of this re-
search open the door to design of explanainable
models part of the original system design that ef-
fectively takes advantage of available ground truth
multimodal explanation annotations. Future work
involves incorporating visual features as part of the
transformer architecture.
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Abstract
Large-scale multi-modal classification aim
to distinguish between different multi-modal
data, and it has drawn dramatically attentions
since last decade. In this paper, we propose
a multi-task learning-based framework for the
multimodal classification task, which consists
of two branches: multi-modal autoencoder
branch and attention-based multi-modal mod-
eling branch. Multi-modal autoencoder can re-
ceive multi-modal features and obtain the inter-
active information which called multi-modal
encoder feature, and use this feature to re-
constitute all the input data. Besides, multi-
modal encoder feature can be used to enrich
the raw dataset, and improve the performance
of downstream tasks (such as classification
task). As for attention-based multimodal mod-
eling branch, we first employ attention mech-
anism to make the model focused on impor-
tant features, then we use the multi-modal en-
coder feature to enrich the input information,
achieve a better performance. We conduct ex-
tensive experiments on different dataset, the
results demonstrate the effectiveness of pro-
posed framework.

1 Introduction

With the easy-access of mobile devices, the world
has witnessed the explosion of multimedia data,
which contains various modalities, such as im-
age, audio and text. Generally speaking, different
modality can provide complementary information.
However, many previous attempts focus on one
single modality, as the multimodal data is more
complex. The applications of multimodal data
analysis seem to evident in several fields, such
as, emotion recognition, medical diagnosis. Re-
cently, the development of multimodal machine
learning approaches has witnessed growing inter-
est (Ngiam et al., 2011). On the other hand, deep
learning has witnessed dramatically progress in
various fields: ranges from computer vision, nat-
ural language processing and speech recognition

(Oramas et al., 2018). Due to the great success
of deep learning in single modality, great interests
have been given for the multimodal deep learning
framework (Xu et al., 2016; Radu et al., 2016).
Despite of sustainable efforts have been made, mul-
timodal deep learning is still far from been fully
solved, using deep learning. Moreover, traditional
approach train the classifiers on different modal
and weighted average to generate the predictions,
which is time-consuming and cannot model the
interaction between different modal.

In this short paper, a general multimodal data
classification task is proposed, leveraging multi
task-based deep learning. The framework consists
of two branches: multi-modal autoencoder branch
and attention-based multi-modal modeling branch.
The framework takes the interaction between differ-
ent modals into consideration. To demonstrate the
efficacy and robustness of proposed method, we
conduct extensive experiments on different dataset
and the results support our claims.

2 Dataset and Evaluation

In this paper, we use the Adoption Prediction
Dataset from Kaggle1 to do our research, which is
a real world and challenging dataset. The dataset is
composed of three different modal features: tabular
features (the basic information about each pet), tex-
tual features (the pet description written by English)
and visual features (the photo of each pet), and it
aims to predict how quickly a pet is adopted. There
are 14993 instances in this dataset, and the label is
the categorical speed of adoption, there are five dif-
ferent classes from 0 to 4, in details, 0 means this
pet was adopted on the same day as it was listed, 1
means this pet was adopted between 1 and 7 days
after being listed. Figure 1 shows some example
instances. Besides, in this classification task, due to
the number of classes is balanced, we use accuracy

1https://www.kaggle.com/c/petfinder-adoption-prediction
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to evaluate different models’ performance.

Figure 1: Six example instances from Adoption Predic-
tion Dataset. The instance numbers are displayed as #1
to #6.

Tabular Features: These features are the basic
information of each pet, there are 15 categorical
variables and 4 continuous variables.

Textual Features: The textual features are the
pet descriptions written by English.

Visual Features: The visual feature of each pet
is a image whose size is from 240 pixels to 1024
pixels, in order to train our model, we reshape all
the images to 512 × 512.

3 Proposed Approach

In this paper, our proposed approach has two parts:
multi-modal autoencoder branch and attention-
based multi-modal modeling branch.

3.1 Multi-modal Autoencoder
In the previous work, autoencoders receive a single
modal feature and reconstitute it, with a goal to
minimize the reconstruction loss between the input
and output. However, if a task has multi-modal
features, we can build a MMAE which can receive
different modal features at the same time. MMAE
first learns the encoder representation from each
single modal feature, then concatenating them as a
multimodal encoder feature, and finally this feature
is used to reconstitute all the input. As can be seen
in Figure 2, MMAE has two parts:

Input Layer: For the tabular features (repre-
sented as xtabular), One-Hot Encoding for cat-
egorical variables and Max-Min Normalization
for continuous variables. As for the visual fea-
tures (represented as xvisual), we first reshape all
the images size into 512×512, that is xvisual =
xvisual/255.0. As for the textual features, every
instance has a paragraph to describe the pet, for the
ith input paragraph with n words wi

1;w
i
2; :::;w

i
n,

we first padding the paragraph into fixed length
l = 100.Then we us word embedding layer to
transform paragraph into dense matrix Xi. All

input paragraphs will be transformed into dense
matrices whose size is 100×300, represented as
xtextual. After the data preprocessing, the input
layer will put xtabular,xvisual and xtextual into the
next layer.

Multi-modal Interaction Layer: For each
modal feature, we suppose f(x) is the encoder
function, g(x) is the decoder function, in the pre-
vious work, we should build three independent au-
toencoders, each autoencoder can only encode a
single modal feature. During encoding, the input
data is compressed into a low dimensional vector,
which we called encoder feature. During encoding,
the autoencoder will reconstitute the input using
encoder feature. The mathematical expressions are
shown below:

htabular = f1(xtabular), x̂tabular = g1(htabular)
(1)

hvisual = f2(xvisual), x̂visual = g2(hvisual) (2)

htextual = f3(xtextual), x̂textual = g3(htextual)
(3)

where htabular,hvisual and htextualare the encoder
features of each modal input, they have the same
length k, and during training, we minimize the
reconstruction loss to optimize the parameters, the
loss function is Mean Square Error (MSE). Take
visual features as an example:

xvisual ≈ x̂visual (4)

In multi-modal interaction layer, in order to au-
tomatically obtain the interactive information be-
tween different modal features, we merge all the
encoder features into a multi-modal encoder fea-
ture to reconstitute each input, rather than directly
use corresponding encoder feature. In details, we
first concatenate different encoder features to hmm:

hmm = [htabular;hvisual;htextual] (5)

Then hmm ∈ R1×3k is used to decode all the
inputs:

xtabular, xvisual, xtextual = g(hmm) (6)

In fact, this could be treated as multi-task learning,
and the loss in MMAE is shown as bellow:
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Figure 2: Framework of our solution.

Loss = α∗losstabular+β∗lossvisual+γ∗losstextual
(7)

where α ∗ losstabular, β ∗ lossvisual and γ ∗
losstextual are the reconstruction losses of different
inputs, α, β and γ are the corresponding weights
of different losses, they can adjust according to the
practical scenario. In our experiments, we find that
α = β = γ yields the best result. Besides, all
the autoencoders in MMAE are four layers fully-
connected neural networks. The multi-modal en-
coder feature we obtained from MMAE will be
used in some downstream tasks to improve the per-
formance, such as classification task.

3.2 Attention-based Multi-modal Modeling
part:

In the previous work, a multi-modal model first
receives different kind of inputs, then handles them
separately to obtain high-level features, and do
some simply interactions such as concatenate, fi-
nally a fully-connected layer is followed to get the
prediction. However, in practical scenario, differ-
ent modal features for a same task may have differ-
ent importance, so simply concatenate those high-
level features is not enough to help the model get
key information. Inspired by the attention mecha-
nism used in natural language processing and com-
puter vision,we introduce attention mechanism into

multi-modal model,which can make the model fo-
cus on the key information. Besides, we also add
the multi-modal encoder feature from MMAE to
enrich our input. The modeling part model mainly
composed of four components:

Input Layer: This layer has the same function
as the input layer in MMAE, so in this layer, we do
the same thing as mentioned above.

Fully-Connected Layer and Convolutional
Layer: In this layer, we use different neural net-
works for different input features. For the tabular
features, we use a fully-connected layer to learn the
high-level representation v1, the activation function
in each layer is ReLu (Glorot et al., 2011), and a
dropout (Srivastava et al., 2014) is followed by each
layer to prevent our model from over fitting. For
the textual features, after word embedding layer,
we use the same model architecture as TextCNN.
Finally a fully connected layer is followed to ob-
tain the final representation v2. As for the visual
features, we use the same architecture as DenseNet
(Huang et al., 2017). DenseNet has some dense
blocks, each layer in a dense block obtains ad-
ditional inputs from all preceding layers. In our
model, we use two dense blocks to obtain the final
representation v3.

Attention Layer: This layer is the core layer
of Attention-based Multimodal Model. At the pre-
vious layer,we get the high-level one-dimensional
features from each modal input: v1, v2 and v3,
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these three representations have the same dimen-
sion d1×m. we employ soft attention mechanism
to associate the important information between the
given three high-level features. We compute the
normalized attention weights as the similarity with
Equation 8.

ei = tanh(vi � µT ), i ∈ [1, 2, 3] (8)

where v1 is one of the vtabular, vtextual and vvisual,
µ is the weighted vector that we used to compute
the similarity, it will randomly initialized and will
be adjusted during the training stage. ei is the
un-normalized attention weights, odot is the dot
product between the two given vectors. Beside, in
this equation, we use tanh as the activation func-
tion. Next, we use softmax to get the normalized
attention weights. For each element in vi, it will
multiply by its corresponding normalized attention
weight to get the final attention output.

v̂i =
3∑

i=1

exp(ei)∑3
i=1 exp(ei)

· vi, i ∈ [1, 2, 3] (9)

where v̂i is the attention output of each high-level
feature. Finally we concatenate every v̂i vi as this
layer’s output and pass on it to the next layer.

Merge and Classification Layer: In this layer,
we not only use v̂1, v̂2 and v̂3 to predict the re-
sults,but also add the multi-modal encoder feature
hmm which obtained from MMAE to improve
model’s performance.

h = [v̂1, v̂2, v̂3, hmm] (10)

where h ∈ R1×(3m+3k). Because this is a multi-
class classification problem,so we use softmax to
get the final results.

prediction = softmax(h) (11)

4 Experimental settings and Results

In this section, we first introduce some baseline
models and their experimental settings. In order
to have a fair comparison and reduce the random-
ness of results, we use five-fold cross-validation.
The batch size is set as 32. The neural networks
are trained using the RMSprop optimizer with the
learning rate 0.001.

4.1 Baseline models and Previous Work
#1 Tabular Only: In this model,the input only
has tabular features and will do data preprocessing

mentioned above. Tabular Only model is a two lay-
ers fully-connected neural network,the number of
hidden layer units in each layer is 256 and 128,the
activation function is relu,and a dropout layer is
followed to avoid overfitting,the dropout rate is 0.2.
#2 Textual Only: This model is an application

of TextCNN. In this model, we have the same pa-
rameter settings as TextCNN, the filter windows is
3,4,5 with 100 feature maps each, and dropout rate
is 0.5, but we have a full-connected layer at then
end before the classification layer.
#3 Visual Only: This is an application of

DenseNet. In this model, we have two Dense
Blocks, each Dense Block has the same param-
eter settings, and we also have a full-connected
layer at the end before the classification layer.
#4 Tabular (Continuous) + Textual + Visual

with Concatenatey: This is a common architec-
ture for multi-modal dataset, this model has three
independent parts which used to learn high-level
features from different modal inputs. Continuous
means the continuous features in tabular features
only do Max-Min Normalization before put into the
model. The parameters in these three parts are the
same as baseline model Tabular Only, Textual
Only and Visual Only. For the representations
learned from different parts, this model will simply
concatenate them before classification layer.
#5 Tabular (Discretized) + Textual + Visual

with Concatenate: This model is inspired by. The
architecture and the parameters are the same as
the model #4, but this model will convert the con-
tinuous features to a discrete sequence of tokens
to reduce the storage and prevent the model from
overfitting.

4.2 Experimental Results

#6 Tabular(Continuous)+Textual+ Visual with
Attention: The architecture and the parameters
in this model are the same as the model #4, but
we use soft attention mechanism to interactive the
representations learned from different modal inputs
instead of simply concatenating.
#7 Tabular(Continuous)+Textual+Visual+AE

Feature with Attention: In this architecture,
we add the autoencoder features into our model.
The autoencoder features has three parts from
tabular features, textual features and visual
features, they are trained from three in dependent
autoencoders,all the autoencoders are four layers
fully-connected neural network, and the hidden
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Model Operation Accuracy ± STD
#1 Tabular only - 36.729±0.0061
#2 Tabular only - 29.403±0.0032
#3 Visual only - 29.252 ±0.0031
#4 Tabular(Continuous)+Textual+Visual Concatenate 37.080±0.0055
#5 Tabular(Discretized) +Textual + Visual Concatenate 37.152±0.002
#6 Tabular(Continuous) + Textual + Visual Attention 37.381±0.0035
#7 Tabular (Continuous)+Textual+ Visual+ AE-Feature Attention 37.582±0.0032
#8 Tabular (Continuous)+Textual+ Visual+ MMAE-Feature Attention 37.883±0.0037

Table 1: Accuracy between our models and some baseline models on different Multi-modal datasets. AE-Feature
means the additional features obtained from three independent autoencoders, MMAE-Feature means the additional
features learned from Multi-modal Autoencoder. As for the representations learned from different modals, con-
catenate means they are combined by simply concatenating, attention means they are combined using attention
mechanism. Accuracy higher than the best baseline are in bold. Results are displayed as mean± std.

Feature MSE (Normalized)
Visual Feature only 0.03786
+ Tabular Feature 0.03557
+ Textual Feature 0.03468

Table 2: The image reconstruction loss using different
feature combination. Multi-model Autoencoder has a
lower loss.

units size is 512-64-64-512. We concatenate them
together with the attention output to predict the
final results.
#8 Tabular(Continuous)+Textual+Visual+MMAE

Feature with Attention: In this architecture, we
add the multi-modal autoencoder features into
our model. As introduced above, the multi-modal
encoder feature is obtained from output of MMAE,
which learns the interactive information between
different modal features. In order to have a fair
comparison with #7, the MMAE Feature has
the same dimension with AE-Feature. Besides,
MMAE also has three autoencoders, and the
parameters in each autoencoders are the same as
#7.

5 Conclusion

In this paper, we proposed the a novel framework
for multimodal data classification. The framework
consists of multi-modal autoencoder module and
attention-based multi-modal modeling module. We
evaluate the model on the large-scale multimodal
datasets. Our framework shows an advantage on ac-
curacy with compared to other approaches. In the
future, we will try to extract more features, such as
the semantic information of images, thus the sim-
ilarity or dissimilarity between different modality

can be calculated. Moreover, our framework could
be adapted to other types of multimodal machine
learning task, for instance, the detection task. On
the other hand, we will conduct more experiments
on larger dataset.
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Abstract

In image captioning, multiple captions are of-
ten provided as ground truths, since a valid
caption is not always uniquely determined.
Conventional methods randomly select a sin-
gle caption and treat it as correct, but there
have been few effective training methods that
utilize multiple given captions. In this paper,
we propose two training techniques for making
effective use of multiple reference captions:
1) validity-based caption sampling (VBCS),
which prioritizes the use of captions that are
estimated to be highly valid during training,
and 2) weighted caption smoothing (WCS),
which applies smoothing only to the relevant
words the reference caption to reflect multi-
ple reference captions simultaneously. Exper-
iments show that our proposed methods im-
prove CIDEr by 2.6 points and BLEU4 by 0.9
points from baseline on the MSCOCO dataset.

1 Introduction

Image captioning is a very challenging task that
requires recognizing and understanding the objects
in the image and then verbalizing the recognition
results using natural language. This task is ex-
pected to have a wide range of practical applica-
tions, including use in text-based image retrieval
systems and providing assistance for the visually
impaired (Lin et al., 2014; Gurari et al., 2020).
With the development of the field of deep learn-
ing, research in the area has primarily focused on
the end-to-end method, which consists of an en-
coder that extracts information from images and a
decoder that generates a description from the ex-
tracted information (Karpathy and Fei-Fei, 2015;
Vinyals et al., 2015; Xu et al., 2015; Lu et al., 2017).
For example, some of the recent models use pre-
trained object detection models (Ren et al., 2015;
Liu et al., 2016; Anderson et al., 2018) and self-
attention mechanisms (Huang et al., 2019; Cornia
et al., 2020) for encoders or decoders.

Image captioning is often a multi-reference task
where multiple reference captions are used for train-
ing. MSCOCO (Lin et al., 2014), one of the most
famous datasets of image captions, has about five
reference captions for each image. Some of these
reference captions are subject to uncertainty due
to speculation, and may differ in subject matter
and wording. Such label variance may affect the
training of the model and the evaluation of the gen-
erated captions. In typical training for conventional
models, one caption is randomly selected by uni-
form sampling at each training epoch, which means
the validity and variance of reference captions are
not considered. In addition, reference captions that
were not selected in the training epoch are treated
as incorrect. To address this problem, Yi et al.
(2020) proposed a new metric that correlates well
with human evaluation by taking into account the
variance of captions. However, to the best of our
knowledge, appropriate training methods that con-
sider such variation in captions have not yet been
sufficiently studied.

In this paper, we propose a simple and effec-
tive training method that uses multiple reference
captions to generate appropriate captions. The pro-
posed training method consists of two techniques:
validity-based caption sampling (VBCS), which se-
lects highly valid reference captions, and weighted
caption smoothing (WCS), which reflects multi-
ple reference captions simultaneously in training.
We define that a highly valid caption has common
phrases among reference captions. In VBCS, the
validity score for each reference caption is esti-
mated based on similarities among the reference
captions. When training the model, the training cap-
tions to be used in each epoch are sampled, one per
image, according to this score. In addition, WCS
improves the generality of the model by applying
soft labels only for highly relevant words based
on their validity scores. By effectively utilizing
multiple captions, the proposed method improves
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CIDEr by 2.6 points and BLEU4 by 0.9 points in
the evaluation experiments using the MSCOCO
dataset. Main contributions of this paper include:

• Validity-based caption sampling (VBCS) al-
lows us to prioritize captions that are consid-
ered to be highly valid.

• Weighted caption smoothing (WCS) allows
multiple reference captions to be reflected in
training simultaneously.

• The proposed VBCS and WCS are
architecture-independent and highly versatile
for image captioning and can be applied to
other NLP multi-reference tasks.

2 Related Work

2.1 Selection of Training Data

Preparing highly reliable training data is important,
however open datasets often contain incorrectly
labeled or mislabeled samples. In a typical super-
vised task, one training label is assigned to each
piece of training data. In this common setting,
several methods have been proposed to improve
the performance of the model by selecting suitable
data for training from a large amount of labeled
data (Reed et al., 2014; Northcutt et al., 2021).

In the multi-reference task, on the other hand,
we expect to improve the performance by selecting
appropriate labels from among them in the train-
ing. The choice can be deterministic, choosing the
best one, or probability-based, depending on the
characteristics of the data, such as likelihood (Hast-
ings, 1970; Casella and George, 1992). The latter
can be taken as a sampling problem. The proposed
method prioritizes the sampling of highly valid cap-
tions to reduce the influence of less valid captions
(i.e., noisy samples) and improves the performance.

2.2 Soft Label

Label smoothing (LS) (Pereyra et al., 2017) is a
widely used soft labeling technique that prevents
overfitting by creating soft supervised labels (i.e.,
adding a uniform distribution to each class of train-
ing labels). The introduction of LS has also been re-
ported to improve the performance in language gen-
eration tasks, such as machine translation (Vaswani
et al., 2017) and image captioning (Huang et al.,
2019). Although the LS may contribute to the di-
versity of generated words, it treats all words in
the vocabulary equally without taking into account

their relevance to the image. Our WCS further
improves the performance by constructing a novel
soft label from multiple reference captions given to
the image. Our soft label focuses on only relevant
words among the reference captions based on the
validity score.

3 Methodology

3.1 Validity-Based Caption Sampling
(VBCS)

The proposed VBCS can take into account the
validity and variance of reference captions. We
define that a high validity caption has common
phrases among reference captions, and assign a va-
lidity score to each reference caption. Let R(i) =

{ref(i)1 , ref(i)2 , · · · , ref(i)
K(i)} be the reference caption

set for image I(i)(i = 1, 2, · · · , N). K(i) is the
number of reference captions for image I(i). The
similarity s(i)j of the reference caption ref(i)j to other
captions for image I(i) is calculated as follows:

s
(i)
j =

1

K(i) − 1

∑

k=1···K(i),
k 6=j

fmetric(ref(i)j , ref(i)k ), (1)

where fmetric is a metric of the similarity of
the reference caption. Possible metrics that use
word n-grams or longest match sequence include
BLEU (Papineni et al., 2002), ROUGE-L (Lin et al.,
2014), and CIDEr (Vedantam et al., 2015). Finally,
the sampling probability p(i)j for the j-th reference
caption of image I(i) is calculated as follows:

p
(i)
j =

exp(s
(i)
j )

∑K(i)

k=1 exp(s
(i)
k )

. (2)

This probability represents the validity of the refer-
ence caption and is referred to as the validity score
in this paper. This allows us to prioritize training
captions that have a high degree of similarity to
other reference captions and are considered to be
highly valid.

3.2 Weighted Caption Smoothing (WCS)
The proposed WCS solves the problem that unse-
lected captions are treated as incorrect by introduc-
ing a soft label. Our soft label generated by WCS
consists of only the words in each position of mul-
tiple reference captions, weighted by the validity
score obtained by VBCS. This technique can reflect
multiple captions in the training simultaneously.
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Evaluation Metric

B@1 B@4 M R C S

Anderson et al. (2018)† 76.0 ±0.2 34.9 ±0.1 27.3 ±0.1 56.2 ±0.1 111.7 ±0.0 20.5 ±0.1
+ LS 76.1 ±0.1 35.2 ±0.2 27.4 ±0.0 56.3 ±0.1 112.8 ±0.3 20.6 ±0.2

+ VBCS (ours) 76.2 ±0.1 35.2 ±0.1 27.4 ±0.1 56.4 ±0.1 113.1 ±0.5 20.7 ±0.1
+ WCS (ours) 76.9 ±0.3 35.7 ±0.2 27.4 ±0.1 56.6 ±0.1 113.7 ±0.7 20.7 ±0.1
+ VBCS + WCS (ours) 77.2 ±0.1 35.8 ±0.1 27.5 ±0.1 56.7 ±0.1 114.3 ±0.3 20.8 ±0.1

Table 1: Summary of image captioning performance for MSCOCO test data, where B@N, M, R, C, and S are short for BLEU@N,
METEOR, ROUGE-L, CIDEr, and SPICE scores, respectively. For a robust evaluation, we run each method five times with
different seeds. († are not the values given in the original paper, but the result of our best efforts to reimplement them.)

Specifically, our soft label ỹ(i)t used for predict-
ing the t-th word of the image I(i) obtained by
WCS is defined with two terms y(i)j,t and ŷ(i)t :

ỹ
(i)
t = (1− α)y(i)j,t + αŷ

(i)
t , (3)

where y(i)j,t is the one-hot representation for the t-
th word of the j-th reference caption selected by
VBCS and α is hyperparameter that adjusts the
smoothing. ŷ(i)t is the weighted sum of the t-th
word one-hot representation of multiple reference
captions by the validity score and is obtained by:

ŷ
(i)
t =

K(i)∑

k=1

p
(i)
k y

(i)
k,t. (4)

Here, the length of each reference caption is padded
or cropped according to the length of y(i)j .

The main difference between WCS and LS is
the number of words to be smoothed. In our WCS,
smoothing is not done uniformly for all words, but
only for words that are in the same position in the
assigned reference caption, weighted individually
according to their validity score (i.e., words that
are highly relevant).

4 Experiment

4.1 Dataset

We used the MSCOCO 2014 caption dataset (Lin
et al., 2014), which contains 123,287 images la-
beled with five captions each. The “Karpathy” data
split (Karpathy and Fei-Fei, 2015) was used for
performance comparisons, and 5,000 images were
used for validation, 5,000 images for testing, and
the rest for training. As for pre-processing, we
converted all sentences to lower case and dropped
any words that occurred less than five times. To

evaluate caption quality, we used several standard
metrics, such as BLEU (Papineni et al., 2002),
METEOR (Denkowski and Lavie, 2014), ROUGE-
L (Lin, 2004), CIDEr (Vedantam et al., 2015), and
SPICE (Anderson et al., 2016).

4.2 Models

For our evaluation, we used the Up-Down (Ander-
son et al., 2018) model as a baseline, which has a
typical structure in the field of image captioning
and has been reported to be highly accurate. We
compared the following training methods: +LS
with its uniform smoothing for all words; +VBCS,
which prioritizes highly valid reference captions
for training based on the validity score; +WCS
with smoothing for highly relevant words based on
the validity score; and +VBCS+WCS, which is
our proposed method. To ensure robust evaluation,
we ran each method five times with different seeds.

4.3 Implementation Details

In the Up-Down model, we used the Faster-RCNN
model (Ren et al., 2015), which was pre-trained
with ImageNet (Deng et al., 2009) and Visual
Genome (Krishna et al., 2017), as a content vector
generator. We used beam search when generat-
ing captions, and set the beam size to 5. In this
study, we decided to select CIDEr for fmetric, as it
is the most widely used in image captioning and
is capable of focusing on the importance of cap-
tion phrases. In Section 5.2, we will discuss the
effectiveness of other metrics for fmetric. The hyper-
parameter of LS was set to 0.2 according to Huang
et al. (2019). This corresponds to α when ŷt(i) is
regarded as a soft label equal to all words in Eq 3.
In WCS, α was set to 0.2 for comparison.

38



score-1 score-2 score-3 score-4 score-5
sorted caption

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Va
lid

ity
 sc

or
e

Figure 1: Distribution of the sorted validity scores in descend-
ing order.

5 Results and Discussion

5.1 Quantitative Analysis

Table 1 demonstrates the performance of our pro-
posed method with other comparable models. With
the introduction of efficient caption sampling, our
VBCS improved performance in all metrics against
the baseline. In particular, the CIDEr score im-
proved by 1.4 points. This confirmed that sampling
using the validity scores contributes to improving
the score for each metric. Figure 1 shows the dis-
tribution of the validity scores in descending order
using the violin plot. Since the validity of each ref-
erence caption is different, the distribution from the
validity score is very different from the commonly
used uniform distribution.

Our WCS outperformed LS on all metrics and
was 0.5 and 0.9 points higher on BLEU4 and
CIDEr, respectively. Since WCS smooths only a
limited number of relevant words, we believe that it
can learn more efficiently than LS, which smooths
all words uniformly. The proposed techniques (+
VBCS + WCS) scored the highest on all the met-
rics. The improvements in BLEU4, ROUGE-L, and
CIDEr, which are based on n-grams and longest
matching sequence are particularly clear.

5.2 Effect of Hyperparameters

In this section, we investigate the impact of hyper-
parameters in our proposed methods.

Effect of fmetric for Validation Data Table 2
demonstrates the performance with the validation
data, where BLEU4, ROUGE-L, and CIDEr were
applied to fmetric. Regardless of the choice of
fmetric, the proposed method produces results equal
to or better than baseline. These results indicate

Evaluation Metric

fmetric B@1 B@4 M R C S

baseline 75.8 34.7 27.2 56.1 109.4 20.1

BLEU4 77.0 35.8 27.2 56.6 111.4 20.3
ROUGE-L 76.6 35.2 27.2 56.5 110.7 20.4
CIDEr 76.7 35.4 27.4 56.6 112.0 20.5

Table 2: Comparison of scores for validation data under dif-
ferent fmetric choices in VBCS.
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Figure 2: The effect of α, a smoothing hyperparameter of
WCS for validation data. The proposed method achieves
higher performance than LS with any α.

that CIDEr is superior to the others and can capture
more important phrases than other metrics.

Effect of Hyperparameter in WCS Figure 2
demonstrates the effect of the hyperparameter α
on the validation data in WCS. Our proposed
+VBCS+WCS with α = 0.2 performed the best.
Since WCS applies to smooth to a limited number
of words, it results in higher scores than those of
LS with any α.

6 Conclusion and Future Works

In this paper, we proposed two novel techniques
called VBCS and WCS that effectively utilize mul-
tiple references in image captioning tasks, and
demonstrated their advantages. The former deter-
mines a sampling probability (i.e., validity score),
for each caption based on similarities among the
reference captions. The latter simultaneously re-
flects multiple reference captions in the training. In
the future, we would like to consider the grammar
in WCS and, extend the proposed method to be
adaptable to reinforcement learning.
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Abstract

Large neural networks are impractical to de-
ploy on mobile devices due to their heavy com-
putational cost and slow inference. Knowl-
edge distillation (KD) is a technique to re-
duce the model size while retaining perfor-
mance by transferring knowledge from a large
“teacher” model to a smaller “student” model.
However, KD on multimodal datasets such
as vision-language datasets is relatively unex-
plored and digesting such multimodal infor-
mation is challenging since different modali-
ties present different types of information. In
this paper, we propose modality-specific dis-
tillation (MSD) to effectively transfer knowl-
edge from a teacher on multimodal datasets.
Existing KD approaches can be applied to
multimodal setup, but a student doesn’t have
access to modality-specific predictions. Our
idea aims at mimicking a teacher’s modality-
specific predictions by introducing an auxil-
iary loss term for each modality. Because each
modality has different importance for predic-
tions, we also propose weighting approaches
for the auxiliary losses; a meta-learning ap-
proach to learn the optimal weights on these
loss terms. In our experiments, we demon-
strate the effectiveness of our MSD and the
weighting scheme and show that it achieves
better performance than KD.

1 Introduction

Recent advances in computer vision and natural
language processing are attributed to deep neural
networks with large number of layers. Current
state-of-the-art architectures are getting wider and
deeper with billions of parameters, e.g., BERT (De-
vlin et al., 2019) and GPT-3 (Brown et al., 2020).
In addition to their huge sizes, such wide and deep
models suffer from high computational costs and
latencies at inference. These shortcomings greatly

∗The work in progress was mainly done during internship
at Facebook AI.
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Figure 1: Density of model outputs on Hateful-
Memes: given multimodality samples as input (Multi),
given only image modality as input (Image), and given
only text modality as input (Text). KD denotes con-
ventional knowledge distillation and the small model
is a model with distillation. We observe that there is
still a prediction gap between the teacher and the stu-
dent trained by KD. To minimize the gap, we propose
modality-specific distillation (MSD).

limit these models practicality and make them un-
suitable for many mobile applications.

To mitigate the heavy computational cost and
the memory requirement, there have been several
attempts to compress a larger model (a teacher)
into a smaller model (a student) (Ba and Caruana,
2014; Hinton et al., 2015; Romero et al., 2014; Park
et al., 2019; Müller et al., 2020). Among them,
knowledge distillation (KD) (Hinton et al., 2015)
assumes the knowledge in the teacher as a learned
mapping from inputs to outputs, and transfers the
knowledge by training the student model with the
teacher’s outputs (of the last or a hidden layer) as
targets. Recently, KD has been explored in various
studies such as improving a student model (Hinton
et al., 2015; Park et al., 2019; Romero et al., 2014;
Tian et al., 2019; Müller et al., 2020) and improving
a teacher model itself by self-distillation (Xie et al.,
2020; Kim et al., 2020; Furlanello et al., 2018).

There has been a surge of interest in distilla-
tion in a multimodal setup such as cross-modal
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distillation (Gupta et al., 2016; Tian et al., 2019).
Multimodal problems involve relating information
from multiple sources. For example, visual ques-
tion answering (VQA) requires answering ques-
tions about an image (Antol et al., 2015; Goyal
et al., 2017; Gurari et al., 2018; Singh et al., 2019)
and models should incorporate information from
the text and image sources to answer the questions.
Multimodal problems are important because many
real-world problems requires understanding signals
from different modalities to make accurate predic-
tions; information on the web and social media is
often represented as textual and visual description.
Digesting such multimodal information in an ef-
fective manner is challenging due to their different
natures, e.g., visual and textual sources present dif-
ferent types of information. Also, they don’t have
comparable amounts of information in each modal-
ity; usually the textual modality tends to dominate
and have more information.

While KD approaches can be applied to mul-
timodal applications, student models in these ap-
proaches are directly trained to mimic a teacher’s
outputs without access to teacher’s modality-
specific behaviors. As a result, the student and
teacher models may significantly differ in their out-
puts using each modality as input. We illustrate the
point in Fig 1. The gap verifies that the student’s
and the teacher’s modality-specific behaviors are
not well matched. We hypothesize that it may lead
to inefficient distillation, because the student does
not carefully mimic the teacher’s modality-specific
predictions.

Thus, we propose modality-specific distillation
(MSD) which is to mimic the teacher’s modality-
specific behavior to minimize the gaps. We im-
prove the transfer by splitting the multimodality
into separate modalities, using them as additional
inputs, and thus distilling modality-specific behav-
ior of the teacher. Our MSD introduces auxiliary
losses per modality to encourage each modality to
be distilled effectively; we transfer the modality-
specific knowledge from the teacher. Furthermore,
we propose weighting approaches for weighting the
auxiliary losses to take importance of each modal-
ity into account; one modality might have more
important information. There are two main strate-
gies to weight these auxiliary losses in the objec-
tive; population-based and instance-wise weight-
ing schemes. In the population based, the weight
of each loss term is fixed for the whole popula-

tion. But in many cases the samples’ modalities
might carry different amount of information; one
of modalities has more important information for
predictions. Thus, we explore an intuitive instance-
wise weighting scheme. In the end, we propose a
meta-learning approach to find optimal weights.

As we will see in our empirical study on multi-
modal datasets, MSD significantly improves the
performance of student models over KD. Also,
our extensive experiments verify that MSD with
weighting functions learned by our method shows
the best performance among other weighting
schemes. In our analysis, we show that datasets are
different in the need of population-based or sample-
specific weighting; the MM-IMDB dataset, for ex-
ample, shows less improvement on instance-wise
weighting compared to population-based weight-
ing.

2 Background

In this section, we first define notations and revisit
conventional knowledge distillation (KD).

2.1 Problem Definition and Notations

Given a trained and frozen teacher model T and a
student model S, the output of our task is a trained
student model. Our goal is to transfer knowledge
from the teacher to the student on multimodal
datasets. We let fT and fS be functions of the
teacher and the student, respectively. t and s refer
to softmax output of the teacher and the student.
Typically the models are deep neural networks and
the teacher is deeper than the student. The function
f can be defined using output of the last layer of the
network (e.g., logits). X is a multimodal (language-
vision) dataset, Xt refers to only the text modality
ofX ,Xv is refers to only the image modality ofX ,
and xi is a dataset instance. In this work, we focus
on one text and one image modalities, but it is easy
to extend the work to more/other modalities.

2.2 Conventional Knowledge Distillation

In knowledge distillation (Hinton et al., 2015), a
student is trained to minimize a weighted sum of
two different losses: (a) cross entropy with hard
labels (one-hot encodings on correct labels) using
a standard softmax function, (b) cross entropy with
soft labels (probability distribution of labels) pro-
duced by a teacher with a temperature higher than
1 in the softmax of both models. The temperature
controls the softness of the probability distributions.
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Thus, the loss for the student is defined as:

Lstudent = λLCE + (1− λ)Ldistill, (1)

where LCE is a standard cross-entropy loss on hard
labels, Ldistill is a distillation loss, which is a cross-
entropy loss on soft labels, and λ ∈ [0, 1] controls
the balance between hard and soft targets.

To be specific, knowledge distillation (Hinton
et al., 2015) minimizes Kullback-Leibler diver-
gence between soft targets from a teacher and prob-
abilities from a student. The soft targets (or soft
labels) are defined as softmax on outputs of fT
with temperature τ . The distillation loss is defined
as follows:

Ldistill = τ2
1

|X|
∑

xi∈X
KL(t(xi; τ), s(xi; τ))),

(2)
where

t(xi; τ) = σ(
fT (xi)

τ
), s(xi; τ) = σ(

fS(xi)

τ
),

(3)
σ is a softmax functoin. The temperature parame-
ter τ controls the entropy of the output distribution
(higher temperature τ means higher entropy in the
soft labels). Following (Hinton et al., 2015), we
scale the loss by τ2 in order to keep gradient mag-
nitudes approximately constant when changing the
temperature. We omit τ for brevity.

Limitations. This KD can be applied to multi-
modal setups and student models in this distillation
are directly trained to mimic a teacher’s outputs
without access to teacher’s modality-specific be-
haviors. As a result, the student and teacher models
may significantly differ in their modality-specific
outputs, which leads to inefficient distillation. To
better mimic the teacher’s behaviors, we propose
modality-specific distillation in the next section.

3 Proposed Method

In this section, we introduce our proposed ap-
proach, modality-specific distillation (MSD) for
multimodal datasets.

3.1 Modality-specific Distillation
Samples in multimodal datasets are constructed
from multiple modalities such as text modality and
image modality. In this work, we focus on vision-
language datasets. The core idea of MSD is to feed
each modality as a separate input into a teacher
and a student, and transfer the modality-specific

knowledge of the teacher to the student. This will
minimize the gap between a teacher and its student
with regard to individual modalities predictions
and thus the student learns more effectively from
a teacher. Fig. 2 illustrates comparison between
KD and MSD. From this perspective, MSD serves
as a data augmentation strategy (Xie et al., 2019b,
2020), where the augmented data is naturally gener-
ated from the modalities of the input. Our approach
can be viewed as an extension of Cutout (DeVries
and Taylor, 2017) that masks out random sections
of input images during training while our approach
masks out one of the modalities during distillation.
Unlike some other data augmentation techniques
such as Mixup (Zhang et al., 2017) where the labels
for augmented data is generated through simple
interpolation, we use the teacher to guide us for
setting soft-labels in MSD.

To be specific, we introduce two loss terms,
LtextKD and LimageKD to minimize difference be-
tween probability distributions between the teacher
and the student given each modality (assuming text
and image as the only two modalities).

LtextKD = τ2
1

|Xt|
∑

xi∈Xt

KL(t(xi), s(xi)). (4)

LimageKD is similarly defined; the input is image
modality instead.

With above two auxiliary losses, the MSD loss
for the student is defined as follows:

Ldistill =
∑

xi∈X
wiKL(t(xi), s(xi)))

+
∑

xi∈Xv

wv
i KL(t(xi), s(xi)))+

∑

xi∈Xt

wt
iKL(t(xi), s(xi))),

(5)

where we omit the scaling factor τ2 1
|X| for brevity.

wi, w
t
i , w

v
i ∈ [0, 1] control the balance between

three distillation losses. These weights determine
importance of each modality and they affect the
student’s performance on multimodal datasets.
Weighting on Each Modality. Samples from mul-
timodal datasets have different information on each
modality. Fig. 3 shows the teacher model pre-
dictions for samples in Hateful-Memes and MM-
IMDB test sets. For each sample, three probabili-
ties are calculated: 1) predictions of samples with
both of its modalities, 2) predictions of samples
with just its text modality, and 3) predictions of
samples with just its image modality. As one can
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Figure 2: Comparison between KD and MSD. In KD, multimodal datasets are taken as a teacher and a student’s
inputs to compute the distillation loss. However, we factorize the multimodal input into each modality, and use it
as a separate input to a teacher and student.
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Figure 3: Prediction probabilities of test samples for
different modalities. Black points correspond to the
predictions of samples with both modalities (original
input), red points do with image modality, and blue
points do with text modality. The samples are ordered
based on their multi modal output probabilities.

see for MM-IMDB there is a strong correlation be-
tween multimodal predictions and predictions from
text modality, indicating the fact that in MM-IMDB
text is a dominant modality. On the other hand,
for Hateful-Memes dataset there is no such global
pattern but one can observe some correlations for
individual instances. This behavior is actually ex-
pected based on the way Hateful-Memes is built to
include unimodal confounders (Kiela et al., 2020).

Following these observations we propose three
weighting schemes for distillation losses, presented
in the order of complexity: 1) population-based
(Section 3.2), 2) instance-wise (Section 3.3) weight-
ing approaches for the losses, and 3) meta-learning
approach (Section 3.4) to find the optimal weights
on meta data. We will discuss each of these in the
following sections.

3.2 Population-based Weighting

Population-based weighting is to assign weights
depending on modality; we give constant weights
(wi, w

v
i , w

t
i) for each loss term in equation (5). This

weighting approach assumes the weights are deter-
mined by the types of modality. Best weights or
coefficients for each loss term are obtained by grid
search on the validation set. However, population-
based weighting is limited because it does not as-
sign finer-grained weights to each data instance;
each data instance might have different optimal
weights for the loss terms. This is what we pursue
next in the instance-wise weighting.

3.3 Instance-wise Weighting

Instance-wise weighting is to give different weights
to each loss term depending on a data sample. The
assumption is that each data point has different op-
timal weights for knowledge distillation. By assign-
ing instance-level weights, we expect a better learn-
ing for the student to mimic teacher’s modality-
specific behavior. In this sense, population-based
weighting can be regarded as one version of
instance-wise weighting that assigns weights de-
pending on modality. As it is not possible to tune
sample-weights as separate hyper-parameters, we
instead propose to use simple/intuitive fixed weight-
ing functions, described as follows. We exploit
teacher’s output as the input to these fixed weight-
ing schemes. Obviously, the next step to this ap-
proach would be to learn this weighting function
alongside the rest of the model, i.e. meta-learning,
which we discuss further in the Section 3.4.

Importance-based weighting. The idea is to
weight each loss term based on the importance
of its corresponding modality. To measure the im-
portance of each modality, we compute the change
in the output of teacher after dropping the other
modality:

Ii,t = δ(t(xi), t(x
v
i )), Ii,v = δ(t(xi), t(x

t
i)), (6)
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where t(xi), t(xvi ), t(xti) is teacher’s probabilities
(i.e. softmax output), given the multimodal, image
alone and text alone inputs, respectively. We use
Kullback-Leibler Divergence to measure the differ-
ence denoted by δ. Thus weights for loss terms are
defined as wv

i = g(Ii,t) and wt
i = g(Ii,v), where

g = tanh(·) to ensure the weights are in the range
[0, 1]. In this strategy, we assignwi = 1 for the loss
term for multimodality. Note that in this strategy
we do not explicitly use the true labels to decide
the distillation weights, and we use the teacher’s
predictions instead.

Correctness-based weighting. Another idea of
instance-wise weighting is to weight terms depend-
ing on how accurate predictions of the teacher on
each modality are. This is to measure the correct-
ness between ground truth and predictions with
each modality. If the prediction with one modal-
ity is close to the ground truth, then we assign a
larger weight to that. To measure the correctness,
we adopt cross entropy loss on each instance. We
choose the weights proportionally according to the
following rule:

wi : wv
i : wt

i = 1/h(t(xi)) : 1/h(t(xvi ))) : 1/h(t(xti)),
(7)

where h(x) = −∑c
j=1 yi,j log x and yi,j ∈ {0, 1}

are the correct targets for the j-th class of the i-
th example. h(x) measures the distance between
ground-truth labels and predictions and thus the
inverse of h(x) can represent the correctness of
the predictions. In order to choose the actual
weights, we add a normalization constraint such
that, wi + wv

i + wt
i = 1. It is worth noting that in

this weighting scheme, the actual labels are directly
used in deciding the weights unlike the previous
one.

3.4 Meta Learning for Weights

Although, the aforementioned weighting schemes
are intuitive, there is no reason to believe they are
the optimal way of getting value out of modality-
specific distillation. Moreover, it is not trivial to
get optimal weight functions since it can depend
on a dataset. Thus, we propose a meta-learning ap-
proach to find optimal weight functions. Inspired
by (Shu et al., 2019), we design meta learners to
find the optimal coefficients. (wi, w

v
i , w

t
i) is de-

fined as follows:

(wi, w
v
i , w

t
i) = f(t(xi), t(x

v
i ), t(xti); Θ) (8)

Algorithm 1: Meta-Learning Algorithm
Input: Training data D, Meta-data set D̂, batch size

n,m, learning rates α, β, max iterations T .
1 for t← 0 to T − 1 do
2 {x, y} ← SampleMiniBatch(D,n).
3 {x(meta), y(meta)} ← SampleMiniBatch(D̂,m).
4 ŵ(t)(Θ(t))←

w(t) − α 1
n

∑n
i=1∇wLstudent(w

(t),Θ(t))

5 Θ(t+1) ←
Θ(t) − β 1

m

∑m
i=1∇ΘLmeta(ŵ

(t)(Θ(t)))

6 w(t+1) ←
w(t) − α 1

n

∑n
i=1∇wLstudent(w

(t),Θ(t+1))

7 return Network parameters w(T ),Θ(T )

where Θ defines the parameters for the meta learner
network, an Multi-Layer Perceptron (MLP) with a
sigmoid layer, which approximates a wide range of
functions (Csáji et al., 2001). In general, the meta
function for defining weights can depend on any
input from the sample; but here we limit ourselves
to the teacher’s predictions.
Meta-Learning Objective. We assume that we
have a small amount of unbiased meta-data set
{x(meta)

i , y
(meta)
i }Mi=1, representing the meta knowl-

edge of ground-truth sample-label distribution,
where M is the number of meta samples and
M � N . In our setup, we use the validation
set as the meta-data set. The optimal parameter
Θ∗ can be obtained by minimizing the following
cross-entropy loss:

Lmeta(w
∗(Θ))

= − 1

M

M∑

i=1

c∑

j=1

yi,j log(s(xi; w
∗(Θ)), (9)

where w∗ is an optimal student’s parameter, which
is defined as follows:

w∗(Θ) = arg min
w

Lstudent(w,Θ). (10)

w∗ is parameterized by Θ, a meta learner’s param-
eter.

The meta learner is optimized for generating
instance weights that minimize the average error of
the student over the meta-data set, while the student
is trained on the training set with the generated
instance weights from the meta learner.
Meta-Learning Algorithm. Finding the optimal
Θ∗ and w∗ requires two nested loops; one gradient
update of a meta learner requires a trained student
on the training set. Thus, we adopt an online strat-
egy following (Shu et al., 2019), which updates
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the meta learner with only one gradient update of
the student. Algorithm 1 illustrates its learning
process. First, we sample mini batches from the
training and meta-data sets, respectively (lines 2
and 3). Then, we update the student’s parameter
along the descent direction of the student’s loss on
a mini-batch training data (line 4). Note that the
student’s parameter is parameterized by the meta
learner’s parameter. With the updated parameter,
the meta leaner can be updated by moving the cur-
rent parameter Θ(t) along the objective gradient
of equation (9) on a mini-batch meta data (line 5).
After updating the meta-learner, the student’s pa-
rameter can be updated on a mini-batch training
data (line 6).

4 Experiments

In this section, we empirically show the effective-
ness of our proposed approaches.

4.1 Experimental Setup

We use VisualBERT (Li et al., 2019), a pre-trained
multimodal model, as the teacher model. For a stu-
dent model, we use TinyBERT (Jiao et al., 2019).
VisualBERT consists of 12 layers and a hidden size
of 768, and has 109 million number of parameters,
while TinyBERT consists of 4 layers and a hidden
size of 312, and has 14.5 million number of pa-
rameters. We use the region features from images
for both the teacher and the student and fine-tune
the student on each dataset. For training the meta
learner we use the datasets’ validation set as meta
data. We find the best hyperparameters on the val-
idation set. For comparison, we include various
knowledge distillation approaches: Conventional
KD (Hinton et al., 2015), FitNet (Romero et al.,
2014), RKD (Park et al., 2019), and SP (Tung
and Mori, 2019). We empirically show that our
MSD approaches, i.e. population-based weight-
ing, instance-wise weighting based on importance
of each modality and correctness of predictions
of each modality, and meta learning, can improve
the performance of the small model compared to
other KD approaches. Moreover, meta-learning
approach provides the closest performance to the
teacher model in all three multimodal datasets by
finding the optimal weights per sample for MSD.

4.2 Datasets

To examine our proposed approaches, we use three
multimodal datasets: Hateful-Memes (Kiela et al.,

2020) MM-IMDB (Arevalo et al., 2017), and Vi-
sual Entailment (SNLI-VE) (Xie et al., 2019a;
Young et al., 2014).

The Hateful-Memes dataset (Kiela et al., 2020)
consists of 10K multimodal memes. The task is
a binary classification problem, which is to detect
hate speech in multimodal memes. We use Ac-
curacy (ACC), and AUC as evaluation metrics of
choice for hateful memes (Kiela et al., 2020).

The MM-IMDB (Multimodal IMDB) dataset
consists of 26K movie plot outlines and movie
posters. The task involves assigning genres to each
movie from a list of 23 genres. This is a multi-label
prediction problem, i.e., one movie can have multi-
ple genres and we use Macro F1 and Micro F1 as
evaluation metrics following (Arevalo et al., 2017).

The goal of Visual Entailment is to predict
whether a given image semantically entails an input
sentence. Classification accuracy over three classes
(“Entailment”, “Neutral” and “Contradiction”) is
used to measure model performance. We use accu-
racy as an evaluation metric following (Xie et al.,
2019a).

4.3 Results

Table 1 shows our main results on Hateful-Memes,
MM-IMDB, and SNLI-VE datasets. The small
model refers to the student model without distilla-
tion from the teacher. Existing KD approaches im-
proves the student model on all datasets. However,
our MSD approaches improve the small model
substantially. We observe that among weighting
strategies, MSD with meta learning shows the best
performance, indicating it finds effective weights
for each dataset. We note that population-based
weighting shows good improvement, which means
weighting based on modality only is still very ef-
fective on multimodal datasets. Also, population-
based weighting outperforms instance-wise weight-
ing on the MM-IMDB dataset, suggesting all sam-
ples are likely to have the same preference or de-
pendency on each modality of the dataset.

In addition, we present improvements over KD
approaches with/without our MSD (meta-learning)
in Table 2. Here, we use MSD on top of each KD
approach. Note that our MSD approach is orthog-
onal to existing KD approach. The results show
the benefits of our MSD method on top of other
approaches; MSD improves these KD methods on
multimodal datasets.
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Table 1: Main Results. Mean results (±std) over 5 repetitions are reported. Our MSD outperforms all the KD
approaches. Here, we use our MSD on top of conventional KD (Hinton et al., 2015). Also our meta learning for
weights shows the best performance.

Method
Hateful-Memes MM-IMDB SNLI-VE

ACC AUC Macro F1 Micro F1 ACC

Teacher 65.28 71.82 59.92 66.53 77.57

Small model 60.83 (±0.20) 65.54 (±0.25) 38.78 (±4.03) 58.10 (±1.23) 72.30 (±0.35)
Conventional KD (Hinton et al., 2015) 60.84 (±1.50) 66.53 (±0.27) 41.76 (±4.72) 58.96 (±1.62) 72.61 (±0.55)
FitNet (Romero et al., 2014) 62.00 (±0.26) 67.13 (±0.51) 46.21 (±2.12) 60.46 (±0.30) 73.06 (±0.50)
RKD (Park et al., 2019) 61.43 (±0.40) 67.03 (±0.21) 51.16 (±1.64) 62.52 (±0.70) 73.09 (±0.53)
SP (Tung and Mori, 2019) 61.70 (±1.10) 66.11 (±0.45) 49.07 (±0.82) 61.41 (±0.34) 73.00 (±0.98)

MSD (Population) 62.15 (±1.71) 68.16 (±1.60) 51.85 (±0.34) 62.13 (±0.19) 73.64 (±0.54)
MSD (Instance, Importance) 62.78 (±1.00) 67.94 (±0.52) 49.20 (±1.27) 61.84 (±0.49) 73.34 (±0.48)
MSD (Instance, Correctness) 63.27 (±0.45) 67.72 (±0.82) 51.02 (±0.70) 62.05 (±0.45) 73.52 (±0.54)
MSD (Meta learning) 63.86 (±1.28) 68.30 (±0.62) 53.12 (±0.08) 63.00 (±0.09) 74.04 (±0.15)

Table 2: Improvement over KD approaches with
MSD. Our MSD substantially improves existing KD
approaches.

Method
Hateful-Memes MM-IMDB

ACC AUC Macro F1 Micro F1

KD (Hinton et al., 2015) 60.84 66.53 41.76 58.96
+MSD 63.86 68.30 53.12 63.00

FitNet (Romero et al., 2014) 62.00 67.13 46.21 60.46
+MSD 62.50 68.77 51.75 62.13

RKD (Park et al., 2019) 61.43 67.03 51.16 62.52
+MSD 63.10 67.58 52.36 63.24

SP (Tung and Mori, 2019) 61.70 66.11 49.07 61.41
+MSD 62.30 67.92 52.83 62.70
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Figure 4: Test accuracy of a student on SNLI-
VE during training and comparison between knowl-
edge distillation (KD) and modality-specific distilla-
tion (MSD) with population-based weighting, instance-
wise weighting, and meta learning for weights.

4.4 Learning Curve

Our proposed MSD approaches can also help with
training speed, measured by test metrics over train-
ing steps. Fig 4 shows the evolution of accuracy on
the test set during training on the SNLI-VE dataset.
When we train the student with MSD, training pro-
gresses faster than KD. Since the teacher provides
two additional probabilities with each modality, the
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Figure 5: Teacher-Student consistency ratio. We in-
vestigate the student model’s sensitiveness to changes
in modalities. Higher ratio indicates its sensitiveness is
closer to the teacher’s.

student learns faster and the final performance is
better than KD. We observe a large performance
increase early in training with the meta-learning
approach, thus leading to the best accuracy. In
this case, the meta learning for sample weighting
finds the optimal weights for each data instance,
so the student quickly learns from more important
modality that is vital for the predictions.

4.5 Analysis
In this section, we empirically investigate the bene-
fits of our approach by analyzing MSD.

4.5.1 Teacher-Student Consistency
To showcase that our approach helps the student
model to be more sensitive to important changes
in modalities, we take examples from the Hateful
Memes test set and randomly replace one of the
modalities with a modality from another sample.
Hateful Memes is a multimodal dataset and chang-
ing the modalities might or might not change the
final label. In this case, we do not have the ground
truth, but we use the teacher’s predicted label on
the new generated sample as a proxy for ground
truth and count the times that the student/small
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Figure 6: Density of model outputs on samples of la-
bel 0 on the test set of Hateful-Memes: given mul-
timodal samples as input (Multi), given only image
modality as input (Image), and given only text modality
as input (Text). Our proposed approach, MSD with the
meta-learning approach, minimizes the gap between
the teacher and the student trained by KD.
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Figure 7: Kullback-Leibler divergence on the test
set between the teacher’s outputs and other models’
outputs. This is a measure of how teacher’s probability
distribution is different from other models’. The lower
divergence is, the closer a model is to the teacher.

model is consistent with the teacher on these gen-
erated samples. We define the ratio of such consis-
tent predictions over the total generated samples as
“Teacher-Student consistency ratio”. Note that
none of the models have seen these samples during
the training. As it can be seen from Fig. 5, our
MSD approach has a larger “Teacher-Student con-
sistency ratio” than small model with and without
KD. This indicates that MSD not only improves
the accuracy but also improves the sensitivity of
the student model to better match the teacher on
the changes in modalities on unseen data.

4.5.2 Probability Distribution of Model
Outputs

There is a performance gap between the teacher
model and student model in predicting true labels
given a multimodal sample and each of its individ-
ual modalities. Fig 6 shows this gap for Hateful-
Memes dataset. For example, given only image
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Figure 8: Test AUC on Hateful-Memes with varying
the number of layers in the student model.

modality as input (the middle plot in Fig 6), there
is a considerable difference between the teacher
and the small model for predicting benign samples.
KD minimizes the gap and our MSD with the meta-
learning approach shows the similar density curve
to the teacher’s.

In addition, we measure Kullback-Leibler (KL)
divergence between the teacher’s outputs and other
models’ outputs on the test set as shown in Fig 7.
This is to measure the difference between teacher’s
probability distribution and others’. As is shown,
our MSD approach shows the smallest KL diver-
gence from the teacher which means the student
learned with MSD outputs probability distribution
close to the teacher’s.

4.5.3 Student Model Size
To examine how the size of student model affects
the performance, we evaluate the baselines and
our MSD method on the Hateful-Memes dataset,
with varying number of layers in the student model.
The result is depicted in Fig 8. In this case, the
number of layers is proportional to the number of
parameters, i.e. student model size. We use the
meta-learning weighting as our MSD method of
choice here. As is shown, we observe that the AUC
score improves as the model size is getting larger.
Also the improvement of KD over the small model
is marginal and MSD significantly outperforms KD
in any number of layers in the student.

5 Related Work

Knowledge Distillation. There have been several
studies of transferring knowledge from one model
to another (Ba and Caruana, 2014; Hinton et al.,
2015; Romero et al., 2014; Park et al., 2019; Müller
et al., 2020; Tian et al., 2019; Furlanello et al.,
2018; Kim et al., 2020). Ba and Caruana (Ba and
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Caruana, 2014) improve the accuracy of a shal-
low neural network by training it to mimic a deep
neural network with penalizing the difference of
logits between the two networks. Hinton et al. (Hin-
ton et al., 2015) introduced knowledge distillation
(KD) that trains a student model with the objective
of matching the softmax distribution of a teacher
model at the output layer. Romero et al. (Romero
et al., 2014) distill a teacher using additional lin-
ear projection layers and minimize L2 loss at the
earlier layers to train a students. Park et al. (Park
et al., 2019) focused on mutual relations of data ex-
amples instead and they proposed relational knowl-
edge distillation. The transfer works best when
there are many possible classes because more in-
formation can be transferred, but in cases where
there are only a few possible classes the transfer
is less effective. To deal with the problem, Müller
et al. (Müller et al., 2020) improved the transfer
by forcing the teacher to divide each class into
many subclasses. Tian et al. (Tian et al., 2019) pro-
posed to distill from the penultimate layer using
a contrastive loss for cross-modal transfer. A few
recent papers (Furlanello et al., 2018; Kim et al.,
2020) have shown that distilling a teacher model
into a student model of identical architecture, i.e.,
self-distillation, can improve the student over the
teacher.

Meta Learning for Sample Weighting. Recently,
some methods were proposed to learn an adap-
tive weighting scheme from data to make the
learning more automatic and reliable including
Meta-Weight-Net (Shu et al., 2019), learning to
reweight (Ren et al., 2018), FWL (Dehghani et al.,
2017), MentorNet (Jiang et al., 2018), and learning
to teach (Fan et al., 2018; Wu et al., 2018; Fan et al.,
2020). These approaches were proposed to deal
with noisy and corrupted labels and learn optimal
functions from clean datasets. They are different in
that they adopt different weight functions such as a
multilayer perceptron (Shu et al., 2019), Bayesian
function approximator (Dehghani et al., 2017), and
a bidirectional LSTM (Jiang et al., 2018); and they
take different inputs such as loss values and sam-
ple features. In our case, we adopt these ideas of
meta-learning, and specifically Meta-Weight0Net,
and utilize it in a different context, i.e. multimodal
knowledge distillation.

Bias in Multimodal Datasets. Different multi-
modal datasets were proposed to study whether a
model uses a single modality’s features and the im-

plications for its generalization properties (Agrawal
et al., 2018). Different approaches were proposed
to deal with such problems where the model over-
fits to a single modality. Wang et al. (Wang et al.,
2020) suggest to regularize the overfitting behavior
to different modalities. REPAIR (Li and Vascon-
celos, 2019) prevents a model from dataset biases
by re-sampling the training data. Cadene et al. (Ca-
dene et al., 2019) proposed RUBi that uses a bias-
only branch in addition to a base model during
training to overcome language priors. In our study,
although we do not directly deal with the overfitting
phenomena, we use different weighting schemes
to better transfer the modality specific information
from the teacher to the student.

6 Conclusion

We studied knowledge distillation on multimodal
datasets; we observed that conventional KD may
lead to inefficient distillation since a student
model does not fully mimic a teacher’s modality-
specific predictions. To better transfer knowl-
edge from a teacher on the multimodal datasets,
we proposed modality-specific distillation; the
student mimics the teacher’s outputs on each
modality. Furthermore, we proposed weighting
approaches, population-based and instance-wise
weighting schemes, and a meta-learning approach
for weighting the auxiliary losses to take impor-
tance of each modality into consideration. We
empirically showed that we can improve the stu-
dent’s performance with our modality-specific dis-
tillation compared to conventional distillation. Our
MSD approach results on modality specific out-
puts that better resemble the teacher’s outputs. We
showed that the results hold across different stu-
dent sizes. Moreover, our meta-learning approach
is flexible enough to find different effective weight-
ing schemes, depending on the dataset.
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and Fabio A González. 2017. Gated multimodal units for
information fusion. arXiv preprint arXiv:1702.01992.

Jimmy Ba and Rich Caruana. 2014. Do deep nets really need
to be deep? In Advances in neural information processing
systems, pages 2654–2662.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020.
Language models are few-shot learners. arXiv preprint
arXiv:2005.14165.

Remi Cadene, Corentin Dancette, Matthieu Cord, Devi Parikh,
et al. 2019. Rubi: Reducing unimodal biases for visual
question answering. In Advances in neural information
processing systems, pages 841–852.
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Figure 9: A multimodal violating sample (Left). We
further replaced its image modality with a background
picture that makes it benign and examined models on
both examples (Right).

A Case Study

We demonstrate the motivation behind our work
through an example. Fig. 9 shows an example
of a multimodal sample from Hateful Memes test
dataset. The sample is violating based on both
modalities together, and all models correctly pre-
dict that. To further probe the models, we replace
the background image of the sample with a picture
that makes the label benign. On this artificially
generated sample we notice that only the teacher
and MSD model correctly predict benign, while
the other two models make wrong predictions (pre-
sumably by just looking at the text only).

B Hyperparameters

The teacher model is a VisualBERT (Li et al.,
2019), and the student model is TinyBERT (Jiao
et al., 2019). We used the MMF library and pre-
trained checkpoints from it for VisualBERT1 and
used a pretrained checkpoint in TinyBERT 2. Vi-
sualBERT consists of 12 layers and a hidden size
of 768, and has 109 million number of parame-
ters, while TinyBERT consists of 4 layers and a
hidden size of 312, and has 14.5 million number of
parameters. For all experiments, we performed a
grid search to find the best hyperparameters. We
adopt the AdamW optimizer to train networks. We
use a linear learning rate schedule that drops to 0
at the end of training with warmup steps of 10%
maximum iterations.

Hateful-Memes. We performed a grid search over
learning rates (1e-5, 3e-5, 5e-5, 1e-4), and temper-
atures (1, 2, 4, 8), and, batch sizes (10, 20, 30, 40,
50, 60), and the meta learner’s learning rates (1e-1,
1e-2, 1e-3, 1e-4). We set the maximum number

1https://mmf.sh
2https://github.com/huawei-noah/

Pretrained-Language-Model/tree/master/
TinyBERT

Table 3: Dataset Statistics.

Stat. \ Data Hateful-
Memes

MM-
IMDB

SNLI-
VE

Type Binary
Multil-

abel
Multi-
class

# Classes 2 23 3

# Examples 10,000 25,959 565,286

# Training 8,500 15,552 529,527
# Validation 500 2,608 17,858

# Test 1,000 7,799 17,901

of iterations to 5000. The balance parameter λ be-
tween cross entropy and distillation is set among
(0.2, 0.4, 0.5, 0.6, 0.8).

MM-IMDB. For MM-IMDB experiments, we fol-
low a similar procedure, a grid search, to the
Hateful-Memes. The batch size is 20, tempera-
ture is 1, and the meta learner’s learning rate is
1e-4. We set the maximum number of iterations to
10000. The balance parameter λ is set to 0.5.

SNLI-VE. For Visual Entailment (SNLI-VE), the
batch size is 64, temperature is 4, and the meta
learner’s learning rate is 1e-4. We set the maxi-
mum number of iterations to 60000. The balance
parameter λ is set to 0.6.
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Abstract
Live video comments, or “danmu”, are an
emerging feature on Asian online video plat-
forms. Danmu are time-synchronous com-
ments that are overlaid on a video playback.
These comments uniquely enrich the experi-
ence and engagement of their users, and have
become a determining factor in the popularity
of videos on these platforms. Similar to the
“cold start problem” in recommender systems,
a video will only start to attract attention when
sufficient danmu comments have been posted
on it. We study this video cold start prob-
lem and examine how new comments can be
generated automatically on less-commented
videos. We propose to predict danmu com-
ments to promote user engagement, by exploit-
ing a multi-modal combination of the video vi-
sual content, subtitles, audio signals, and any
surrounding comments (when they exist). Our
method fuses these multiple modalities in a
transformer network which is then trained for
different comment density scenarios. We eval-
uate our proposed system through both a re-
trieval based evaluation method, as well as hu-
man judgement. Results show that our pro-
posed system improves significantly over state-
of-the-art methods.

1 Introduction

Live video comments, or “danmu”, is an emerging
feature of video sharing platforms such as Bilibili
and Nicovideo, which has been adopted by hun-
dreds of millions of users in Asia. Danmu com-
ments are a time-synchronous commentary subtitle
system that displays user comments as streams of
moving subtitles overlaid on the video playback
screen (see Fig. 1). Danmu comments have be-
come a key feature of these video platforms. So
much so, that videos with many danmu comments
stand a higher chance of being recommended or
searched, and naturally attract more viewers.

This new form of media consumption comes
with a vast amount of annotated video data and

Figure 1: A video frame from bilibili.com with damnu
comments overlaid. The lower part of the image shows
danmu comment distribution over the video. The sub-
title says: “could you publish some danmu?” and the
viewers are responding with a damnu burst.

opens the path to multiple new research strands for
video technologies, including automated highlight-
ing, summarization and conversational engagement.
The main focus of the research literature (see Sec-
tion 2) has so far been on the automatic generation
of danmu comments (Lv et al., 2019; Ma et al.,
2019; Weiying et al., 2020). In particular, Shum-
ing et al. (Ma et al., 2019) recently proposed in
“Livebot”, a new benchmark with a baseline unified
transformer architecture to automatically generate
new danmu comments from existing danmu com-
ments and video content. This literature has mostly
focused on the analysis of videos that already have
many comments. This is however probably not the
most critical scenario for automated danmu gen-
eration as these videos are already popular. Also,
it is easier in these cases to exploit the numerous
nearby comments to generate new comments. Sim-
ilar to the “cold start problem” in recommender
systems, the real issue faced by content creators is
that videos need many danmu comments to start
attracting traffic.

In this paper we propose to solve this “video
cold start problem” by a method that can generate
danmu comments on videos which have zero, few,
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or many comments. We propose a multi-density
cold video transformer (MCVT) that can leverage
multi-modal signals including surrounding com-
ments, video frames, but also subtitles and audio
signals in an end-to-end neural network (see Sec-
tion 4). The key idea is then to approach the task
globally and train the network for different com-
ment density scenarios (see Section 5). To achieve
this, we collect the publishing timestamps of com-
ments from the video platform and look at the se-
quence of the comment publishing times (see sec-
tion 3). This allows us to consider different snap-
shots of a video’s commenting lifetime (ie. when
the video was freshly uploaded with no comments,
then when it had a few comments, and later with
many comments). This information has not been
exploited in existing work described in the litera-
ture, but we show that it can be used effectively in
training of danmu generation.

We evaluate our system in Section 6 through
both a retrieval based evaluation method and hu-
man judgement. Results show that our system is
able to produce comments that are close to the qual-
ity of human comments. The key contributions of
this paper are as follow:

• We are the first to investigate the cold video
problem for automated creation of danmu for
videos which enables us to create comments
for freshly uploaded videos.

• We expand a publicly available danmu video
dataset (Ma et al., 2019) by doubling its
size and enriching multi-modal features from
video embedded subtitles.

• We propose a multi-density cold video trans-
former (MCVT) architecture and training
framework which can generate high quality
comments with different comment density and
outperforms state-of-the-art method.

To make our work fully reproducible, both the
source codes and the dataset used have been made
public available. 1

2 Related Work

In this section we introduce existing work on auto-
mated danmu generation, detection of video high-
lights based both on manually contributed danmu
and atomated analysis of video content, and auto-
mated creation of descriptive captions for videos.

1https://github.com/fireflyHunter/Cold-Video-Danmu-
Generation

2.1 Danmu Generation

The earliest work in danmu content generation was
based on a generative adversarial model, where
the video frames are directly mapped into the com-
ments textual space (Lv et al., 2019). This method,
however, does not exploit existing nearby com-
ments. Ma et al. (2019) proposed LiveBot which
combines both visual and textual contexts in an
encoding phase with a Transformer architecture.
They also proposed evaluation metrics and released
a publicly accessible training set. This work has
served as a benchmark for the most recent ap-
proaches (Zhang et al., 2020; Chaoqun et al., 2020;
Weiying et al., 2020). In previous work, we re-
worked the baseline implementationof LiveBot to
address several shortcomings in both the original
dataset and implementation (Wu et al., 2020).

We note that LiveBot, and its successors, are
trained on densely commented videos, and use all
available comments to make predictions. Thus,
they do not consider what will in practice be the
more useful setting for automatec danmu creation
of videos with few or no comments, which we refer
to as the cold start scenario. Also, they do not
make use of all of the attributes of the comments.
In particular, the publishing time of the comments
is not included in the training set. This means
that the causality between comments is lost and
that the target comments could potentially predate
the proposed contextual comments. Also, these
methods do not consider where to publish in the
video timeline.

2.2 Highlight Detection

Video highlights could provide pointers for com-
ment generation, some prior work has tried to pre-
dict popular segments in videos. Video highlights,
as they are called, can be identified by looking at
the current distribution of published danmu com-
ments (see plot in Fig. 1). This is the idea exploited
in (Xu et al., 2017), where a personalised frame-
level recommendation is based on the analysis of
published comments. More relevant to the cold
start problem is highlight prediction solely from
video content, as proposed in (Zheng et al., 2020)
using a bi-directional Long-short Term Memory
(LSTM) architecture.

2.3 Video Captioning

Related to our application is the task of video cap-
tioning, which aims to generate descriptive sen-
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Statistics Training Dev Test Total

#Videos 4,272 200 200 4672
#danmu 2,549,340 123,646 116,374 2,789,360
avg. duration (s) 217 222 216 217
avg. #danmu/s 2.75 2.78 2.69 2.75

Table 1: Training, development and test sets statistics.

tences of a video sequence. Current architectures
for this usually follow an encoder-decoder pattern.
In the encoder, the sequence of video frames is
embedded by a CNN (Subhashini et al., 2014) or
RNN (Nitish et al., 2015). The decoder, typically
an LSTM, generates captions from the contextual
output of the encoder. Techniques like reinforce-
ment learning (Xin et al., 2018), contextual-aware
video captioning (Spencer et al., 2018) and seman-
tic attention model (Gan et al., 2017) have also been
explored by researchers in this field. What emerges
from the recent literature is that the Transformer
architecture, as proposed in Livebot, has become
the state-of-the-art approach for multi-modal text
generation applications and thus we adopt this as
the baseline for our application.

3 Task Overview

In this section we define our danmu creation task,
introduce the dataset used in our work and outline
the video content extraction methods used in this
investigation.

3.1 Task Definition

To address the cold start problem we aim to be able
to generate high quality comments given videos
with different comment densities. In order to han-
dle different danmu density scenarios of the cold
start problem, we first sort the existing comments
C for a video by their publication time and only
keep a subset Cp consisting of a percentage p of the
earliest comments of the video. This strategy is en-
forced to reconstruct video danmu comments in dif-
ferent phases of their lifetime. Then we define our
task as follows: given a video V = {s0, . . . , sL}
(following accepted convention V is split into seg-
ments of one second duration), the generation mod-
ule is asked to generate a target comment y using
comments from Cp and the k previous seconds of
the video clip s[i−k,i].

Figure 2: Examples of frames from collected videos.
The video content features events from daily life.

3.2 Dataset

For our investigation, we constructed a large-scale
dataset with 4,672 videos and 2,789,360 danmu
comments, which is publicly available 2. Part of the
data (2,322 videos and 857,993 comments) comes
from the publicly available automatic danmu gener-
ation Response to Livebot dataset (Wu et al., 2020).
As our task aims to generate comments for videos
with low comment densities compared to a gen-
eral comment creation list, the size of the suitable
training data is reduced significantly during the re-
construction of the cold start scenarios . We thus
added another 2,350 videos from the same danmu
video website (bilibili.com) to the dataset. The
Livebot dataset is mainly themed around natural
life, to keep it consistent, the appended videos were
selected by having a web crawler pick the 100 most
popular “Daily Life” category videos of the recent
three days everyday for two months. Fig. 2 presents
a small subset of the video frames in this dataset.
We scale up the data split in previous work (Ma
et al., 2019) (2161 / 100 / 100) and have 4272 / 200
/ 200 videos in the training / development / test sets,
respectively. Table 1 shows damnu statistics for the
dataset.

A key contribution of our paper is that we take
into account the publication timestamp of each of
the danmu comments. The training data for a par-
ticular level p, percentage of existing manual com-
ments preserved, is defined as follows. Each target
comment for the training set is randomly sampled
from the original comment set C and the corre-
sponding comment’s context is defined as the 5
nearest comments from Cp that precede the target
danmu in the video timeline. This follows the ob-
servation made in Livebot (Ma et al., 2019), that
the semantic and textual similarity of comments

2github.com/fireflyHunter/Cold-Video-Danmu-
Generation

56



is correlated to their timeline proximity and that
the danmu context should be limited to the 5 near-
est comments. We also add a causality constraint
by applying the constraint that the comments must
have been published before the target danmu in
natural time.

We sample the training data for p =
0%, 5%, 30%, 50%, 70% and 100%, to form a
combined training set of 4,800,145 pairs of target
comment/context comments. Target comments can
be sampled multiple times for different contexts.

For the 200 videos of the test set, we focus on the
video highlights by only selecting 1879 comments
in the most frequently commented moments in the
video timeline. To study the system performance
under different comment densities, we build one
test set for each of the proposed values of p.

3.3 Video Information Extraction

We further augment the complete danmu comment-
ing dataset multi-modally by extracting the audio
and the subtitle information in addition to the vi-
sual and textual comment information. We believe
that these additional features will help with the cold
start problem.
Visual & Audio Signals. We follow standard prac-
tice by sampling one video frame per second of
video. The frame from the i-th second of the video
is denoted as fi. The audio soundtrack is extracted
from a video and uniformly re-sampled using a
16kHz standard.
Subtitles. We observe that human created danmu
comments frequently respond to speech in the
video. Fig. 1 shows an example of it: viewers
are asked in the subtitles, to post danmu comments.
This motivates us to transcribe the speech from
the videos. Instead of using speech recognition,
we opt to use optical character recognition (OCR).
We found that the quality of transcripts produced
by speech recognition tools was by comparison of
poor quality. While most of the videos on the plat-
form embed speech subtitles that OCR tools can
accurately identify. Lastly, captions also display
non-speech information which could be exploited.
For OCR, we use the open-source Tesseract (Kay,
2007) OCR engine on the lower half of the sampled
video frames.

Note that only 109 videos out of 4672 videos
contained zero recognisable text and each video
contains an average of 13.97 unique subtitles (see
Fig. 3).
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Figure 3: Histogram of the number of subtitles in the
videos. For most of the videos there are less than 20
unique subtitles.

4 Network Architecture

Our proposed model, presented in Fig 4, applies
standard Transformer modules with an encoder-
decoder architecture. During the encoding stage,
visual, audio and text features are first encoded
respectively, then three transformer modules are
used to fuse the information for the three modalities
recursively. In the decoder, the target comment is
decoded through a transformer layer with multiple
multi-head attention modules that attend to three
encoded multi-modal representations respectively.

4.1 Video Encoder
As in (Ma et al., 2019), video frames are encoded
through a pre-trained 18-layer ResNet. We take
the output from the last pooling layer of ResNet as
visual feature, the frame vector of the i-th second
of the video is denoted as vi ∈ Rn18 , where n18 =
512 is the size of the resulting ResNet18 features.
The frame vectors in the video clip are combined
as v̂i = {vi−k, . . . , vi}.

4.2 Audio Encoder
For the audio signal, we use 20-dimensional mel-
frequency cepstral coefficients (MFCCs) and an-
other 20-dimensional MFCCs derivatives as audio
frame features (Di Gangi et al., 2019). These are ex-
tracted with a Hanning window of 40 ms length and
32 ms hop size. We include all audio frames as the
audio input, hence we sample 32 audio vectors for
each second of the audio. The audio information
at time point i is denoted as aji , where j is the j-th
audio frame vector in the window analysis at time
i. A GRU module (Chaoqun et al., 2020) is applied
to recursively encode the input audio sequence. At
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Figure 4: Architecture of the proposed model.

each stage, the current hidden state hji is calculated
based on the last hidden state hj−1

i and the current
input audio frame vector aji . The sequence of hid-
den states hji for all audio frames is concatenated
into an audio encoder output âi ∈ Rna×512, where
na = 32 × k is the number of audio frames in
the analysis window and 512 the dimension of the
hidden state.

4.3 Text Encoder
Contextual comments are concatenated with a spe-
cial delimiter token Td inbetween each comment
and then combined with the unique subtitles from
the analyzed k second window. As opposed to
Livebot (Ma et al., 2019), where there are always
5 context comments, in our cold start scenario we
sometimes have less than 5 and even 0 comments.
In the extreme case we use a special token Tn with
an empty comment field to show that no context
comments are available.

All unique subtitles within analysis window
s[i−k,i] are also concatenated with the same delim-
iter token. Finally, we form the text input by com-
bining comment sequence and subtitle sequence
with Td.

We remove the punctuation and segment words
using Jieba (an open-sourced Chinese text segmen-
tation tool). Each word of text input is then passed
to an embedding layer of size d × |V |, where d
is the dimension of the word embedding and |V |
is the size of the vocabulary. After embedding,
the text input for analysis window s[i−k,i], is now
represented as êi ∈ Rn×d.

4.4 Fusion of Modalities
Following the success of the Transformer architec-
ture in multi-modal processing (Ma et al., 2019;
Chaoqun et al., 2020), we adopt a multi-unit Trans-

former module to recursively learn and combine
representations from all three modalities. The
Transformer unit first encodes the text input êi
into a transitional hidden state He. Then, a second
transformer unit combines He and the input audio
with two multi-head attention modules, the first
one attending to âi and the second one attending
to He. Finally, another unit with three multi-head
attention modules is used to summarise the video
clip representation Hvae.

4.5 Decoder

In the model decoder, the output comment is gener-
ated through a transformer layer with 4 multi-head
attention modules that attend to the target comment
y, text hidden state He, visual hidden state Hae

and audio hidden state Hvae respectively. Then the
probability of output comment is produced with an
softmax layer on top of the decoder output.

5 Network Training Regime

5.1 Multi-Density Learning

A key aspect of our method is to consider all the
different cold start scenarios together by adopting
a multi-task training strategy.

In detail, our training regime is imple-
mented by randomly assigning, at each mini-
batch, the percentage p of earlier comments
that are kept from a fixed set of values
{0%, 5%, 30%, 50%, 70%, 100%}. Recall that
p = 0% corresponds to the cold start problem,
and p = 100% corresponds to the situation where
all other comments are available (such as in Live-
bot (Ma et al., 2019)). By alternating between these
values of p, we are able to train the network for both
the cold start and Livebot scenario.
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5.2 Training Detail

The video analysis window size k is set to 5 (s). For
the text input, we build the vocabulary by selecting
the most frequent 50,000 words in the dataset and
set the max length of the input text sequence to
50. In the model, the text embedding is of size 512
and is randomly initialized before training. The
dimension of the audio’s GRU hidden state is set to
512. We apply the same setting for all transformer
components used in the network. For each trans-
former, the hidden state dimension is set to 512,
the feed forward network dimension is 2048, the
number of heads is 8 and the number of blocks is
6. The loss criterion is cross-entropy. The number
of epochs is set to 10, the batch size to 64 and we
use the Adam optimizer (Kingma and Ba, 2014)
with settings β1 = 0.9, β2 = 0.998, weight decay
=1×10−4, ε = 1×10−8 and learning rate 1×10−4.
All training was done on a Linux server with a sin-
gle RTX 2080 Ti graphic card, 16 cores Intel(R)
Xeon(R) CPU E5-2623 v4 @ 2.60GHz and 256GB
RAM. The model is implemented using Pytorch
1.4.0 and Python 3.6. With above settings, it takes
around 34 hours to complete the training.

6 Experiments

In this section we report results for our investiga-
tion of comment generation. We use the Livebot
model (Ma et al., 2019) as a baseline. Specifically,
we use the code from (Wu et al., 2020), trained
on our full dataset with only video frames and sur-
rounding comments as input. The models proposed
in (Chaoqun et al., 2020; Zhang et al., 2020) are
very recent and their code is not publicly avail-
able yet, so we do not consider these as one of our
baseline methods. Other older neural architectures
such as LSTM are also not included in this study
since it is well established that Transformers are
the method of choice for modelling multi-modal
signals.

6.1 Evaluation

We note that reference-based metrics for generation
tasks like BLEU and ROUGE are not suitable for
evaluation of video comments (Das et al., 2017;
Ma et al., 2019; Zhang et al., 2020). Hence we
follow (Das et al., 2017) and focus on the ability to
rank the correct comment originally appearing at
this point in the video over other comments taken
from the dataset. We evaluate our system through
a retrieval based protocol: the model is asked to

re-rank a candidate set for each test sample. The
comment set for re-ranking is made of 100 com-
ments, including 5 correct groundtruth comments
for this point in the video, the 20 most similar
comments to the title of the video based on tf-idf
score (plausible candidates), the 20 most frequent
comments in the dataset and 55 randomly sampled
comments.

We report the Recall@k, Precision@k, Mean
Rank (MR) and Mean Reciprocal Rank (MRR) as
evaluation metrics on this retrieval task. The confi-
dence interval is reported for each of these metrics
with confidence level at 95% (for R@k, we use the
confidence interval for population proportions).

6.2 Ablation Study

The retrieval task results are reported in Table 3
and Figure 5. In this ablation study, we compare 4
variants of the model.

• Livebot (Ma et al., 2019) leverages textual
and visual information in a Transformer archi-
tecture. It is trained on the extended dataset
using the implementation provided in (Wu
et al., 2020). The training is done here with
p=100%.

• Livebot-t applies the same network architec-
ture as textbfLivebot, but is trained with our
multi-density training strategy to evaluate the
effectiveness of our proposed training regime.

• MCVT is the final system proposed in this
work, which includes the training regime and
the inclusion of the additional audio and sub-
title features.

• MCVT-Zero is listed to further examine the
performance limit in the cold start scenario,
i.e. we assume a situation where no comments
are present. Thus, we train the MCVT net-
work uniquely on the cold start scenario for
p = 0%

The results in Table 3 show that Livebot-t out-
performs the baseline Livebot model in most cases,
and thus demonstrates the effectiveness of our
training strategy. One exception is found when
p = 100%, the Livebot model, trained only
with densely commented videos, slightly outscores
Livebot-t, we think this means the information
learned from multi-density training strategy pro-
duces extra noise when the model only aims to
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Figure 5: Model performance for R@5, R@1, MRR, at
different comment densities p (see Table 3).

generate comments for popular videos. By con-
trast, from the third and fourth rows of Table 3,
we can see that our MCVT model has similar per-
formance to MCVT-zero, which has been trained
specifically for the complete cold start scenario.
In this situation, the extra knowledge gained from
learning popular videos does not appear to affect
the performance in the cold start situation. This
comparison between the behaviour of the Livebot
and MCVT systems potentially demonstrates the
advantage of our training regime in the case of cold
start scenario.

We also see that our model outperforms Livebot-
t in every scenario, which also supports the idea
that integrating the audio signal and subtitle in the
generation system can significantly improve the
performance of the model.

6.3 Human Evaluation
Additionally, we also use human judgements to ob-
tain a more intuitive and reliable measurement of
the generated comments. A subset of 50 videos was
randomly sampled from the 200 videos of the test
set. Three native Chinese speakers familiar with
danmu were asked to rate the quality of the gener-
ated comments on three criteria: fluency, relevancy
and engagement.

• Fluency is intended to measure the language
quality of the generated comment.

• Relevancy measures the semantic relevancy
between the generated comment and the input
video and nearby comments.

• Engagement should reflect how likely it is
that the generated comment will motivate oth-
ers to respond.

Model p Fluency Relevance Engagement

MCVT 0% 4.25 3.17 2.76
MCVT 5% 4.33 3.36 2.99
MCVT 50% 4.59 3.78 3.07
MCVT 100% 4.47 3.91 2.97
Human - 4.79 3.58 3.01

Table 2: Human evaluation on 50 videos from the test
set. Each comment is graded between 1 and 5, by 3
reviewers, for their language fluency, relevance to the
video content and on how likely they are to provoke
other viewers to also comment.

The score for all 3 measurements ranges from
1 (poor) to 5 (excellent). The final score is the av-
erage of the scores of the three annotators. The
evaluation was conducted on the comments gener-
ated by our method for p ∈ {0%, 5%, 50%}. For
reference, we also evaluate the groundtruth com-
ment set for these videos.

Table 2 reports the results of this human evalu-
ation. We can see that the overall performance of
model is almost indistinguishable from real danmu
comments. Our relevancy and engagement scores
are actually higher when p ≥ 50%. The quality of
our model degrades slightly for the complete cold
start scenario, but the results are still quite close to
human comments.

6.4 Case Study

Examples of predicted outputs are shown in Fig. 6.
The corresponding video frame shows a groundhog
being fed. The subtitle, context comment, gener-
ated comments and target comments are reported
in the table to the right. We can see that the model
generates reasonable comments, which are relevant
to the video shot and match the video’s positive
emotion (e.g. "laugh", "hahaha" and "lol"), even in
the case of a complete cold start.

7 Conclusions and Further Development

In this paper we investigate the cold video start
problem in automated danmu comment generation.
We propose a multi-modal fusion network which
includes processing of video frames, already pub-
lished comments, and also audio and caption text.
We train it for different comment density scenarios
and perform extensive experiments on an expanded
danmu video dataset. Results demonstrate the ad-
vantage of our method over the state-of-the-art in
solving the cold video start problem.
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Table 3: Results of comment generation module, model performance is presented with metrics of R@k, P@k, MRR
(higher is better, showed in percentage) and MR (lower is better), p is the percentage of the preserved comments
applied in test set.

Model p R@1 R@5 R@10 MR MRR P@5 P@10

Livebot 0 % 6.56 ± 0.05 22.23 ± 0.22 31.36 ± 0.29 22.15 ± 0.37 16.6 ± 0.48 6.44 ± 0.18 6.58 ± 0.18
Livebot-t 0 % 7.09 ± 0.06 24.78 ± 0.23 37.77 ± 0.36 19.86 ± 0.46 20.4 ± 0.48 6.89 ± 0.18 8.02 ± 0.18
MCVT-zero 0 % 8.79± 0.07 27.25 ± 0.25 45.58 ± 0.44 18.28 ± 0.33 25.6 ± 0.51 8.45 ± 0.18 8.85 ± 0.20
MCVT 0 % 8.65 ± 0.07 27.36 ± 0.25 47.90 ± 0.44 18.81 ± 0.33 25.8 ± 0.52 8.70 ± 0.19 8.68 ± 0.19
Livebot 5 % 6.49 ± 0.05 23.49 ± 0.22 32.88 ± 0.31 21.59 ± 0.34 17.4 ± 0.48 6.15 ± 0.19 6.74 ± 0.18
Livebot-t 5 % 9.13 ± 0.08 25.34 ± 0.23 39.40 ± 0.38 19.51 ± 0.34 25.7 ± 0.48 8.90 ± 0.21 8.59 ± 0.21
MCVT 5 % 19.74 ± 0.18 42.44 ± 0.4 56.70 ± 0.55 12.90 ± 0.35 32.1 ± 0.64 18.75 ± 0.36 19.11 ± 0.38
Livebot 30 % 13.11 ± 0.13 28.45 ± 0.27 41.50 ± 0.40 19.93 ± 0.37 26.0 ± 0.47 12.88 ± 0.24 11.59 ± 0.24
Livebot-t 30 % 13.75 ± 0.13 28.19 ± 0.27 45.59 ± 0.44 18.71 ± 0.35 27.5 ± 0.48 13.14 ± 0.27 13.07 ± 0.27
MCVT 30 % 24.36 ± 0.22 47.77 ± 0.46 61.38 ± 0.59 11.87 ± 0.31 36.4 ± 0.59 24.85 ± 0.41 24.15 ± 0.42
Livebot 50 % 13.27 ± 0.12 27.17 ± 0.26 41.98 ± 0.40 20.44 ± 0.37 27.8 ± 0.44 13.37 ± 0.29 13.09 ± 0.27
Livebot-t 50 % 13.31 ± 0.12 29.74 ± 0.29 47.07 ± 0.46 18.39 ± 0.34 29.1 ± 0.51 15.59 ± 0.31 16.23 ± 0.32
MCVT 50 % 26.75 ± 0.25 48.23 ± 0.46 62.57 ± 0.60 11.23 ± 0.29 37.8 ± 0.67 26.17 ± 0.42 26.89 ± 0.42
Livebot 70 % 14.35 ± 0.14 27.59 ± 0.26 42.09 ± 0.41 19.13 ± 0.36 28.1 ± 0.48 15.15 ± 0.34 14.76 ± 0.34
Livebot-t 70 % 15.85 ± 0.14 32.22 ± 0.31 55.44 ± 0.53 18.11 ± 0.36 29.5 ± 0.48 16.77 ± 0.35 17.01 ± 0.35
MCVT 70 % 27.38 ± 0.25 51.04 ± 0.49 63.21 ± 0.61 11.10 ± 0.27 39.1 ± 0.71 28.25 ± 0.43 27.65 ± 0.42
Livebot 100 % 18.83 ± 0.16 34.50 ± 0.33 52.17 ± 0.51 17.81 ± 0.36 34.7 ± 0.48 18.88 ± 0.36 18.31 ± 0.36
Livebot-t 100 % 17.17 ± 0.15 32.89 ± 0.31 52.91 ± 0.51 18.09 ± 0.36 33.2 ± 0.48 18.15 ± 0.36 18.11 ± 0.36
MCVT 100 % 29.65 ± 0.28 55.36 ± 0.53 63.90± 0.62 10.81 ± 0.29 40.8 ± 0.65 29.79 ± 0.43 29.82 ± 0.43

P Context comment Output Target Comments

0%
-

吃土拨鼠2333333

Eating groundhog lol

兔子有时候也有这种状态

Rabbits sometimes will behave like this

这两只打架受内伤了，要不我们……

These two were injured internally in the fight, 

should we...

土八鼠听着蛮可爱的

The groundhogsounds cute

5%

都是老鼠，待遇差别真大

They are all rats, the treatment is really different.

这是熊吧 ?

Is this a bear?

我看老鼠要笑到缺氧

I think the mouse is going to laugh 

until hypoxia

30%

老子，在吃饼干！

I'm eating cookies!

这个土拨鼠中暑了活不了了

This groundhog can‘t live after heatstroke.

都是老鼠，待遇差别真大

They are all rats, the treatment is really different.

我看老鼠要笑到缺氧

I think the mouse is going to laugh 

until hypoxia

100%

这个土拨鼠很漂亮的

This groundhog is very beautiful

吃了你们就不给了

You won't give it if I eat it.

土拨鼠哈哈哈

Groundhog hahaha

老子，在吃饼干！

I'm eating cookies!

都是老鼠，待遇差别真大

They are all rats, the treatment is really different.

被土拨鼠洗脑了哈哈哈哈哈哈

Brainwashed by groundhog 

hahahahahaha

Subtitle: The guy and his friend laughed and pass the biscuit to the 

groundhog’s mouth.

Figure 6: An example from the test set, left side is the video frame and the subtitle translation of the time point. The
table on the right shows the target comments, context comments and the generated comment in different preserve
rate p.

Our next research goal is to leverage a highlight
detection method in this task to seek to further
improve the system performance, since this is ex-
pected to reveal areas of likely user interest on the
video timeline which could provide pointers for
preferred locations for the automated creation of
danmu comments.
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Abstract
We construct the first ever multimodal sar-
casm dataset for Spanish. The audiovisual
dataset consists of sarcasm annotated text that
is aligned with video and audio. The dataset
represents two varieties of Spanish, a Latin
American variety and a Peninsular Spanish va-
riety, which ensures a wider dialectal coverage
for this global language. We present several
models for sarcasm detection that will serve
as baselines in the future research. Our re-
sults show that results with text only (89%) are
worse than when combining text with audio
(91.9%). Finally, the best results are obtained
when combining all the modalities: text, audio
and video (93.1%).

1 Introduction

Figurative language is one of the most difficult
forms of natural language to model computation-
ally and there have been several studies in the past
focusing on its subcategories such as metaphor in-
terpretation (Xiao et al., 2016; Hämäläinen and Al-
najjar, 2019a), humor generation (Hämäläinen and
Alnajjar, 2019b) and analyzing idioms (Flor and
Klebanov, 2018). Sarcasm is one of the extreme
forms of figurative language, where the meaning
of an utterance has little to do with the surface
meaning (see Kreuz and Glucksberg 1989).

Understanding sarcasm is difficult even for us
humans as it requires certain mental capacities such
as a theory of mind (see Zhu and Wang 2020) and it
is very dependent on the context and speaker who is
being sarcastic. There are also very different view
to sarcasm in the literature, for example, according
to Kumon-Nakamura et al. (1995) sarcasm requires
an allusion to a failed expectation and pragmatic
insincerity (see Grice 1975) to be present in the
same time. However, Utsumi (1996) highlights
that these two preconditions are not enough, as
sarcasm needs an ironic context to take place.

Haverkate (1990) argues that, in the context of
sarcasm, the meaning difference can either be the

complete opposite of the semantic meaning of a
sentence or somewhat different as seen in the lexi-
cal opposition of the words and the intended mean-
ing. The fact that there are several different theo-
retical ways of understanding sarcasm, highlights
the complexity of the phenomenon.

In this paper, we present an audio aligned dataset
for sarcasm detection in Spanish. The dataset con-
taining text and video timestamps has been released
openly on Zenodo1. An access to the dataset with
the video clips2 can be granted upon request for
academic use only. In addition, we will present a
baseline model for this dataset to conduct multi-
modal sarcasm detection in Spanish.

2 Related work

In this section, we will present some of the re-
cent related work on sarcasm detection. There
has been some work also on sarcasm generation
(Chakrabarty et al., 2020) and interpretation (Peled
and Reichart, 2017), but they are rather different as
tasks and we will not discuss them in detail.

Badlani et al. (2019) show an approach for sar-
casm detection in online reivews. They train a
CNN (convolutional neural network) based model
on separate feature embeddings for sarcasm, humor,
sentiment and hate speech. Similarly, Babanejad
et al. (2020) also detect sarcasm in text. They com-
bine an LSTM (long short-term memory) model
with BERT. Dubey et al. (2019) also work on text
only by detecting sarcastic numbers in tweets. They
experiment with rules, SVMs (support vector ma-
chines) and CNNs.

Cai et al. (2019) use an LSTM model to detect
sarcasm in tweets. Their approach is multimodal in
the sense that it takes text and images into account,
but it does not deal with audio and video like our

1Open access version of the data (contains text only)
https://zenodo.org/record/4701383

2Access by request version of the data (videos and text)
https://zenodo.org/record/4707913
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Speaker Utterance Translation Sarcasm
Archer No, Lana, para nada No, Lana, not at all true

Stan Lo siento chicos, mi papá dice que está muy
ocupado con los Broncos, no tiene tiempo

I am sorry guys, my dad says he is very
busy with the Broncos, he doesn’t have time false

Lana Decías algo acerca de un plan You said something about a plan true

Table 1: Example sentences from the dataset.

approach.
Castro et al. (2019) present a multimodal sar-

casm dataset in English. The dataset consists of
annotated videos from TV sitcoms such as Friends
and the Big Bang Theory, apart from being in En-
glish instead of Spanish, the main difference is that
our dataset consists of animated cartoons instead
of TV shows played by real people. Another big
difference is in the data collection as they opted for
querying sarcastic video clips, where as the data
we work with represents full episodes. Chauhan
et al. (2020) use this data and present a multimodal
sarcasm detection framework based on a Bi-GRU
model.

Many of the related work has been focusing on
text only. Research on multimodal approaches has
been carried out only for English data, not unlike
the textual approaches.

3 Dataset

We base our work on the sarcasm annotated dataset
from the MA thesis of the second author of this
paper Hämäläinen (2016)3. This dataset is based
on two episodes of South Park with voice-overs
in Latin-American Spanish and two episodes of
Archer with voice-overs in Spanish of Spain. The
dataset has the speaker, their utterance and sarcasm
annotations for each utterance in all of the episodes.
However, the released data has been released shuf-
fled for copyright reasons and it contains text only.
Unlike the recent multimodal dataset for English
(Castro et al., 2019), this data is expert annotated
according to several different theories on sarcasm.

Annotation based on theories is important in or-
der to establish a concrete meaning for sarcasm and
to avoid the same mistakes as Castro et al. (2019)
had. In their paper, they report that the most sarcas-
tic character in The Big Bang Theory is Sheldon,
however this cannot be true as one of the main char-
acteristics of Sheldon is that he does not understand
sarcasm. Therefore, their annotations ignore the
fundamentally important characteristic of sarcasm,

3Available on https://www.kaggle.com/mikahama/the-best-
sarcasm-annotated-dataset-in-spanish

which is speaker intent, and rather they consider
sarcasm purely based on subjective intuition.

In order to produce a multimodal dataset out
of the existing one, we locate the corresponding
videos for the annotations and manually align them
with the video. We use our own in-house tool Jus-
tAnnotate for this task4. This was a time consum-
ing task, but as a result we ended up with a high-
quality dataset with audio, video and text aligned.
While aligning the dataset, we found several errors
in the original transcriptions that we fixed. We did
not alter the sarcasm annotations. In addition to the
alignment, we introduced scene annotations. An
episode of a TV show consists of many different
scenes, and sarcasm is typically highly contextual,
we indicate in the data which utterances belong to
the same scene to better capture the context of each
utterance.

Table 1 shows an example of the dataset. The
English translation is provided for convenience,
but it is not included in the dataset itself. Each line
is aligned with audio and video. As we can see
from these examples, sarcasm in the dataset is very
contextually dependent as the sarcastic sentences
presented in the table might equally well be sincere
remarks if uttered by someone else or in a different
context.

Figure 1: Archer uttering a sarcastic sentence that goes
against the common sense

Figure 1 shows an example of a scene in the cor-
pus. In this particular scene, Archer asks sarcasti-
cally ¿Dónde se compra la leche materna? (Where

4https://mikakalevi.com/downloads/JustAnnotate.exe
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does one buy breast milk?). This is an example
of sarcasm in the corpus where sarcasm violates
common sense. Depending on the speaker, the ut-
terance might be sarcastic or the speaker might lack
knowledge on the topic.

Figure 2: Cartman uttering a sarcastic sentence that can
be resolved only by visual cues.

In Figure 2 Cartman comments on the neckpiece
of Stan by saying Esas corbatas están de moda,
tiene suerte de tenerla (Those neckpieces are fash-
ionable, you are lucky to have one). This is an
example of a very different type of sarcasm that
cannot be detected just by having common knowl-
edge about the world. In order to understand the
sarcastic intent, a system would need to have an ac-
cess to the video as well to detect the unfashionable
neckpiece and the disappointed facial expression
of Stan.

4 Method

In this section, we present our method for detecting
sarcasm in the multimodal dataset. We experiment
with text only, text and audio and all modalities. All
models are trained by using the same random train
(80%) and test (20%) splits. For the neural model,
10% of the training split is used for validation.

4.1 Text only

For the text only model, we experiment with two
models. In the first one, we use an off the shelf
OpenNMT (Klein et al., 2017) model. We train the
model using a bi-directional long short-term mem-
ory (LSTM) based model (Hochreiter and Schmid-
huber, 1997) with the default settings except for
the encoder where we use a BRNN (bi-directional
recurrent neural network) (Schuster and Paliwal,
1997) instead of the default RNN (recurrent neural
network). We use the default of two layers for both
the encoder and the decoder and the default atten-

tion model, which is the general global attention
presented by Luong et al. (2015). The model is
trained for the default 100,000 steps.

The second model is a Support Vector Machine
(SVM) (Schölkopf et al., 2000), due to its efficiency
when dealing with a high dimensional space and
ability to train a model with small data. We use the
SVM implementation provided in Scikit-learn (Pe-
dregosa et al., 2011). Following the work of Castro
et al. (2019), we use an RBF kernel and a scaled
gamma. The regularization parameter C is set for
1000. This setup is followed in all of our SVM
models.

Regarding the textual features of the SVM, we
make use of GloVe (Pennington et al., 2014) em-
beddings5 trained on the Spanish Billion Words
Corpus (Cardellino, 2019) and ELMo (Peters et al.,
2018) embeddings provided by (Che et al., 2018).
Each textual instance is tokenized using TokTok6,
and then a sentence-level vector is constructed by
computing the centroid (i.e., average vector) of all
tokens, for each word embeddings type. In the case
of ELMo, the vector of each token is the average
of the last three layers of the neural network. The
input to the SVM model is the concatenation of the
two types of sentence embeddings.

4.2 Text and audio

This model is an SVM based model that extends the
textual SVM model with audio features. We do not
extend the OpenNMT model with audio features
as the library does not provide us with audio and
video inputters.

For all the audio, we set their sample size into
22 kHz to convert the data into a manageable and
consistent size. Thereafter, we extract different
audio features using librosa (McFee et al., 2020).
These features include short-time Fourier transform
(Nawab and Quatieri, 1987), mel-frequency cep-
stral coefficients (Stevens et al., 1937), chroma,
Tonnetz (Harte et al., 2006), zero-crossing rate,
spectral centroid and bandwidth, and pitches. In
total, 13 features7 were extracted. By combining
all these features, we get the audio vector.

5https://github.com/dccuchile/
spanish-word-embeddings

6https://github.com/jonsafari/tok-tok
7We used the following methods from librosa: stft, mfcc,

chroma_stft, spectral_centroid, spectral_bandwidth, spec-
tral_rolloff, zero_crossing_rate, piptrack, onset_strength, mel-
spectrogram, spectral_contrast, tonnetz and harmonic
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4.3 All modalities
For videos, instead of trying to represent an en-
tire video as a vector like some of the existing
approaches (Hu et al., 2016) to video processing,
we extract 3 frames for each video corresponding
to an utterance. We extract the frames by dividing
the frames of a video clip into three evenly sized
chunks and taking the first frame of each chunk.
The key motivation behind this is that we are work-
ing with animation, where most of the frames are
static and changes in between frames are not big.
Therefore representing the entire video clip is not
important and it would only increase the complex-
ity of the system.

We extract visual features from each of the three
frames extracted using a pre-trained ResNet-152
model (He et al., 2016). Features are taken from
the last layer in the network, and the overall video
vector is the sequence of the three feature embed-
dings, in the same order. All the vectors described
above (i.e., textual, audio and visual vectors) are
passed as input to the all-modalities SVM model.

5 Results

In this section, we report the accuracy of predic-
tions by the neural model and the three SVM mod-
els that are based on 1) text only, 2) text and audio,
and 3) text, audio and video. The results can be
seen in Table 2.

Input Accuracy
Neural Model

Text 87.5%
SVM

Text 89.0%
Text + Audio 91.9%
Text + Audio + Video 93.1%

Table 2: Accuracies of the predictions by all models for
the sarcasm detection task.

As we can see in the results, having more modal-
ities in the training improved the results. The audio
features were able to capture more features impor-
tant for sarcasm than pure text. Having all the
three modalities at the same time gave the best re-
sults, with a 4.1% gain in the accuracy from the
text-based model. The neural model reached to
the lowest accuracy, most likely due to the fact
that it was not trained with pretrained embeddings,
a source of information that was available to the
SVM models.

5.1 Error analysis

When we look at the predictions by the model best
model (text + audio + video), we can see that the
sarcasm detection is not at all an easy task.

An interesting example of a correctly predicted
sarcastic utterance is Lucen bien muchachos. ¡A
patear culos! (You look great, guys. Let’s kick
some ass!). This is an example of a visually inter-
pretable sarcasm where the kids the sentence was
uttered to looked all ridiculous. This would seem,
at first, to highlight that the model has learned
something important based on the visual features.
However, we can see that this is not at all the case
as the model predicts incorrectly the following sar-
castic utterance: Sí Stan, es lo que quiere la gente.
No te preocupes, luces genial. (Yes Stan, that is
what the people want. Don’t worry, you look great.)
The context is similar to the one where the model
predicted the sarcasm correctly, which means that
the visual features are not representative enough for
the model to correctly annotate detect this sarcastic
utterance.

Interestingly, the model predicted Sí amigo, es
una réplica de la corbata del Rey Enrique V (Yes
friend, it is a replica of the neckpiece of the King
Henry V) as sarcastic while in fact the uttrance was
not sarcastic. This utterance refers to the same
neckpiece as seen in Figure 2. The neckpiece
appeared frequently in sarcastic contexts, so the
model overgeneralized that anything said about the
neckpiece must be sarcastic.

6 Conclusions

We have presented the first multimodal dataset for
detecting sarcasm in Spanish. The dataset has been
released on Zenodo. Our initial results serve as a
baseline for any future work on sarcasm detection
on this dataset.

Based on the results, it is clear that multimodal-
ity aids in detecting sarcasm as more contextual
information is exposed to the model. Despite the
improvements when considering multiple modal-
ities, sarcasm detection is a very difficult task to
model as it demands a global understanding of the
world and the specific context the sarcastic utter-
ance is in, as discussed in our error analysis. Even
though the overall accuracy is high, it is clear the
model makes errors that indicate that it has learned
the data, but not the phenomenon.
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Abstract

Recent progress in natural language process-
ing has led to Transformer architectures be-
coming the predominant model used for nat-
ural language tasks. However, in many real-
world datasets, additional modalities are in-
cluded which the Transformer does not di-
rectly leverage. We present Multimodal-
Toolkit,1 an open-source Python package to
incorporate text and tabular (categorical and
numerical) data with Transformers for down-
stream applications. Our toolkit integrates
well with Hugging Face’s existing API such as
tokenization and the model hub2 which allows
easy download of different pre-trained models.

1 Introduction

In recent years, Transformers (Vaswani et al.,
2017) have become popular for model pre-training
(Howard and Ruder, 2018; Peters et al., 2018; De-
vlin et al., 2019) and have yielded state-of-the-art
results on many natural language processing (NLP)
tasks. In addition, well-documented Transformer
libraries such as Hugging Face Transformers (Wolf
et al., 2020), and AllenNLP (Gardner et al., 2018)
have democratized NLP, making it easier to pro-
ductionize and experiment on Transformers.

However, there are not a lot of comprehensive
tools for Transformers to work with tabular data.
Often in real-world datasets, there are tabular data
as well as unstructured text data which can pro-
vide meaningful signals for the task at hand. For
instance, in the small example in Figure 1, each
row is a data point. Columns Title and Review
Text contain text features, columns Division
Name, Class Name, and Department Name
contain categorical features, and the Age column
is a numerical feature. To the best of our knowl-
edge, no tool exists that makes it simple for Trans-
formers to handle this extra modality. Therefore,

1Github: https://git.io/JO5a6
2https://huggingface.co/docs

Figure 1: An example of a clothing review classifica-
tion dataset. Each row is a data point consisting of text,
categorical features, and numerical features.

given the advances of Transformers for natural
language tasks and the maturity of existing Trans-
former libraries, we introduce Multimodal-Toolkit,
a lightweight Python package built on top of Hug-
ging Face Transformers. Our package extends ex-
isting Transformers in the Hugging Face’s Trans-
formers library to seamlessly handle structured tab-
ular data while keeping the existing tokenization
(including subword segmentation), experimental
pipeline, and pre-trained model hub functionalities
of Hugging Face Transformers. We show the effec-
tiveness of our toolkit on three real-world datasets.

2 Related Work

There have been several proposed Transformer
models that aim to handle text features and addi-
tional features of another modality. For pre-trained
Transformers on images and text, models such as
ViLBERT (Lu et al., 2019) and VLBERT (Su et al.,
2020) are mainly the same as the original BERT
model but treat the extra image modality as addi-
tional tokens to the input. These models require
pre-training on multimodal image and text data.
On the other hand, while treating image features
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as additional input tokens, MMBT (Kiela et al.,
2019) proposes to use pre-trained BERT directly
and fine-tune on image and text data. This is simi-
lar to Multimodal-Toolkit in which no pre-training
on text and tabular data is needed.

Likewise, Transformers have been adapted to
align, audio, visual, and text modalities in which
there is a natural ground truth alignment. MulT
(Tsai et al., 2019) is similar to ViLBert in which
co-attention is used between pairs of modalities but
also includes temporal convolutions so that input to-
kens are aware of their temporal neighbors. Mean-
while, Rahman et al. (2020) injects cross modality
attention at certain Transformer layers via a gating
mechanism.

Finally, knowledge graph embeddings have also
been effectively combined with input text tokens
in Transformers. Ostendorff et al. (2019) com-
bines knowledge graph embeddings on authors
with book titles and other metadata features via
simple concatenation for book genre classification.
On the other hand, for more general language tasks,
ERNIE (Zhang et al., 2019) first matches the to-
kens in the input text with entities in the knowledge
graph. With this matching, the model fuses these
embeddings to produce entity-aware text embed-
dings and text-aware entity embeddings.

However, these models do not capture categor-
ical and numerical data explicitly. Hugging Face
does include LXMERT (Tan and Bansal, 2019) to
handle language and vision modality but this can
not be easily adapted for categorical and numeri-
cal data. Nevertheless, existing multimodal Trans-
former models do give good insights into how to
combine categorical and numerical features. ViL-
BERT and VLBERT for example include image
modality as input tokens which lead to one of our
simple baseline of categorical and numerical fea-
tures as additional token inputs to the model. Like-
wise, the gating mechanism Rahman et al. (2020),
attention, and different weighting schemes have
all been shown to be useful in combining different
modalities.

3 Design

The goal of Multimodal-Toolkit is to allow users
to quickly adapt state-of-the-art Transformer mod-
els for situations involving text and tabular data
which occur often in real-world datasets. More-
over, we want to bring the benefits of Transformers
to more use cases while making it simple for users

Figure 2: The framework of Multimodal-Toolkit.
There is a data processing module that outputs pro-
cessed text, numerical, and categorical features that are
then fed as input to our Transformer With Tabular mod-
ule consisting of a Hugging Face Transformer and our
combining module.

of Hugging Face Transformers to adopt. Therefore,
we maintain the existing interface of the popular
Hugging Face Transformers library.

This design enables us to easily include more
Transformer models, leverage strengths of spe-
cific models, use a feature-rich training pipeline,
and integrate the thousands of community trained
models on Hugging Face’s model hub. We sup-
port a variety of Transformers (e.g. BERT, AL-
BERT, RoBERTa, XLNET) for both classification
and regression tasks. All together, this becomes a
reusable Transformer With Tabular component. We
also provide a data preprocessing module for cate-
gorical and numerical features. An overview of the
system is shown in Figure 2. Currently, the library
supports PyTorch Transformers implementations.

3.1 Combining Module
We implement a combining module that is model
agnostic that takes as input, x, the text features
outputted from a Transformer model and prepro-
cessed categorical (c) and numerical (n) features,
and outputs a combined multimodal representation
m. Although existing multimodal Transformers
incorporate cross-modal attention inside middle
Transformer layers, we choose the design in which
the modality combination comes after the Trans-
former because this module can be easily included
without much adaptation of the existing Hugging
Face Transformer interface and can be easily ex-
tended to new Transformers included in the future.

Inside the combining module, we implement var-
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Combine Feature Method Equation
Text only m = x

Concat m = x||c||n
Individual MLPs on categorical and-
numerical features then concat (MLP + Concat)

m = x||MLP(c)||MLP(n)

MLP on concatenated categorical and
numerical features then concat (Concat + MLP)

m = x||MLP(c||n)

Attention on categorical and numerical
features (Attention)

m = αx,xWxx+ αx,cWcc+ αx,nWnn

αi,j =
exp(LeakyReLU(aT [Wixi||Wjxj ]))∑

k∈{x,c,n} exp(LeakyReLU(a
T [Wixi||Wkxk]))

Gating on categorical and numerical
features and then sum (Rahman et al., 2020)
(Gating)

m = x+ αh
h = gc � (Wcc) + gn � (Wnn) + bh

α = min(
||x||2
||h||2

) ∗ β, 1)
gi = R(Wgi [i||x + bi)
where β is a hyperparameter and R is an activation function

Weighted feature sum on text, categorical,
and numerical features (Weighted Sum)

m = x+wc �Wcc+wn �Wnn

Table 1: The included combining methods in the combining module. Uppercase bold letters represent 2D matri-
ces, lowercase bold letters represent 1D vectors. b is a scalar bias, W represents a weight matrix, and || is the
concatenation operator. Please see Rahman et al. (2020) for details on the gating mechanism.

Dataset Task Size T C N
Airbnb Regression 64k 3 74 15
Clothing Classification 15k 2 3 3
PetFinder Classification 28k 2 14 5

Table 2: Statistics of the datasets involved in experi-
ments. T is the number of text columns. C is the num-
ber of categorical features, and N is the number of nu-
merical features.

ious methods of combining the different represen-
tations in their respective feature spaces into one
unified representation. These methods are inspired
by the related work in multimodal Transformers as
well as straightforward reasonable baselines such
as concatenation and multi-layer perceptron (MLP)
concatenation. Given a pre-trained Transformer,
the parameters of the combining module and Trans-
former are trained based on the supervised task. In
other words, the Transformer is further fine-tuned.
The included methods are shown in Table 1.

4 Experiments

In this section, we study the effectiveness of lever-
aging tabular features on data with text and tabular
data. We evaluate Multimodal-Toolkit on three
real-world datasets from Kaggle.

4.1 Datasets

Regression: For regression, we use the Mel-
bourne Airbnb Open Data (Airbnb) dataset (Xie,
2019) for the task of listing price prediction. Each
data example is an Airbnb listing. Text features
include the name of the listing, the summary of the
listing, and a host description.

Binary Classification: For binary regression,
we use Women’s E-Commerce Clothing Reviews
(Clothing) (Brooks, 2018). The source of the re-
views is anonymous. Data examples consist of a
review, a rating, the clothing category of the prod-
uct etc. The goal is to predict if the review is rec-
ommending the product.

Multiclass Classification: Finally, we also in-
clude the PetFinder.my Adoption Prediction
(PetFinder) dataset (PetFinder.my, 2018). Given
the listing information of a pet set for adoption, the
goal is to predict the speed at which a pet will be
adopted, represented as 5 classes. Text features
include the listing description and the pet name.

4.2 Experimental Setting

For experiments, we test each combining feature
method described in Table 1. In addition, as men-
tioned in Section 2 we test a baseline in which the
categorical and numerical features are also treated
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Airbnb Clothing PetFinder
Method RMSE MAE F1 AUPRC F1macro F1micro

Text Only 254.0 82.74 0.957 0.992 0.088 0.281
Unimodal 245.2 79.34 0.968 0.995 0.089 0.283
Concat 239.3 65.68 0.958 0.992 0.199 0.362
MLP + Concat 237.3 66.73 0.959 0.992 0.244 0.352
Concat + MLP 238.0 65.66 0.959 0.992 0.176 0.344
Attention 246.3 74.72 0.959 0.992 0.254 0.375
Gating (Rahman et al., 2020) 237.8 66.64 0.961 0.994 0.275 0.375
Weighted Sum 245.2 71.19 0.962 0.994 0.266 0.380

Table 3: Comparison of combining methods with results on regression and classification tasks. For each metric,
the best performing model is in bold. For regression we use Root-mean-squared Error (RMSE) and MAE (Mean
Absolute Error). In both cases, lower is better. For binary classification, we report F1 score and area under the
precision-recall curve (AUPRC). Meanwhile, for multiclass classification, we use F1macro and F1micro. In all
classification metrics, higher is better.

as text columns. For example, for the situation
in Figure 1, the text representing categorical fea-
tures in Division Name, Class Name, and
Department Name as well the numerical value
in Age would all be tokenized and be treated as
additional inputs to the Transformer. We denote
this baseline as Unimodal.

For the Clothing Review dataset, we use
bert-base-uncased as our Transformer and
tokenizer. For the Airbnb dataset and Pet
Adoption datasets, because there are some data
points containing non-English text, we use
bert-base-multilingual. We keep the
training settings consistent for a given dataset.
We train for 5 epochs and perform 4-fold-cross-
validation, reporting the mean performance. For
regression, we use a learning rate of 3e-3 while for
classification tasks we use a learning rate of 5e-5.
We report the results in Table 3.

4.3 Results

From Table 3, we observe the effectiveness of in-
corporating tabular features across different tasks
and datasets. For each real-world dataset, the text-
only baseline is the worst performing model. This
shows using only text data with Transformers may
be insufficient when extra tabular data is available.

However, how much the performance improves
by leveraging Tabular features depends on the
dataset. In the case of the Clothing Review dataset,
the text of the review was already a very strong sig-
nal to the prediction, extra tabular features did not
improve the performance much. We hypothesize
the strong performance of the text only baseline
may be due to the task of classifying review recom-

mendation simplifying to sentiment classification,
which the text modality provides the strongest sig-
nals. On the other hand, for the PetFinder dataset,
the text description of the animal may not be suffi-
cient to predict adoption speed. Rather, it is tabular
features such as the age or the breed of the pet.
Furthermore, the relative low raw performance of
PetFinder dataset could be attributed to the diffi-
culty of the task as a forecasting problem.

Additionally, although the Unimodal baseline
is the best for the clothing dataset, this method
does not appear to scale well when the number
of categorical and numerical features increases or
when the extra features’ text representation does
not reveal obvious semantic meaning.

5 Conclusion

This paper presents Multimodal-Toolkit, an open-
source Python library powered by Hugging Face
Transformers to learn on data that contains both
text and tabular data. We show the effectiveness
of incorporating tabular data and treating it as a
separate modality with the already powerful Trans-
formers. The modular design and shared API with
Hugging Face allow users quick access to Hugging
Face’s community uploaded Transformer models.

For future work, we aim to include support for
more Transformers and integrate the combining
module at earlier layers in the Transformer. We
hope the toolkit brings more research attention to
this data scenario and we welcome open-source
contributions to the project.
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Abstract

Recent vision-language understanding ap-
proaches adopt a multi-modal transformer pre-
training and finetuning paradigm. Prior work
learns representations of text tokens and visual
features with cross-attention mechanisms and
captures the alignment solely based on indi-
rect signals. In this work, we propose to en-
hance the alignment mechanism by incorporat-
ing image scene graph structures as the bridge
between the two modalities, and learning with
new contrastive objectives. In our prelimi-
nary study on the challenging compositional
visual question answering task, we show the
proposed approach achieves improved results,
demonstrating potentials to enhance vision-
language understanding.

1 Introduction

Vision-language tasks, such as image captioning
(Vinyals et al., 2015), visual question answering
(Antol et al., 2015), and visual commonsense rea-
soning (Zellers et al., 2018), serve as rich test-beds
for evaluating the reasoning capabilities of visually
informed systems. These tasks require joint un-
derstanding of visual contents, language semantics,
and cross-modal alignments. In particular, beyond
simply detecting what objects are present, models
have to understand comprehensively the semantic
information in an image, such as objects, attributes,
relationships, actions, and intentions, and how all
of these are referred to in natural language.

Inspired by the success of BERT (Devlin et al.,
2019) on a variety of NLP tasks, there has been
a surge of building pretrained models for vision-
language tasks, such as ViLBERT (Lu et al., 2019),
VL-BERT (Su et al., 2020), and UNITER (Chen
et al., 2020). Despite the impressive performance
on several vision-language tasks, these models suf-
fer from fundamental difficulties in learning ef-
fective visually grounded representations, as they

∗Equal contribution

Figure 1: A Visual question-answering example illus-
trating the effectiveness of using scene graph as the
bridge for cross-modal alignment

rely solely on cross-attention mechanisms to cap-
ture the alignment between image and text features,
and learn from indirect signals without any explicit
supervisions. Recently, Oscar (Li et al., 2020) in-
troduced object tags detected in images as anchor
points to ease the learning of semantic alignments
between image regions and word sequences. How-
ever, individual object tags in isolation ignore the
rich visual information, such as attributes and rela-
tionships between objects. Without such informa-
tion as contextual cues, the core challenge of ambi-
guity in visual grounding remains difficult to solve.
As Figure 1 shows, in order to answer the question
correctly, the model needs to reason about object
relationships. Without the relation "on" between
"cup" and "table", the model mistakenly thinks the
"cup" is on the "tray".

This work tackles the above challenges by intro-
ducing visual scene graphs as the bridge to align
vision-language semantics. Extracted from the im-
age using modern scene graph generators, a visual
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scene graph effectively depicts salient objects and
their relationships. The visually-grounded inter-
mediate abstraction permits more effective vision
language cross attention for disambiguation and
finer-grained alignment. Specifically, we propose
Samformer (Semantic Aligned Multi-modal trans-
FORMER) that learns the alignment between the
modalities of text, image, and graphical structure.
For each of object-relation labels in the scene graph,
the model can easily find the referring text seg-
ments in natural language, and then learn to align to
the image regions already associated with the scene
graph. On the basis of the visually-grounded graph,
we apply a contrastive loss and a masked language
model loss that explicitly encourage image-text
alignment. Furthermore, we propose a per-triplet
(object, relation, subject) contrastive loss to align
object and relation representations across the two
modalities respectively.

We adopt a set of datasets, including Microsoft
COCO Captions dataset (Lin et al., 2014), Visual
Genome (Krishna et al., 2016), VQA (Antol et al.,
2015), GQA (Hudson and Manning, 2019), Flicker
30k (Young et al., 2014), SBU (Ordonez et al.,
2011), and Conceptual Caption (Sharma et al.,
2018) to pre-train our model and fine-tune it on
visual compositional question answering (GQA)
(Hudson and Manning, 2019). Our preliminary
analyses show improved performance and demon-
strate the potential of the proposed approach on
broader visual-language applications.

2 Semantic Aligned Vision and
Language Transformer

This section presents the proposed semantic aligned
multi-modal transformer (Samformer) for vision-
language pre-training. Figure 2 provides an overall
architectural view of the method.

Given a pair of an image I and a text sequence w
describing the image, the goal of vision-language
pre-training is to learn a joint representation of
the pair which captures the alignment between the
words and image regions and can be adapted to
assist downstream tasks. Same as the previous
vision-language models (Li et al., 2020; Chen et al.,
2020), the proposed Samformer first separately en-
codes each modality into singular embedding fea-
tures, and then employs a multi-layer self-attention
transformer to align the features and obtain a cross-
modal contextualized representation.

Samformer differs critically from previous meth-

ods in that we incorporate the visual scene graph ex-
tracted from the image to enhance the cross-modal
representation learning. The structured, visually-
grounded graph encodes rich semantic information
(e.g., objects, relationships), which, compared to
isolated object tags (Li et al., 2020) and bare image
text singular features (Chen et al., 2020; Lu et al.,
2019; Su et al., 2020), offers valuable cues to re-
solve ambiguity and bridge together text and visual
semantics. We describe in details how visual scene
graph is integrated to interplay with the text and
image modalities for better alignment (section 2.1),
and on this basis how contrastive learning strategies
are devised for fine-grained alignment supervisions
(section 2.2).

Figure 2: Architecture of the proposed Samformer.

2.1 Cross-modal Alignment with Visual
Scene Graph Encoding

Given an image-text pair (I,w), we first extract
the visual scene graph G from the image with an
off-the-shelf scene graph generator (Tang et al.,
2020). A scene graph is a directed graph with
the nodes representing the objects and the edges
depicting their pairwise relationships. We repre-
sent the graph as a set of triplets, where a triplet
(oi, rij , oj) denotes the relation type rij between
object oi and object oj , e.g., (“woman”, “riding”,
“motorcycle”) in Figure 2. Crucially, the scene
graph is already visually grounded. That is, each of
the components in the triplets is associated with the
corresponding regions in the image. For example,
the object “woman” is associated with the bound-
ing box of woman while the relationship “riding”
corresponds to the bounding box that contains both
the woman and the motorcycle. With such aligned
object/relationship tokens and image regions, the
visual scene graph thus serves as a bridge between
the original image I and text sequence w. That
is, the model can easily find the correspondence
between the text segments in the sequence w and
the triplet tokens in the scene graph, since both are
in the text modality. The text segments are then
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naturally aligned with the respective image regions
associated with the scene graph. More importantly,
the triplets containing both object and relationship
information provide the model with ample contex-
tual cues to resolve ambiguity. For example, Fig-
ure 1 shows the relationship "on" between "cup"
and "table" resolves the ambiguity whether the cup
is on the table or the tray.

In implementation, we first embed tokens in both
the text sequence w and scene graph triplets (ex-
tracted by SGG (Tang et al., 2020)) with a pre-
trained BERT embedder (Devlin et al., 2019). We
then extract the visual embedding of each image re-
gion and also the union region of each triplet with
the Faster R-CNN component (Ren et al., 2015)
used in the bottom-up-attention (Anderson et al.,
2018). All the embedding vectors are then fed into
a transformer network with self-attention mecha-
nisms to infer the alignment, as shown in Figure 2.
In particular, to inform the transformer about the
known alignment between the scene graph triplet
tokens and image regions, we augment each triplet
embedding and its corresponding image region em-
bedding with the same position embedding.

2.2 Pre-training
We describe the pre-training method of the model.
After pre-training, the model can then be applied
to downstream visual-language tasks with efficient
finetuning.

2.2.1 Masked Language Modeling (MLM)
This task is very similar to the Masked Language
Modeling (MLM) task utilized in BERT (Devlin
et al., 2019). The key difference is that visual clues
are incorporated to predict the masked words for
capturing the dependencies among visual and lin-
guistic contents. During pre-training, each word in
the input sentence is randomly masked (at a prob-
ability of 15%). For the masked word wm, its to-
ken is replaced with a special token [MASK]. The
model is trained to predict the masked words, based
on the unmasked words w\m, the scene graph G,
and the visual features v of image regions (Fig-
ure 2). During pre-training, the final output feature
at the position of the masked word is fed into a clas-
sifier over the whole vocabulary, and we minimize
the prediction loss:

LMLM(θ) = −Ew,m logPθ
(
wm | w\m, G,v

)
(1)

The MLM task learns to use the relevant tokens in
triplet tags which effectively aligns the representa-

tion between text w and graph G.

2.2.2 Contrastive Losses for Cross-Modal
Alignment

As shown in Subsection 2.1, our model aligns the
scene graph of an image with paired text using
triplet tags as the bridge. We use two Contrastive
loss terms. One is at the sequence level to align
G and v. The other is to align each triplet tag and
its region features. For each training example, we
randomly decide whether to use the first term or
second. As training progresses, we increase the
probability of using the first term. The reason to
use the sequence level loss is because many down-
stream visual-language problems directly finetune
the sequence level representation.

Specifically, given an image, we sample a object-
relation triplet g from its scene graph G. We then
replace the scene graph G by G′ randomly sampled
from the entire dataset with probability 50%. De-
note H the resulting scene graph. We apply a fully-
connected (FC) layer as a binary classifier on top
of the encoder output of [CLS] to predict whether
the scene graph is original (y = 1 if H = G) or has
been replaced (y=0 if H = G′). The cross-modal
contrastive loss at a global level (CMCG) is defined
as:

LCMCG(θ) = −Ew,G logPθ (y | w, H,v) (2)

The second contrastive loss at the triplet tag level
is constructed as follows. For each triplet tag g, we
randomly determine with probability 50% whether
we replace with another tag, g′. We apply a fully-
connected (FC) layer as a binary classifier on top
of the encoder output of g′ and its region features
to predict whether the tag is original (z = 1) or has
been polluted (z = 0). The cross-modal contrastive
loss for each triplet tag (CMCT) is defined as:

LCMCT(θ) = −Ew,g logPθ
(
z | w, G\g, g

′,v
)

(3)

3 Preliminary Experiments

3.1 Experimental Settings
We initialize our model with Oscar (Li et al., 2020)
base model weights and pre-train it further on
the collected image-text corpus. The scene graph
used in our model is extracted using the pretrained
model of SGG (Tang et al., 2020).

After pre-training, we conduct our preliminary
experiments on GQA (Hudson and Manning, 2019).
The task focuses on visual reasoning and compo-
sitional question answering in real-world settings
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Method Test-dev Test-std
Oscar 58.40 59.01
Samformer w/ CMCG 60.46 60.33
Samformer w/ CMCG+CMCT 60.51 60.62
Improvement 2.11 1.61

Table 1: Comparison of Samformer and Oscar on
GQA test sets (fine-tuned on train-bal only).

Method Test-dev-open Test-std-open
Oscar 42.27 43.32
Samformer w/ CMCG 46.36 46.77
Samformer w/ CMCG+CMCT 45.88 46.26
Improvement 4.09 3.45

Table 2: Comparison of Samformer and Oscar on
GQA open questions (fine-tuned on train-bal only).

which involve diverse reasoning skills including
spatial reasoning, relational reasoning, logic and
comparisons. The task is formulated as a classi-
fication problem that chooses an answer from a
shared set of 1,852 candidate answers. We select
the particular task in our preliminary study because
the task would benefit from effective alignment of
the text-vision modalities on objects, relationships
and attributes. In particular, GQA needs rich scene
graph information from images to answer challeng-
ing compositional questions.

Since we build our model upon Oscar, we use it
as the baseline for comparison. We choose Oscar
base which has 12 layers and each layer has 12
attention heads. Both Oscar and ours were fine-
tuned on the GQA train-balance dataset. For Oscar,
we reproduced it with the official published pretrain
model on the smaller balance training set.

3.2 Results

In this section, we study the performance on the
downstream GQA task. As shown in Table 1,
our Samformer by incorporating scene graphs im-
proves the accuracy by 2.11% on GQA test-dev and
1.61% on test-std. The improvement is stronger if
we focus on the challenging open questions (non-
binary) in GQA, as shown in Table 2. Specifically,
our method achieves 4.09% and 3.45% improve-
ment, respectively, suggesting that including scene
graph triplets help with understanding complex
scenes and questions. The per-triplet contrastive
loss, CMCT further improves the gains.

For fine-grained analysis of our method, we eval-
uate the performance grouping by the semantic type
on the validation set. Among 5 semantic types, our
method achieves 3.84% improvement on category
type and 2.33% relation type. Although category
questions are not directly asking about relation, the
question itself sometimes related to a relation, for
instance "Who is walking?". A triplet tag such
as "man walking on street" would help the model
better answer question like this.

To understand the full potential of the proposed
approach that makes use of scene graphs, we eval-
uate the performance of Samformer when ground-

Figure 3: GQA evaluation accuracy curve without rela-
tion tags, with predicted relation tags, and with ground-
truth relation tags.

truth scene graph is available. Figure 3 shows
the results of evaluation accuracy as training pro-
ceeds. By including ground-truth scene graph rela-
tion tags, we can see significantly improved results
compared to the baseline model that does not use
relation tags at all. Using predicted relation tags
also helps, though the improvement margin is more
narrow since the predicted tags can be noisy.

4 Conclusion and Future Work

In this work, we propose Samformer, a novel se-
mantic aligned multi-modal transformer model for
vision-language pre-training. We explicitly align
the visual scene graphs and text using triplet tags
as anchors as well as a contrastive loss between
each triplet tags and its paired visual features. We
show improved preliminary results on GQA.

As shown in the empirical study, the perfor-
mance is to some extent capped by the rather lim-
ited relations and object categories that can be ex-
tracted from off-the-shelf pre-trained scene graph
models and object detectors. For future work, we
plan to jointly train with scene graph models to
more effectively learn from limited labeled data
and weak supervision signals from paired text.
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Abstract

Images are more than a collection of objects or
attributes — they represent a web of relation-
ships among interconnected objects. Scene
Graph has emerged as a new modality as a
structured graphical representation of images.
Scene Graph encodes objects as nodes con-
nected via pairwise relations as edges. To
support question answering on scene graphs,
we propose GraphVQA, a language-guided
graph neural network framework that trans-
lates and executes a natural language ques-
tion as multiple iterations of message pass-
ing among graph nodes. We explore the de-
sign space of GraphVQA framework, and dis-
cuss the trade-off of different design choices.
Our experiments on GQA dataset show that
GraphVQA outperforms the state-of-the-art
model by a large margin (88.43% vs. 94.78%).
Our code is available at https://github.
com/codexxxl/GraphVQA

1 Introduction

Images are more than a collection of objects or
attributes. Each image represents a web of rela-
tionships among interconnected objects. Towards
formalizing a representation for images, Visual
Genome (Krishna et al., 2017a) defined scene
graphs, a structured formal graphical representa-
tion of an image that is similar to the form widely
used in knowledge base representations. As shown
in Figure 1, scene graph encodes objects (e.g., girl,
burger) as nodes connected via pairwise relation-
ships (e.g., holding) as edges. Scene graphs have
been introduced for image retrieval (Johnson et al.,
2015), image generation (Johnson et al., 2018),
image captioning (Anderson et al., 2016), under-
standing instructional videos (Huang et al., 2018),
and situational role classification (Li et al., 2017).

To support question answering on scene graphs,
we propose GraphVQA, a language-guided graph

1Equal Contribution. Authors listed in alphabetical order.

Input: Question
What is the red object left of the girl

that is holding a hamburger?

Input: Image
(Represented as Scene Graph)

Step 1: Scene Graph Reasoning
（4 Time Steps）

Step 2: Answer Prediction
Answer: Tray

(Graph Classification Problem)

coat

tray

girlmilk
shake

salad

left

left
holding

wearing

lefton

onbehind

red, plastic
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2

3

4

3
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1

Figure 1: Scene Graph: Scene graph encodes objects
(e.g., girl, burger) as nodes connected via pairwise rela-
tionships (e.g., holding) as edges. GraphVQA Frame-
work: Our core insight is to translates and executes a
natural language question as multiple iterations of mes-
sage passing among graph nodes (e.g., hamburger ->
small girl -> red tray). The final state after message
passing represents the answer (e.g., tray).

neural network framework for Scene Graph Ques-
tion Answering(Scene Graph QA). Our core in-
sight is to translate a natural language question
into multiple iterations of message passing among
graph nodes. Figure 1 shows an example question
“What is the red object left of the girl that is hold-
ing a hamburger”. This question can be naturally
answered by the following iterations of message
passing “hamburger→ small girl→ red tray”. The
final state after message passing represents the an-
swer (e.g., tray), and the intermediate states reflect
the model’s reasoning. Each message passing iter-
ation is accomplished by a graph neural network
(GNN) layer. We explore various message passing
designs in GraphVQA, and discuss the trade-off of
different design choices.

Scene Graph QA is closely related to Visual
Question Answering (VQA). Although there are
many research efforts in scene graph genera-
tion, Scene Graph QA remains relatively under-
explored. Sporadic attempts in scene graph based
VQA (Hu et al., 2019; Li et al., 2019; Santoro
et al., 2017) mostly propose various attention mech-
anisms designed primarily for fully-connected
graphs, thereby failing to model and capture the im-
portant structural information of the scene graphs.
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We evaluate GraphVQA on GQA dataset (Hud-
son and Manning, 2019a). We found that
GraphVQA with de facto GNNs can outperform the
state-of-the-art model by a large margin (88.43%
vs. 94.78%). We discuss additional related work in
appendix A. Our results suggest the importance of
incorporating recent advances from graph machine
learning into our community.

2 Machine Learning with Graphs

Modeling graphical data has historically been chal-
lenging for the machine learning community. Tra-
ditionally, methods have relied on Laplacian regu-
larization through label propagation, manifold reg-
ularization or learning embeddings. Today’s de
facto choice is graph neural network (GNN), which
is a operator on local neighborhoods of nodes.

GNNs follow the message passing scheme. The
high level idea is to update each node’s feature us-
ing its local neighborhoods of nodes. Specifically,
node i’s representation at l-th layer h(l)

i can be cal-
culated using previous layer’s node representations
h
(l−1)
i and h(l−1)

j as:

h
(l)
Ni

= AGGj∈Niφ
(l)(h

(l−1)
i ,h

(l−1)
j , eji) (1)

h
(l)
i = γ(l)(h

(l−1)
i ,h

(l)
Ni

) (2)

where eji denotes the feature of edge from node j
to node i, h(l)

Ni
denotes aggregated neighborhood

information, γ(l) and φ(l) denotes differentiable
functions such as MLPs, and AGG denotes aggre-
gation functions such as mean or sum pooling.

3 GraphVQA Framework

Figure 2 shows an overview of four modules in
GraphVQA: (1) Question Parsing Module trans-
lates the question to M instruction vectors. (2)
Scene Graph Encoding Module initializes node
features X and edge features E with word em-
beddings. (3) Graph Reasoning Module performs
message passing with graph neural networks for
each instruction vector. (4) Answering Module
summarizes the final state after message passing
and predicts the answer.

3.1 Question Parsing Module

Question Parsing Module uses a sequence-to-
sequence transformer architecture to translate the
question [q1, . . . , qQ] into a sequence of instruction

vectors [i(1), . . . , i(M)] with a fixed M .

[i(1), . . . , i(M)] = Seq2Seq(q1, . . . , qQ) (3)

3.2 Scene Graph Encoding Module

Scene Graph Encoding Module first initializes node
features X̂ = [x̂1, ..., x̂N ] with the word embed-
dings of the object name and attributes, and edge
features E with the word embedding of edge type.
We then obtain contextualized node features X by:

xi = σ(
1

|Ni|
∑

j∈Ni

(Wenc [x̂j ; eij ])) (4)

where σ denotes the activation function, eij de-
notes the feature of the edge that connects node i
and node j, and X = [x1, x2, ..., xN ] denotes the
contextualized node features.

3.3 Graph Reasoning Module

Graph Reasoning Module is the core of GraphVQA
framework. Graph Reasoning Module executes the
M instruction vectors step-by-step, with N graph
neural network layers. One major difference be-
tween our Graph Reasoning Module and standard
GNN is that, we want the message passing in layer
L conditioned on the Lth instruction vector. In-
spired by language model type condition (Liang
et al., 2020b), we adopt a general design that is
compatible with any graph neural network design:
Before running the Lth GNN layer, we concatenate
the Lth instruction vector to every node and edge
feature from the previous layer. Specifically,

ĥ
(L−1)
i = [h

(L−1)
i ; i(L)] (5)

ê
(L−1)
ij = [e

(L−1)
ij ; i(L)] (6)

where ĥ
(L−1)
i and ê(L−1)ij denotes the node feature

and edge feature as inputs to the Lth GNN layer.
Next, we introduce three standard GNNs that we
have explored, starting from the simplest one.

3.3.1 Graph Convolution Networks (GCN)
GCN (Kipf and Welling, 2017) treats neighborhood
nodes as equally important sources of information,
and simply averages the transformed features of
neighborhood nodes.

h
(L)
i = σ(

1

|Ni|
∑

j∈Ni

(W
(L)
GCN ĥ

(L−1)
j )) (7)
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Figure 2: Semantics of the GraphVQA Framework. (1) Question Parsing Module translates the question to M
instruction vectors. (2) Scene Graph Encoding Module initializes node features X and edge features E with
word embeddings. (3) Graph Reasoning Module perform message passing with graph neural networks for each
instruction vector. (4) Answering Module summarizes the final state after message passing and predicts the answer.

3.3.2 Graph Isomorphism Network (GINE)
GIN (Xu et al., 2019) is provably as powerful
as the Weisfeiler-Lehman graph isomorphism test.
GINE (Hu et al., 2020) augments GIN by also con-
sidering edge features during the message passing:

h
(L)
i =Θ((1 + ε)ĥ

(L−1)
i +

∑

j∈N (i)

σ(ĥ
(L−1)
j + ê

(L−1)
j,i ))

where Θ denotes expressive functions such as
MLPs, and ε is a scale factor for the emphasis of
the central node.

3.3.3 Graph Attention Network (GAT)
Different from GIN and GINE, GAT (Veličković
et al., 2018) learns to use attention mechanism
to weight neighbour nodes differently. Intuitively,
GAT fits more naturally with our Scene Graph QA
task, since we want to emphasis different neighbor
nodes given different instruction vectors. Specifi-
cally, the attention score α(L)

ij for message passing
from node j to node i at Lth layer is calculated as:

α
(L)
ij =SoftmaxNi(MLP(ĥ

(L−1)
i , ĥ

(L−1)
j , ê

(L−1)
ij ))

(8)

where SoftmaxNi is a normalization to ensure that
the attention scores from one node to its neighbor
nodes sum to 1. After calculating the attention
scores, we calculate each node’s new representation
as a weighted average from its neighbour nodes.

h
(L)
i = σ(

∑

j∈Ni

α
(L)
ij W

(L)
GAT ĥ

(L−1)
j ) (9)

where σ denotes the activation function. Similar
to transformer models, we use multiple attention
heads in practice. In addition, many modern deep
learning tool-kits can be incorporated into GNNs,
such as batch normalization, dropout, gating mech-
anism, and residual connections.

3.4 Answering Module
After executing the Graph Reasoning module, we
obtain the final states of all graph nodes after M
iterations of message passing [h

(M)
1 , ...,h

(M)
N ]. We

first summarize the final states after message pass-
ing, and then predict the answer token with the
question summary vector q:

h = Aggregate([h
(M)
1 ,h

(M)
2 , ...,h

(M)
N ]) (10)

y = Softmax(MLP(h, q)) (11)

where y is the predicted answer. We note that
GraphVQA does not require any explicit supervi-
sion on how to solve the question step-by-step, and
we only supervise on the final answer prediction.

4 Experiments

Setup We evaluate our GraphVQA framework
on the GQA dataset (Hudson and Manning, 2019a)
which contains 110K scene graphs, 1.5M questions,
and over 1000 different answer tokens. We use
the official train/validation split of GQA. Since
the scene graphs of the test set are not publicly
available, we use validation split as test set. We set
the number of instructions M = 5. More dataset
and training details are included in Appendix C.
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Method Binary Open Consistency Validity Plausibility Distribution Accuracy

Baseline1 GCN 86.84 84.63 90.21 95.51 94.44 0.13 85.70

Baseline2 LCGN 90.57 88.43 93.88 95.40 93.89 0.16 88.43

Ablation1 Only Questions 61.90 22.69 68.68 96.39 87.30 0.17 41.07
Ablation2 Only Scene Graphs 21.86 17.54 46.98 36.89 32.63 7.22 19.63

Proposed1 GraphVQA-GCN 92.11 88.37 95.44 95.5 94.4 0.12 90.18
Proposed2 GraphVQA-GINE 92.36 88.56 94.79 95.44 94.39 0.13 90.38

Proposed3 GraphVQA-GAT 96.30 93.37 98.37 95.55 95.15 0.07 94.78

Table 1: Evaluation Results on GQA. All numbers are in percentages. The lower the better for distribution.

Figure 3: Accuracy breakdown on question semantic
types. GraphVQA-GAT achieves significantly higher
accuracy in relationship questions (95.53%).

Models and Metrics We evaluate three in-
stantiations of GraphVQA: GraphVQA-GCN,
GraphVQA-GINE, GraphVQA-GAT. We compare
with the state-of-the-art model LCGN (Hu et al.,
2019). We discuss LCGN in appendix B.3. We also
compare with a simple GCN without instruction
vector concatenation discussed in § 3.3 to study the
importance of language guidance. We report the
standard evaluation metrics defined in Hudson and
Manning (2019a) such as accuracy and consistency.

Results The first take-away message is that
GraphVQA outperforms the state-of-the-art ap-
proach LCGN, even with the simplest GraphVQA-
GCN. Besides, GraphVQA-GAT outperforms
LCGN by a large margin (88.43% vs. 94.78%
accuracy), highlighting the benefits of incorporat-
ing recent advances from graph machine learning.
The second take-away message is that condition-
ing on instruction vectors is important. Remov-
ing such conditioning drops performance (GCN vs.
GraphVQA-GCN, 85.7% vs. 90.18%). The third
take-away message is that attention mechanism is
important for Scene Graph QA, as GraphVQA-
GAT also outperforms both GraphVQA-GCN and
GraphVQA-GINE by a large margin (94.78% vs.
90.38%), even though GINE is provably more ex-
pressive than GAT (Xu et al., 2019).

Figure 4: Accuracy breakdown on question word count.
Num denotes the number of questions of each length.
GraphVQA-GAT shows significant better performance
for long question answering tasks.

Analysis Figure 3 shows the accuracy break-
down on question semantic types. We found that
GraphVQA-GAT achieves significantly higher ac-
curacy in relationship questions (95.53%). This
shows the strength in the attention mechanism in
modeling the relationships in scene graphs.

Figure 4 shows the accuracy breakdown on ques-
tion word count. As expected, longer questions are
harder to answer by all models. In addition, we
found that as questions become longer, the accu-
racy GraphVQA-GAT deteriorates drops than other
methods, showing that GraphVQA-GAT is better
at answering long questions.

5 Conclusion

In this paper, we present GraphVQA to support
question answering on scene graphs. GraphVQA
translates and executes a natural language ques-
tion as multiple iterations of message using graph
neural networks. We explore the design space of
GraphVQA framework, and found that GraphVQA-
GAT (Graph Attention Network) is the best design.
GraphVQA-GAT outperforms the state-of-the-art
model by a large margin (88.43% vs. 94.78%). Our
results suggest the potential benefits of revisiting
existed Vision + Language multimodal models
from the perspective of graph machine learning.
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A Related Work

A.1 Visual Question Answering

VQA requires an interplay of visual percep-
tion with reasoning about the question semantics
grounded in perception. The predominant approach
to visual question answering (VQA) relies on en-
coding the image and question with a “black-box”
neural encoder, where each image is usually repre-
sented as a bag of object features, where each fea-
ture describes the local appearance within a bound-
ing box detected by the object detection backbone.
However, representing images as collections of ob-
jects fails to capture relationships which are crucial
for visual question answering. Recent study has
further demonstrated some unsettling behaviours of
those models: they tend to ignore important ques-
tion terms (Mudrakarta et al., 2018), look at wrong
image regions (Das et al., 2016), or undesirably
adhere to superficial or even potentially misleading
statistical associations (Agrawal et al., 2016). In
addition, it has been shown that recent advances are
primarily driven by perception improvements (e.g.
object detection) rather than reasoning (Amizadeh
et al., 2020).

A.2 Scene Graph Question Answering

Although there are many research efforts in scene
graph generation, using scene graphs for vi-
sual question answering remains relatively under-
explored (Hudson and Manning, 2019b; Hu et al.,

Figure 5: Structure of 2 Layer Graph Neural Network

Figure 6: Accuracy breakdown on question structural
types. GraphVQA-GAT achieves significantly higher
accuracy in all types except for verify.

2019; Li et al., 2019; Liang et al., 2020a). Hud-
son and Manning (2019b) propose a task-specific
graph traversal framework with neural networks.
The framework requires specifying the detail ontol-
ogy of the dataset (e.g., color: red, blue,...; material:
wooden, metallic), and thus is not directly gener-
alizable. Other attempts in graph based VQA (Hu
et al., 2019; Li et al., 2019) mostly explore attention
mechanism on fully-connected graphs, thereby fail-
ing to capture the important structural information
of the scene graphs.

B Additional Results

B.1 Additional Performances Analysis

Figure 6 provides another set of accuracy break-
down result on question structural types. We found
that GraphVQA-GAT achieves the best for all types
of questions except for the verify types. Specifi-
cally, GraphVQA-GAT outperforms significantly
than other methods on answering queries, com-
paring among objects and making choices. This
intuitively matches the principle of attention mech-
anism and again shows its advantages in modeling
structural information in scene graphs.
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Scene Graphs Statistics Validation data Train data All

Total Number of Graphs 10,696 74,942 85,638
Total Number of Nodes 174,331 1,231,134 1,405,465
Total Number of Edges 534,889 3,795,907 4,330,796

Average Number of Nodes per Graph 16 16 16
Average Number of Edges per Graph 50 51 51

Total Number of Node Types 1,536 1,702 1,703
Total Number of Edge Types 295 310 310

Total Number of Attributes Types 603 617 617

Table 2: Scene Graphs Statistics of the GQA Dataset

Level of Classification Structural Semantic

Is there apples in the picture? node verify object
What color is the apple? node query attribute
Is the cat to the left or right of the flower? edge type choose relation
Is it sunny or cloudy? graph query global

Table 3: Typical types of questions

B.2 Expressive Ability Analysis of
GraphVQA-GINE

As mentioned in Section 3.3.1 and Section 3.3.2,
a expressive function Θ is used in GINE layer.
When Θ is just a single layer MLP, the correspond-
ing GIN/GINE structure will be very similar to
the GCN structure. Since in Section 4 we imple-
mented Θ as a single layer MLP, the performance
of GraphVQA-GCN and GraphVQA-GINE stays
at very similar stage. As GIN and GINE are now
very popular as basic components for large-scale
graph neural network design, one may ask if using
Θ with more powerful expression ability will help
the performance. The short answer is no. We pro-
vide a simple ablation study on different choice of
Θ, using a two layer MLP-style network with (FC,
ReLU, FC, ReLU, BN) structure. Table 4 shows
that the result of GraphVQA-GINE-2 degrades to
the worst. One possible reason is that the scale for
each scen graph is generally small, therefore the
expression ability might already be enough for a
single layer MLP, and use a more complex Θ may
leads to harder optimization problems, and thus
leads to a downgrade of the performance. Such
guess could possibly be further investigated and
evaluated in our future work. In addition, the scene
graph-based VQA as in this work might offer an
opportunity for further accelerating the real world
image-based applications (Liang and Zou, 2020).
Exploring such deployment benefits is another di-
rection of future work.

B.3 Brief Introduction of LCGN

Language-Conditioned Graph Networks (LCGN)
(Hu et al., 2019) updates node representations re-
currently using the same single layer graph neu-
ral network. Given a set of instruction vectors
[i1, . . . , iM ], LCGN uses a single layer atten-
tion to convert them into context representations
[c1, . . . , cM ]. Then, given a set of node represen-
tations [xloc,1, . . . ,xloc,n] , LCGN first randomly
initialize another set of context representations
[xctx,1, . . . ,xctx,n], and then use them to concate-
nate with node representations to form initial local
features, i.e,

x̃t,i = [xloc,i,xctx,i,t−1,W1xloc,i ◦W2xctx,i,t−1]
(12)

With the assumption that all nodes are connected,
LCGN computes the edge weights w(t)

j,i for each
node pair (i,j), i.e,

w
(t)
j,i = Softmax((W3x̃t,i)

T ((W4x̃t,j) ◦ (W5ct)))
(13)

The messages m(t)
i,j , are then computed as:

m
(t)
j,i = w

(t)
j,i ((W6x̃t,j) ◦ (W7ct)) (14)

Finally, LCGN aggregates the neighborhood mes-
sage information to update the context local repre-
sentation xctx,i,t.

xctx,i,t = W8[xctx,i,t−1;
N∑

j=1

m
(t)
j,i ] (15)
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Method Binary Open Consistency Validity Plausibility Distribution Accuracy

GraphGQA-GINE-2 86.83 83.85 89.8 95.54 94.25 0.16 85.04

Table 4: Ablation Study Results for 2 layer GraphVQA-GINE. All numbers are in percentages. The lower the
better for distribution.

Note that the graph neural structure of LCGN can
be regarded as a variant of recurrently-used single
standard GAT layer, but with more self-designed
learnable parameters. The main difference between
LCGN’s and other proposed graph neural struc-
ture is that the output node and edge features will
be recurrently fed into the same layer again for
each reasoning step, leading to a RNN-style net-
work structure, instead of a sequential-style net-
work. Moreover, our LCGN implementation is
a variant of original LCGN, including a few im-
provements. Firstly, we use a transformer encoder
and decoder to obtain instruction vectors instead
of Bi-LSTM (Liang et al., 2020d). Secondly, we
incorporate the true scene graph relations as edges
instead of densely connected edges. Thirdly, edge
attributes are also used in the generation of initial
node features.

C Implementation Details

C.1 Data Pre-processing

The edges in the original scene graphs are di-
rected. This means in most of the cases where we
only have one directed edge connecting two nodes
in the graph, the messages can only flow through
one direction. However, this does not make sense
in the natural way of human reasoning. For exam-
ple, an relation of "A is to the left of B" should
obviously entail an opposite relation of "B is to the
right of A". Therefore, in order to enhance the con-
nectivity of our graphs, we introduce a synthetic
symmetric edge for every non-paired edge, making
it pointing reversely to the source node. And in or-
der to encode this reversed relationship, we negate
the original edge’s feature vector and use it as the
representation of our synthetic symmetric edge.

C.2 Additional Dataset Information

These scene graphs are generated from 113k im-
ages on COCO and Flicker using the Visual
Genome Scene Graph (Krishna et al., 2017b) anno-
tations. Specifically, each node in the GQA scene
graph is representing an object, such as a person,
a window, or an apple. Along with the positional

information of bounding box, each object is also
annotated with 1-3 different attributes. These at-
tributes are the adjectives used to describe asso-
ciated objects. For examples, there can be color
attributes like "white", size attributes like "large",
and action attributes like "standing". Attributes
are important sources of information beyond the
coarse-grained object classes (Liang et al., 2020c).
Each edge in the scene graph denotes relation be-
tween two connected objects. These relations can
be action verbs, spatial prepositions, and compara-
tives, such as "wearing", "below", and "taller".

We use the official split of the GQA dataset.
We use two files "val_sceneGraphs.json" and
"train_sceneGraphs.json" directly obtained on the
GQA website as our raw dataset. Since each im-
age (graph) is independent, GQA splits the dataset
by individual graphs with rough split percentages
of train/validation: 88%/12%. In the table 2,
we summarize the statistics that we collected from
the dataset. We did not report the statistics of the
test set since the scene graphs in the test set is not
publicly available.

C.3 Training details
We train the models using the Adam optimization
method, with a learning rate of 10−4, a batch size
of 256, and a learning rate drop(divide by 10) each
90 epochs. We train all models for 100 epochs.
Both hidden states and word embedding vectors
have a dimension size of 300, the latter being ini-
tialized using GloVe (Pennington et al., 2014).The
instruction vectors have a dimension size of 512.
All results reported are for a single-model settings
(i.e., without ensembling). We use cross validation
for hyper-parameter tuning.
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Abstract

Previous existing visual question answering
(VQA) systems commonly use graph neu-
ral networks(GNNs) to extract visual relation-
ships such as semantic relations or spatial re-
lations. However, studies that use GNNs typ-
ically ignore the importance of each relation
and simply concatenate outputs from multiple
relation encoders. In this paper, we propose
a novel layer architecture that fuses multiple
visual relations through an attention mecha-
nism to address this issue. Specifically, we de-
velop a model that uses question embedding
and joint embedding of the encoders to ob-
tain dynamic attention weights with regard to
the type of questions. Using the learnable at-
tention weights, the proposed model can effi-
ciently use the necessary visual relation fea-
tures for a given question. Experimental re-
sults on the VQA 2.0 dataset demonstrate
that the proposed model outperforms existing
graph attention network-based architectures.
Additionally, we visualize the attention weight
and show that the proposed model assigns a
higher weight to relations that are more rele-
vant to the question.

1 Introduction

VQA (visual question answering) is a task that
aims to output an answer for a given question re-
lated to a given image. VQA is a multimodal task
that requires an understanding of multiple modali-
ties. Therefore, VQA has received much attention
in both computer vision and natural language pro-
cessing research.

Most related works on VQA focus on the prob-
lem of image understanding and various attention
mechanisms to fuse textual and image inputs. For
example, Bottom-up Top Down Attention (Ander-
son et al., 2018) uses the features from detection
models instead of CNN outputs and demonstrates
their effectiveness with VQA tasks. Additionally,

∗Equal Contribution

Figure 1: Two examples showing simple weighted sum
results in wrong predictions. In both cases, although
one relation encoder has given the correct answer, the
final model’s answer is incorrect, and averaging them
result in wrong answer.

variable attention networks such as a stacked atten-
tion network (Yang et al., 2016) show that an atten-
tion mechanism between visual and text modalities
is necessary for solving VQA tasks to find the ob-
jects to be focused on to answer a given question.

However, to solve higher-level VQA problems
that require multi-hop reasoning, the model must
consider various relations, such as geometric re-
lationships between objects in the image. For this
reason, researchers try to extract higher-level visual
information using a graph neural network(GNN)
based relation encoder to aggregate the relational
information between the objects in an image.

For example, ReGAT (Li et al., 2019), an ex-
isting VQA architecture that uses GNNs, utilizes
various relations between objects using graph atten-
tion networks (Veličković et al., 2018). Specifically,
ReGAT uses three predefined relations: implicit, se-
mantic, and spatial. To capture visual information,
ReGAT constructs GNN-based relation encoders
for each relation and combines the output proba-
bility distributions from the encoders using fixed
weights to make the final prediction. However, this
process can be problematic because the importance
of each relationship for the given question cannot
be considered. Figure 1 shows two examples where
ReGAT does not make the correct prediction due
to using fixed weights. In all cases, even though the

87



correct answer is given by one of the relation en-
coders, ReGAT finally predicts the incorrect answer
due to the incorrect answers in the other encoders.
For example, in the first example in Figure 1, a se-
mantic relationship is particularly important com-
pared to the other relationships because the model
must consider the relation defined as wearing be-
tween the man and the tie. And the prediction from
this semantic relation encoder is correct. However,
the other encoders, including implicit and spatial,
outputs incorrect answers because these relations
are less related to the given question. Therefore,
while ReGAT uses various attention mechanisms
on objects to obtain relation-aware features, sim-
ply using the average or weighted summation with
fixed weights to combine the relation-aware fea-
tures can lead to incorrect predictions when aver-
aging is insufficient to smooth out the noise from
the less important relation features.

To resolve this shortcoming of previous models,
we propose a novel model that can dynamically
select a proper graph representation by considering
the input question. We use attention mechanisms
to make full use of relation encoders by giving
them question-adaptive weights. Specifically, we
train all relation encoders concurrently and learn
adaptive weights to form a combined joint represen-
tation. Using these attention weights, the proposed
model assigns higher weights to the relations that
are meaningful for a given question. Experimental
results demonstrate that the proposed model outper-
forms the previous existing model. Our model has
an accuracy of 64.27%, compared to the existing
model with 62.65% in VQA v2.0 dataset. Addition-
ally, the proposed attention module can be easily
visualized and has a natural form of interpretability.
Thus, we analyze examples through the visualiza-
tion of attention weights and verify that our model
properly assigns attention weights to the relevant
relationships for the question. Our contributions
can be summarized as follows:

• We propose a novel attention-based VQA model
that can dynamically select an essential relation
for the given question.

• Experimental results show that the proposed
model with adaptive attention weights for each
relation outperforms the existing model.

• We also visualize the attention weights given to
each relation and show that the proposed model
can properly assign higher weights to question-
related relations.

2 Related Work

2.1 Visual Question Answering
Models that are designed to solve VQA (Antol
et al., 2015) are typically composed of four parts:
an image encoder, a question encoder, multimodal
fusion, and an answer predictor. In many studies,
such as (Yang et al., 2016; Fan and Zhou, 2018;
Patro and Namboodiri, 2018; Lu et al., 2016; Teney
et al., 2018; Nam et al., 2017; Zhu et al., 2017; Ma-
linowski et al., 2018), CNN-based attention mecha-
nisms are frequently used in image encoders, which
use the attention mechanism with images to concen-
trate on useful objects based on the input questions.
Conversely, (Lu et al., 2016; Nam et al., 2017; Fan
and Zhou, 2018; Yang et al., 2020) also uses atten-
tion mechanisms in question encoders to produce
image-adaptive question embeddings.

Many previous works on VQA (Yao et al., 2018;
Kipf and Welling, 2016; Santoro et al., 2017; Hu
et al., 2018; Cadene et al., 2019; Yang et al., 2018;
Teney et al., 2017; Norcliffe-Brown et al., 2018;
Wang et al., 2019) use graph attention networks to
extract visual features from images. Graph atten-
tion networks can more accurately identify various
relations, such as semantic relations or spatial re-
lations, between important objects with regard to
questions, making the model more accurate and
more interpretable. Among those studies, (Li et al.,
2019) adds another encoder called an implicit re-
lation encoder and applies each relation encoder
directly to images to produce a graph representa-
tion for each relation. Then the model uses those
representations equally to predict the answer.

Our model also uses relation encoders and graph
representations but learns how much from each en-
coder’s output will be used based on each question.

2.2 Relation-aware Graph Attention
Network

The relation-aware graph attention net-
work(ReGAT) uses a graph attention network
to solve visual question answering tasks. Using
a graph network to tackle such tasks was also
previously explored in (Yao et al., 2018), where
a pretrained semantic relation classifier was used
to learn semantic relationships between objects.
Using this information, a graph network was
created, and graph convolution was used to finally
obtain the relation-aware representation of each
object. This method has been shown to be suc-
cessful in image captioning. ReGAT improves this
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Figure 2: Overall architecture of the proposed model. After the encoders and graph attention layer, the question-
relevant relation selection layer efficiently aggregates several visual relationships through an attention mechanism.

graph network using two additional relation types,
spatial relations, implicit relations, and graph
attention, instead of graph convolution. Spatial
relation graphs are similar to semantic relation
graphs but use geometric information between
the objects to construct the graph. An implicit
relation graph, conversely, uses no preexisting
relationships between objects. A fully-connected
graph is formed with the detected objects as
nodes, and the interaction between objects is
captured using attention over this graph. Graph
attention allows each node in the neighborhood to
have different importance and can capture more
dynamic information between objects.

3 Model

Our model consists of four major components: a
question encoder, an image encoder, a graph atten-
tion layer, and a question-relevant relation selec-
tion layer. The overall architecture of the proposed
model is shown in Figure 2. In this section, we also
describe the multimodal fusion method, which is a
technique for fusing questions and image informa-
tion.

3.1 Encoder

Our model uses a bidirectional RNN with a gated
recurrent unit(GRU) (Cho et al., 2014) as the
question encoder. Bidirectional RNN uses two
hidden layers to process the input sequence in
both directions. GRU is a simplified variant of

LSTM (Hochreiter and Schmidhuber, 1997) that
uses fewer parameters. The question encoder is
built using these two well-known architectures. The
output question embedding is later used as an input
to the graph attention layer, multimodal fusion, and
question relevant relation selection layer.

For the image, we use Faster R-CNN (Ren et al.,
2015), which can identify the image as a set of
objects. Each object has a visual feature vector
vi and a bounding-box feature bi that contains its
location information. These objects are forged into
a graph that is used as inputs to the graph attention
layer.

3.2 Graph Attention Layer

The graph attention (Wang et al., 2019) layer in-
jects visual relationship information between ob-
jects into their corresponding visual features. To fa-
cilitate this process, we construct a fully-connected
graph where each node represents each object from
an image. Then, we aggregate the information from
each node with the following procedure:
Each node in the neighborhood of vi including it-
self, is projected by matrixW ; then the edge weight
αij is multiplied. All results are then summed and
passed through a nonlinearity function to produce
v∗i , the relation-aware visual feature for object i. To
make these relation graphs question-adaptive, ques-
tion embedding is concatenated to each object’s
visual feature before applying graph attention. The
way the edge weights are calculated differs depend-
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ing on the type of relation graph.

Algorithm 1: Graph attention
Data: G initial graph, q question embedding, W

projection matrix
Result: G∗ relation-aware graph
Let G∗ be an empty graph;
for each v ∈ G.V do

Let n be a new node;
S = 0;
for each w ∈ G.Adj[v] do

wq = [w.visual||q];
wq = wqW ;
α =

EDGE-WEIGHT(v, wq, w.bbox, relation type);

S = S + α ∗ wq;
end
S = RELU(S);
n.visual = S;
ADD-VERTEX(G∗, n);

end
return G∗;

Implicit Relation Graph If the model is trained
with no predefined edge weights, an implicit rela-
tion graph is created, where the model learns the
relationship between objects on its own.

The edge weights for the implicit relation graph
are learned using both the visual feature v and
bounding-box feature b of each object. The detailed
equation is as follows (Hu et al., 2018):

αij =
αb
ij · exp(αv

ij)∑K
j=1 α

b
ij · exp(αv

ij)
(1)

αv
ij is calculated by the scaled dot-product of the

two visual features:

αv
ij = (Uv

′
i)
T · V v′j (2)

αb
ij is computed by the following equation:

αb
ij = max(0, w · fb(bi, bj)) (3)

,where fb represents the geometric relationship be-
tween objects i and j. Further details are available
in (Hu et al., 2018).

However, if certain relationships between objects
are known beforehand and the edges are labeled
based on this information, the model creates an
explicit relation graph (Yao et al., 2018). We use
two types of explicit relation graphs in this study.

Semantic Relation Graph The first explicit re-
lation graph used is the semantic relation graph.
Semantic relationships between objects are learned

Relation type Predicate list

Semantic wearing, holding, sitting on,
standing on, riding, eating,

hanging from, carrying, attached to,
walking on, playing, covering,
lying on, watching, looking at

Spatial 1(inside), 2(covering),
3(overlap with IoU above 0.5),

4-11(overlap with IoU below 0.5)

Table 1: List of predicates used in the construction of
semantic and spatial relation graphs.

beforehand using a semantic relation classifier on
a visual relationship dataset. Then, if objects i and
j have relationship pi,j , the edge between node i
and j is labeled pi,j . Objects with no semantic re-
lationships have their edges pruned. A total of 15
such semantic relationships are used. The list of
relationships used is shown in Table 1.

Edge weights are calculated similarly to the im-
plicit relation case but using only the visual features
of each object. However, the direction and label of
each edge must be considered. Further details are
available in (Li et al., 2019).

Spatial Relation Graph The next explicit rela-
tion graph used is the spatial relation graph which
encodes positional information between objects.
Similar to the semantic relation graph, if two nodes
i and j have a semantic relationship p, their edges
are labeled pi,j . Spatial relations are classified into
11 categories, and the category number and its
meaning are shown in Table 1.

Attention weights are calculated in the same as
with the semantic relation graph.

3.3 Multimodal Fusion

The graph attention layer produces relation-aware
visual features for each object in the image. These
features must be fused with question embedding
to form a joint representation. The general form of
multimodal fusion is computed as follows:

J = f(v, q) (4)

,where v is the collection of relation-aware visual
features of each object, q is the question embed-
ding, and f is the multimodal fusion type. Popu-
lar multimodal fusion methods for VQA include
bottom-up top-down (Anderson et al., 2018), multi-
modal Tucker fusion (Ben-Younes et al., 2017) and
bilinear attention networks (Kim et al., 2018). We
use BUTD and BAN fusion in the proposed model.
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Bottom-up Top-down Fusion In the bottom-up
top-down (BUTD) fusion method (Anderson et al.,
2018), question embedding and visual features are
fed into nonlinear layers and joint representation is
obtained by elementwise multiplication of the re-
sults. However, because there are k object features
and just one question embedding for each image-
question pair, an attention mechanism is used for
each image feature with the question as a query to
obtain one overall summary v∗ of k objects in the
image:

v′ = σ(vWv + bv) (5)

q′ = σ(qWq + bq) (6)

p = softmax(σ((v′ ∗ q′)Wh + bh)) (7)

v∗ = v · p (8)

,where v ∈ Rk×v, q ∈ R1×q, Wv ∈ Rv×h,
Wq ∈ Rq×h, Wh ∈ Rh×1, bv ∈ Rh, bq ∈ Rh,
bh ∈ R1, and σ denote the ReLU nonlinearity func-
tion. When calculating the product of v

′
and q

′
, q
′

is repeated k times, so that the same question em-
bedding is multiplied to each of the visual features.

After obtaining v∗, it is then fed into nonlinear
layers along with q, and the results are multiplied
elementwise to compute the joint representation J
finally as follows:

J = σ(v∗W
′
v + b

′
v) ∗ σ(qW

′
q + b

′
q) (9)

Bilinear Attention Networks The bilinear at-
tention network(BAN) (Kim et al., 2018) fusion
method takes a single-channel input and a mul-
tichannel input as inputs and combines them to
form a single-channel joint representation. In the
proposed model, the question vector q is the single-
channel input that will be used across the multi-
channel input relation-aware visual features v to
produce the joint representation J . The detailed
equations are as follows:

a = ((qU) ∗ (vV ))P (10)

p = softmax(a) (11)

v∗ = v · p (12)

,where v ∈ Rk×v, q ∈ R1×q, U ∈ Rq×h, V ∈
Rv×h, and P ∈ Rh×m, where m denotes the num-
ber of attention heads. These equations indicate that
the vector on the left side is repeated k times and
multiplied elementwise to the right matrix. When
using multiple attention heads(m > 1), v∗ is the
concatenation of all the attended outputs.

Once v∗ is obtained, the final joint representation
J is calculated as follows:

J = ((qU
′
) ∗ (v∗V ′))P ′ (13)

3.4 Question Relevant Relation Selection
The QRR (question-relevant relation) layer calcu-
lates the combined joint representation J∗ given the
joint representation of each relation, Jimp, Jsem,
Jspa and the question embedding q.

Most questions do not use all relations with an
equal amount of importance to predict the answer.
For example, in the right example of Figure 1, the
question requires understanding the spatial relation-
ship between the riders and the motorcycle. Spatial
information between objects is primarily encoded
in the spatial joint representation, Jspa. However,
the semantic joint representation Jsem, which en-
codes interactive dynamics between objects, plays
nearly no part in answering this question. Thus,
using fixed weights for each relation(e.g., 0.3, 0.4,
0.3, respectively in the original model) to predict
the answer will not produce the best result due
to noise from unnecessary attention given to irrele-
vant relation encodings like this example. The QRR
layer gradually determines which of these relations
is the most essential in deriving the correct answer
to the given question by feeding the three repre-
sentations and the given question to an attention
network.

More specifically, the QRR layer computes the
combined joint representation J∗ through the fol-
lowing attention mechanism:

h = tanh((J
′
Wv + bv)⊕ (qWq + bq)) (14)

p = softmax(hWp + bp) (15)

,where J
′ ∈ R3×d is the concatenation of the

three joint representations, and q ∈ Rq is the ques-
tion embedding. J

′
and q are first passed through

a linear layer with Wv ∈ Rd×k, bv ∈ R3×k,
Wq ∈ Rq×k, and bq ∈ R1×q, where k is a hy-
perparameter denoting the dimension of the hidden
layer. The operator ⊕ indicates that the row of
the second operand is to be added to each row of
the first operand. The resulting matrix is passed
through tanh nonlinearity which yields h ∈ R3×k.
The attention distribution over the different rela-
tions p ∈ R3 are finally obtained by passing h
through a linear layer with Wp ∈ Rk×1, bp ∈ R3×1

and the result is passed through softmax. Each ele-
ment of p = [pimp psem pspa]

T represents the
91



optimal weight of each relation given question q.
The combined joint representation J∗ can then be
computed by the inner product of J

′
and p:

J∗ = pimpJimp + psemJsem + pspaJspa (16)

This question-adaptive combined joint represen-
tation is then fed into the classifier to make a pre-
diction. The combined joint representation J∗ is
a selective summary of the three relations tailored
to the input question q. Compared to the ReGAT,
which simply uses fixed weights regardless of the
question, the proposed model determines weights
dynamically and produces an exclusive representa-
tion of the image for the given question. The atten-
tion mechanism used in this study is similar to that
used in bottom-up top-down multimodal fusion.
However, in multimodal fusion, attention values
are calculated among the different objects in an im-
age. In the QRR layer, the attention distribution is
computed over the three different relations, which
allows the model to make more informative predic-
tions and achieve higher accuracy. The QRR layer
also adds interpretability to the original model by
allowing us to examine the weight of each relation
type directly.

4 Experiments

4.1 Datasets

We evaluate the proposed model using the VQA
2.0 (Goyal et al., 2017) dataset. VQA 2.0 dataset
contains real images from MSCOCO (Lin et al.,
2014) with questions in 3 categories: Yes/No, Num-
bers and Others. VQA 2.0 dataset was proposed
to counter language priors present in the previous
VQA dataset by providing complementary images
that are similar but have different answers for the
same question. There are 256,016 images and an
average of 5.4 questions per image in the dataset.
And the dataset has ten answers collected from
human annotators for each image.

4.2 Implementation Details

For the question encoder, we set the question em-
bedding dimension and GRU hidden dimension as
1024. We also set 1024 as the dimension of the
relation-aware visual features and the QRR hidden
layer. We use bottom-up and top-down fusion to
fuse the visual features and question embedding.

We pretrain the semantic relation classifier using
the Visual Genome dataset (Krishna et al., 2017),

Model Yes/No Others Numbers Overall
BUTD 80.30 55.80 42.80 63.20

MUTAN 81.45 47.17 37.32 60.17

Implicit 77.50 52.44 44.21 61.39
Semantic 76.85 51.35 44.19 60.61
Spatial 77.49 52.54 43.79 61.38

ReGAT+BUTD 78.80 45.82 53.57 62.65
ReGAT+BAN 81.22 49.87 55.45 65.02
Ours+BUTD 79.71 46.62 56.01 64.27
Ours+BAN 80.84 49.36 56.65 65.37

Table 2: Performance on VQA 2.0 dev split with differ-
ent models.

Figure 3: Average validation error rate of four models
(the proposed model, implicit only, semantic only, spa-
tial only).

which contains 108,000 images with labels for ob-
jects, attributes, and relationships. The classifier is
trained over the 14 semantic relations that we have
defined in Table 1.

In the experiments, we use the PyTorch
1.3.1 (Paszke et al., 2017) framework to implement
the proposed model. A batch size of 64 per GPU is
used and we train the model for 20 epochs. We use
a gradual warm-up learning rate, with the learning
rate set initially to 0.0005 and increase linearly to
0.002 in the first 4 epochs. The learning rate is re-
duced by half every 2 epochs after the 15th epoch.
We use the Adamax optimizer (Kingma and Ba,
2014) with weight normalization and dropout (Sri-
vastava et al., 2014). We then train the model using
a binary cross-entropy loss.

We measure the accuracy using the following
metric:

acc(p) = min

(
1,

∑10
i=1 1(ai = p)

3

)
(17)

,where p is the model’s prediction and ai is the
answer provided by human annotators.

4.3 Performance Comparison

Table 2 summarizes the results of the proposed ex-
periment. We compare the results with the results
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Figure 4: Model output examples and visualization of
the attention weights for the QRR layer. Each column
represents the cases in which each relation is given the
highest weight.

of single relation encoder models and several ex-
isting VQA models, including ReGAT, BUTD and
MUTAN. We also present a graph that shows the
average validation error rate of each relation and
our model for each epoch in Figure 3.

When using the BUTD fusion method, the pro-
posed model outperforms ReGAT by 1.62%p in ac-
curacy. We also observe consistent improvement in
accuracy when looking at the results for each ques-
tion type. Our model surpasses ReGAT by 0.91%p
in Yes/No questions, 0.80%p in Others questions,
and 2.44%p in Number questions. The table also
shows the results when using BAN as the multi-
modal fusion method. The proposed model out-
performs ReGAT by 0.35%p in accuracy overall.
However, results are somewhat mixed if we con-
sider the accuracy based on each question type. For
the Others questions, the proposed model yields
better accuracy than any other model and outper-
forms ReGAT by 1.20%p. For Yes/No and Num-
bers questions, however, the proposed model fails
to achieve the accuracy produced by ReGAT by
0.38%p and 0.51%p, respectively, even though the
proposed model surpasses all single relation mod-
els. Compared with other existing models, the pro-
posed model with any fusion method outperforms
BUTD and MUTAN by more than 1%p. The ac-
curacy of each type of question shows us that the
proposed model performs better with Number ques-
tions, even surpassing the models that outperform

Figure 5: Cases where the model predicts incorrect an-
swers.

the proposed model in overall accuracy.
To interpret the relative importance of each rela-

tion type, we analyze the weights used with each re-
lation encoder on the VQA v2.0 validation dataset.
On average, the implicit encoder has a weight
of 5.78%, the semantic encoder has a weight of
73.70%, and the spatial encoder has a weight of
20.52%. These results show that the three relations
are not equally important in answering each ques-
tion, highlighting our claim that assigning fixed
weights of 0.3, 0.4, and 0.3 to each encoder is not
optimal. In fact, semantic relation has a much larger
weight than the other two relations in most cases.
We also define weights above 0.05 as the meaning-
ful usage of that relation. Based on this criterion,
29.88% of the examples show meaningful usage
of all three relations, which further highlights that
in the remaining 70.12% of the dataset, using two
types or one type of relation encoder is sufficient
for predicting the correct answer.

4.4 Qualitative Analysis

We visualize the amount of attention given to each
relation encoder depending on the input question,
as shown in Figure 4. We present certain image-
question pairs from the dataset that best demon-
strate the usefulness of the QRR layer and visu-
alize the attention given to each relation using a
bar graph with each number representing the rel-
ative weight. We also show the predictions of the
single-relation models and ReGAT below the ques-
tion along with the proposed model’s prediction for
comparison.

In Figure 4, we present 12 image-question pairs
along with predictions from each model. We orga-
nize them into three columns where each column
contains examples with the most attention in im-
plicit, semantic, and spatial relations, respectively.
Across all examples, we see that the QRR layer
has correctly captured the most relevant relation in
answering the given question.

The examples for the implicit weighted exam-
ples in Figure 4 (a) contain questions that require
a thorough understanding of the image to answer.
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For example, the first entry asks whether the animal
in the picture is in a given state or not. This ques-
tion cannot be easily answered with only a superfi-
cial description of the image. The implicit relation
graph has learned this relationship correctly, and
the proposed model identified this relation as most
important. The third example shows why the pro-
posed model yields higher accuracy than ReGAT.
Only the implicit-relation model yields the correct
answer, possibly by connecting the small cluster
of white pixels in the top left corner to an object
seen at night. The other two relations provide in-
correct answers; however, ReGAT cannot filter out
such misleading information. The proposed model
accurately selects the implicit relation as the most
critical relation by giving it a weight of 0.641.

The semantically weighted examples in Figure 4
4 contain questions and answers that are heavily
related to the 14 semantic relations that we have
defined. The first example asks for the action of the
dog. In this example, only the semantic-encoder
that is most relevant to the question yields the cor-
rect answer. Unlike ReGAT that fails to answer
correctly, our model gives higher weights to the
most important relation to deliver the correct an-
swer. The third example shows that ReGAT is un-
able to guess correctly due to suboptimal weight
distribution. The proposed model blocks out all un-
necessary noise by assigning the semantic relation
the largest weight for this image-question pair.

The examples in Figure 4 (c) show questions that
involve understanding the geometric relationship
between objects. The third example demonstrates
the effectiveness of the proposed model, which has
correctly determined that objects that have an ’on’
spatial relation with the motorcycle are the most
important in giving the right answer, of which there
are none. Other single-relation models and ReGAT
possibly suffer from question bias and provide an
incorrect answer of 1, which may be correct in
many different cases.

The examples in the first and second columns
of the last row are interesting in that the proposed
model is the only network that has correctly pre-
dicted the answer, which shows that the proposed
method can derive new answers using optimized
weights for each relation type.

4.5 Error Analysis

We explore frequently observed error cases where
the proposed model fails to produce the correct an-

swer and present examples in Figure 5. For each
example, the prediction of the proposed model is
shown in red, and the true label is shown in green.
From the examples, we observe the typical reasons
for these errors. Most error cases are due to the
incorrect prediction of the relation encoder itself,
even though our model correctly predicts the type
of visual relation. In the first image, the question
asks for the direction of motion of the traffic. The
bar graph on the right shows that the proposed
model determines the implicit relation as the most
important relation. However, the implicit relation
encoder itself fails to encode such information in
the visual features correctly, and our model prop-
agates the incorrect answer to the final output. In
the second image, the most important relationship
is the semantic relation, where the relation "sitting
on" is explicitly encoded between the objects "per-
son" and "bench". However, the proposed model
fails to yield the correct result in this case by as-
signing near-zero weight to the semantic relation.
The final prediction then deviates from the correct
answer by considering to irrelevant relations. In
the last image, the question asks for the number
written on the bus on the right. It is clear that the
spatial relationship should be used, and indeed, the
proposed model assigned the highest weight to the
spatial relation. However, the predicted answer ’38’
is incorrect, which may occur because the qual-
ity of the picture is low, and ’36’ may even be
interpreted as ’38’ by humans. Thus, even if the
proposed model correctly identifies the best rela-
tion for the given question, it still predicts incorrect
results if the optimal encoder itself cannot answer
the question correctly.

5 Conclusion

In this paper, we propose a novel stacked attention
model that assigns dynamic attention weights for
various visual relations with the VQA model. We
show that the proposed model yields higher accu-
racy than existing graph attention network models
that equally consider each relation. Additionally,
the proposed model, which uses an attention mecha-
nism, has a natural form of interpretability through
the visualization of learnable weights multiplied
by each encoder’s output. By analyzing attention
weights, we show that the proposed method pro-
vides higher attention to the desired relation en-
coder.
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