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Abstract
Large-scale multi-modal classification aim
to distinguish between different multi-modal
data, and it has drawn dramatically attentions
since last decade. In this paper, we propose
a multi-task learning-based framework for the
multimodal classification task, which consists
of two branches: multi-modal autoencoder
branch and attention-based multi-modal mod-
eling branch. Multi-modal autoencoder can re-
ceive multi-modal features and obtain the inter-
active information which called multi-modal
encoder feature, and use this feature to re-
constitute all the input data. Besides, multi-
modal encoder feature can be used to enrich
the raw dataset, and improve the performance
of downstream tasks (such as classification
task). As for attention-based multimodal mod-
eling branch, we first employ attention mech-
anism to make the model focused on impor-
tant features, then we use the multi-modal en-
coder feature to enrich the input information,
achieve a better performance. We conduct ex-
tensive experiments on different dataset, the
results demonstrate the effectiveness of pro-
posed framework.

1 Introduction

With the easy-access of mobile devices, the world
has witnessed the explosion of multimedia data,
which contains various modalities, such as im-
age, audio and text. Generally speaking, different
modality can provide complementary information.
However, many previous attempts focus on one
single modality, as the multimodal data is more
complex. The applications of multimodal data
analysis seem to evident in several fields, such
as, emotion recognition, medical diagnosis. Re-
cently, the development of multimodal machine
learning approaches has witnessed growing inter-
est (Ngiam et al., 2011). On the other hand, deep
learning has witnessed dramatically progress in
various fields: ranges from computer vision, nat-
ural language processing and speech recognition

(Oramas et al., 2018). Due to the great success
of deep learning in single modality, great interests
have been given for the multimodal deep learning
framework (Xu et al., 2016; Radu et al., 2016).
Despite of sustainable efforts have been made, mul-
timodal deep learning is still far from been fully
solved, using deep learning. Moreover, traditional
approach train the classifiers on different modal
and weighted average to generate the predictions,
which is time-consuming and cannot model the
interaction between different modal.

In this short paper, a general multimodal data
classification task is proposed, leveraging multi
task-based deep learning. The framework consists
of two branches: multi-modal autoencoder branch
and attention-based multi-modal modeling branch.
The framework takes the interaction between differ-
ent modals into consideration. To demonstrate the
efficacy and robustness of proposed method, we
conduct extensive experiments on different dataset
and the results support our claims.

2 Dataset and Evaluation

In this paper, we use the Adoption Prediction
Dataset from Kaggle1 to do our research, which is
a real world and challenging dataset. The dataset is
composed of three different modal features: tabular
features (the basic information about each pet), tex-
tual features (the pet description written by English)
and visual features (the photo of each pet), and it
aims to predict how quickly a pet is adopted. There
are 14993 instances in this dataset, and the label is
the categorical speed of adoption, there are five dif-
ferent classes from 0 to 4, in details, 0 means this
pet was adopted on the same day as it was listed, 1
means this pet was adopted between 1 and 7 days
after being listed. Figure 1 shows some example
instances. Besides, in this classification task, due to
the number of classes is balanced, we use accuracy

1https://www.kaggle.com/c/petfinder-adoption-prediction
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to evaluate different models’ performance.

Figure 1: Six example instances from Adoption Predic-
tion Dataset. The instance numbers are displayed as #1
to #6.

Tabular Features: These features are the basic
information of each pet, there are 15 categorical
variables and 4 continuous variables.

Textual Features: The textual features are the
pet descriptions written by English.

Visual Features: The visual feature of each pet
is a image whose size is from 240 pixels to 1024
pixels, in order to train our model, we reshape all
the images to 512 × 512.

3 Proposed Approach

In this paper, our proposed approach has two parts:
multi-modal autoencoder branch and attention-
based multi-modal modeling branch.

3.1 Multi-modal Autoencoder
In the previous work, autoencoders receive a single
modal feature and reconstitute it, with a goal to
minimize the reconstruction loss between the input
and output. However, if a task has multi-modal
features, we can build a MMAE which can receive
different modal features at the same time. MMAE
first learns the encoder representation from each
single modal feature, then concatenating them as a
multimodal encoder feature, and finally this feature
is used to reconstitute all the input. As can be seen
in Figure 2, MMAE has two parts:

Input Layer: For the tabular features (repre-
sented as xtabular), One-Hot Encoding for cat-
egorical variables and Max-Min Normalization
for continuous variables. As for the visual fea-
tures (represented as xvisual), we first reshape all
the images size into 512×512, that is xvisual =
xvisual/255.0. As for the textual features, every
instance has a paragraph to describe the pet, for the
ith input paragraph with n words wi
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we first padding the paragraph into fixed length
l = 100.Then we us word embedding layer to
transform paragraph into dense matrix Xi. All

input paragraphs will be transformed into dense
matrices whose size is 100×300, represented as
xtextual. After the data preprocessing, the input
layer will put xtabular,xvisual and xtextual into the
next layer.

Multi-modal Interaction Layer: For each
modal feature, we suppose f(x) is the encoder
function, g(x) is the decoder function, in the pre-
vious work, we should build three independent au-
toencoders, each autoencoder can only encode a
single modal feature. During encoding, the input
data is compressed into a low dimensional vector,
which we called encoder feature. During encoding,
the autoencoder will reconstitute the input using
encoder feature. The mathematical expressions are
shown below:

htabular = f1(xtabular), x̂tabular = g1(htabular)
(1)

hvisual = f2(xvisual), x̂visual = g2(hvisual) (2)

htextual = f3(xtextual), x̂textual = g3(htextual)
(3)

where htabular,hvisual and htextualare the encoder
features of each modal input, they have the same
length k, and during training, we minimize the
reconstruction loss to optimize the parameters, the
loss function is Mean Square Error (MSE). Take
visual features as an example:

xvisual ≈ x̂visual (4)

In multi-modal interaction layer, in order to au-
tomatically obtain the interactive information be-
tween different modal features, we merge all the
encoder features into a multi-modal encoder fea-
ture to reconstitute each input, rather than directly
use corresponding encoder feature. In details, we
first concatenate different encoder features to hmm:

hmm = [htabular;hvisual;htextual] (5)

Then hmm ∈ R1×3k is used to decode all the
inputs:

xtabular, xvisual, xtextual = g(hmm) (6)

In fact, this could be treated as multi-task learning,
and the loss in MMAE is shown as bellow:
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Figure 2: Framework of our solution.

Loss = α∗losstabular+β∗lossvisual+γ∗losstextual
(7)

where α ∗ losstabular, β ∗ lossvisual and γ ∗
losstextual are the reconstruction losses of different
inputs, α, β and γ are the corresponding weights
of different losses, they can adjust according to the
practical scenario. In our experiments, we find that
α = β = γ yields the best result. Besides, all
the autoencoders in MMAE are four layers fully-
connected neural networks. The multi-modal en-
coder feature we obtained from MMAE will be
used in some downstream tasks to improve the per-
formance, such as classification task.

3.2 Attention-based Multi-modal Modeling
part:

In the previous work, a multi-modal model first
receives different kind of inputs, then handles them
separately to obtain high-level features, and do
some simply interactions such as concatenate, fi-
nally a fully-connected layer is followed to get the
prediction. However, in practical scenario, differ-
ent modal features for a same task may have differ-
ent importance, so simply concatenate those high-
level features is not enough to help the model get
key information. Inspired by the attention mecha-
nism used in natural language processing and com-
puter vision,we introduce attention mechanism into

multi-modal model,which can make the model fo-
cus on the key information. Besides, we also add
the multi-modal encoder feature from MMAE to
enrich our input. The modeling part model mainly
composed of four components:

Input Layer: This layer has the same function
as the input layer in MMAE, so in this layer, we do
the same thing as mentioned above.

Fully-Connected Layer and Convolutional
Layer: In this layer, we use different neural net-
works for different input features. For the tabular
features, we use a fully-connected layer to learn the
high-level representation v1, the activation function
in each layer is ReLu (Glorot et al., 2011), and a
dropout (Srivastava et al., 2014) is followed by each
layer to prevent our model from over fitting. For
the textual features, after word embedding layer,
we use the same model architecture as TextCNN.
Finally a fully connected layer is followed to ob-
tain the final representation v2. As for the visual
features, we use the same architecture as DenseNet
(Huang et al., 2017). DenseNet has some dense
blocks, each layer in a dense block obtains ad-
ditional inputs from all preceding layers. In our
model, we use two dense blocks to obtain the final
representation v3.

Attention Layer: This layer is the core layer
of Attention-based Multimodal Model. At the pre-
vious layer,we get the high-level one-dimensional
features from each modal input: v1, v2 and v3,
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these three representations have the same dimen-
sion d1×m. we employ soft attention mechanism
to associate the important information between the
given three high-level features. We compute the
normalized attention weights as the similarity with
Equation 8.

ei = tanh(vi � µT ), i ∈ [1, 2, 3] (8)

where v1 is one of the vtabular, vtextual and vvisual,
µ is the weighted vector that we used to compute
the similarity, it will randomly initialized and will
be adjusted during the training stage. ei is the
un-normalized attention weights, odot is the dot
product between the two given vectors. Beside, in
this equation, we use tanh as the activation func-
tion. Next, we use softmax to get the normalized
attention weights. For each element in vi, it will
multiply by its corresponding normalized attention
weight to get the final attention output.

v̂i =
3∑

i=1

exp(ei)∑3
i=1 exp(ei)

· vi, i ∈ [1, 2, 3] (9)

where v̂i is the attention output of each high-level
feature. Finally we concatenate every v̂i vi as this
layer’s output and pass on it to the next layer.

Merge and Classification Layer: In this layer,
we not only use v̂1, v̂2 and v̂3 to predict the re-
sults,but also add the multi-modal encoder feature
hmm which obtained from MMAE to improve
model’s performance.

h = [v̂1, v̂2, v̂3, hmm] (10)

where h ∈ R1×(3m+3k). Because this is a multi-
class classification problem,so we use softmax to
get the final results.

prediction = softmax(h) (11)

4 Experimental settings and Results

In this section, we first introduce some baseline
models and their experimental settings. In order
to have a fair comparison and reduce the random-
ness of results, we use five-fold cross-validation.
The batch size is set as 32. The neural networks
are trained using the RMSprop optimizer with the
learning rate 0.001.

4.1 Baseline models and Previous Work
#1 Tabular Only: In this model,the input only
has tabular features and will do data preprocessing

mentioned above. Tabular Only model is a two lay-
ers fully-connected neural network,the number of
hidden layer units in each layer is 256 and 128,the
activation function is relu,and a dropout layer is
followed to avoid overfitting,the dropout rate is 0.2.
#2 Textual Only: This model is an application

of TextCNN. In this model, we have the same pa-
rameter settings as TextCNN, the filter windows is
3,4,5 with 100 feature maps each, and dropout rate
is 0.5, but we have a full-connected layer at then
end before the classification layer.
#3 Visual Only: This is an application of

DenseNet. In this model, we have two Dense
Blocks, each Dense Block has the same param-
eter settings, and we also have a full-connected
layer at the end before the classification layer.
#4 Tabular (Continuous) + Textual + Visual

with Concatenatey: This is a common architec-
ture for multi-modal dataset, this model has three
independent parts which used to learn high-level
features from different modal inputs. Continuous
means the continuous features in tabular features
only do Max-Min Normalization before put into the
model. The parameters in these three parts are the
same as baseline model Tabular Only, Textual
Only and Visual Only. For the representations
learned from different parts, this model will simply
concatenate them before classification layer.
#5 Tabular (Discretized) + Textual + Visual

with Concatenate: This model is inspired by. The
architecture and the parameters are the same as
the model #4, but this model will convert the con-
tinuous features to a discrete sequence of tokens
to reduce the storage and prevent the model from
overfitting.

4.2 Experimental Results

#6 Tabular(Continuous)+Textual+ Visual with
Attention: The architecture and the parameters
in this model are the same as the model #4, but
we use soft attention mechanism to interactive the
representations learned from different modal inputs
instead of simply concatenating.
#7 Tabular(Continuous)+Textual+Visual+AE

Feature with Attention: In this architecture,
we add the autoencoder features into our model.
The autoencoder features has three parts from
tabular features, textual features and visual
features, they are trained from three in dependent
autoencoders,all the autoencoders are four layers
fully-connected neural network, and the hidden
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Model Operation Accuracy ± STD
#1 Tabular only - 36.729±0.0061
#2 Tabular only - 29.403±0.0032
#3 Visual only - 29.252 ±0.0031
#4 Tabular(Continuous)+Textual+Visual Concatenate 37.080±0.0055
#5 Tabular(Discretized) +Textual + Visual Concatenate 37.152±0.002
#6 Tabular(Continuous) + Textual + Visual Attention 37.381±0.0035
#7 Tabular (Continuous)+Textual+ Visual+ AE-Feature Attention 37.582±0.0032
#8 Tabular (Continuous)+Textual+ Visual+ MMAE-Feature Attention 37.883±0.0037

Table 1: Accuracy between our models and some baseline models on different Multi-modal datasets. AE-Feature
means the additional features obtained from three independent autoencoders, MMAE-Feature means the additional
features learned from Multi-modal Autoencoder. As for the representations learned from different modals, con-
catenate means they are combined by simply concatenating, attention means they are combined using attention
mechanism. Accuracy higher than the best baseline are in bold. Results are displayed as mean± std.

Feature MSE (Normalized)
Visual Feature only 0.03786
+ Tabular Feature 0.03557
+ Textual Feature 0.03468

Table 2: The image reconstruction loss using different
feature combination. Multi-model Autoencoder has a
lower loss.

units size is 512-64-64-512. We concatenate them
together with the attention output to predict the
final results.
#8 Tabular(Continuous)+Textual+Visual+MMAE

Feature with Attention: In this architecture, we
add the multi-modal autoencoder features into
our model. As introduced above, the multi-modal
encoder feature is obtained from output of MMAE,
which learns the interactive information between
different modal features. In order to have a fair
comparison with #7, the MMAE Feature has
the same dimension with AE-Feature. Besides,
MMAE also has three autoencoders, and the
parameters in each autoencoders are the same as
#7.

5 Conclusion

In this paper, we proposed the a novel framework
for multimodal data classification. The framework
consists of multi-modal autoencoder module and
attention-based multi-modal modeling module. We
evaluate the model on the large-scale multimodal
datasets. Our framework shows an advantage on ac-
curacy with compared to other approaches. In the
future, we will try to extract more features, such as
the semantic information of images, thus the sim-
ilarity or dissimilarity between different modality

can be calculated. Moreover, our framework could
be adapted to other types of multimodal machine
learning task, for instance, the detection task. On
the other hand, we will conduct more experiments
on larger dataset.
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