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Abstract

Emotion recognition in conversation has re-
ceived considerable attention recently because
of its practical industrial applications. Exist-
ing methods tend to overlook the immediate
mutual interaction between different speakers
in the speaker-utterance level, or apply single
speaker-agnostic RNN for utterances from dif-
ferent speakers. We propose COIN, a con-
versational interactive model to mitigate this
problem by applying state mutual interaction
within history contexts. In addition, we intro-
duce a stacked global interaction module to
capture the contextual and inter-dependency
representation in a hierarchical manner. To
improve the robustness and generalization dur-
ing training, we generate adversarial examples
by applying the minor perturbations on mul-
timodal feature inputs, unveiling the benefits
of adversarial examples for emotion detection.
The proposed model empirically achieves the
current state-of-the-art results on the IEMO-
CAP benchmark dataset.

1 Introduction

Emotion recognition in conversation (ERC) has at-
tracted extensive interests due to the prevalence of
user-generated contents on social media platforms,
such as conversational messages and videos (Po-
ria et al., 2017; Hazarika et al., 2018b; Poria
et al., 2019; Hazarika et al., 2021), which aims
to detect the speaker’s emotions and sentiments
within the context of human conversations. Re-
cent works on ERC adopted recurrent neural net-
works (RNNG5) to firstly learn the sequential utter-
ances in conversations and then leveraged high-
level context extractor, such as CMN (Hazarika
et al., 2018b), DialogueRNN (Majumder et al.,
2019), DialogueGCN (Ghosal et al., 2019), to cap-
ture the global contextual representation for emo-
tion detection.

*Equal contribution
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This two-step scheme has proven to be effec-
tive to achieve success in ERC and can be divided
into two categories: one is modeling each speaker
with one RNN, such as (Hazarika et al., 2018b; Ma-
jumder et al., 2019); the other is speaker-agnostic,
i.e., modeling each utterance using one RNN irre-
spective of its speaker, such as (Poria et al., 2017;
Majumder et al., 2019). However, there is no direct
dyadic interaction between speaker-specific RNNs
in previous work. Different RNNs corresponding to
different speakers have been used without mutual
interaction (Hazarika et al., 2018b) or interacting
through a mediate global RNN (Majumder et al.,
2019).

In this paper, the proposed Conversational
Interactive Networks (COIN) employs immediate
coupling interaction at each state of different speak-
ers and adopts a global extractor to capture the
contextual and self-dependency representation for
emotion classifier. To enhance the generalization
and robustness of our model, we generate adversar-
ial examples by applying minor perturbations on
multi-modal embeddings for adversarial training
(AT) (Goodfellow et al., 2014).

Our work illustrates that dyadic interaction ad-
vances the performance of multimodal emotion
recognition in conversation by incorporating mu-
tual interaction and applying adversarial training.
Our key contributions are in threefold:

* We introduce state mutual interaction compo-
nents to allow for the immediate state inter-
action between different speakers, and global
stacked interaction to capture the contextual
and inter-dependency representations.

We unveil the importance of adversarial train-
ing in ERC by promoting the model perfor-
mance with generated adversarial examples
on extracted multimodal embeddings.

We propose a competing model that achieves
the state-of-the-art (SOTA) performance on
the IEMOCAP dataset, showing that textual
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and audio features play the most important
role in ERC.

2 Methodology

This section is orgnized as follows: Sec. 2.1 de-
scribes the definition of ERC task; Sec. 2.2 intro-
duces the approach to extracting multimodal fea-
tures; Sec. 2.3 gives a detailed description of the
proposed model.

2.1 Task Definition

Let there be M parties or speakers
{p1,p2,--- ,pm} in a human conversation
(M = 2 in our experiments). Given the utterances
{u1,ug, - ,un} from a conversation where the
utterance u; is from the corresponding speaker
Ps(uy)» the task of ERC is to detect the most
likely class from emotion category set C. Here s
represents the mapping between the utterances and
users.

2.2 Multimodal Feature Extraction

We extract multimodal features using the same set-
ting as (Majumder et al., 2019) for a fair compari-
son. Multimodal features are simply concatenated
along the feature dimension in our systems.

Textual Feature We employ multi-channel 1-D
convolutional neural networks (CNNs) along the
sequential dimension to extract n-gram lexical fea-
tures with kernel sizes of {3,4, 5}. Then a global
max-pooling layer followed by a linear projection
produces the utterance representation. This CNN
is trained on emotion classification at the sentence
level.

Acoustic Feature We use openSMILE (Eyben
et al., 2010) toolkit® to extract speech features such
as Mel-frequency cepstral coefficients (39 features)
and pitch. Z-standardization is applied to normalize
the low dimensional feature vectors.

Visual Feature 3D-CNN (Tran et al., 2015) is
leveraged to obtain visual features from dialogue
videos, followed by a ReLU and max-pooling op-
eration.

2.3

Fig. 1 illustrates the overview of proposed COIN
architecture with the history length of K = 6.
The multimodal inputs of utterances are firstly

Model Architecture
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fed into feature extractor to obtain the multimodal
features. Then we adopt Gated Recurrent Units
(GRUs) (Chung et al., 2014) to capture the history
dialogue of dyadic speakers A/B, followed by the
mutual interaction for each state at utterance level.
Afterward, the concatenated bidirectional mutual
history vectors are fed into a stacked contextual
interaction module to capture the inter-dependency
between current and history dialogue states.

Speaker Mutual Interaction for Dialogue His-
tory Let u; € RY represent the extracted d-
dimensional multimodal features for ¢-th speech
uttered by speaker P, K be the dialogue his-
tory length. We use GRUs in two directions to
capture the utterance-level speaker dialogue con-
text. For the forward GRU, we have: h,
GRU%(w;),P € {A,B},i € [t— K,t—1], where
hp € R indicates the hidden state of speaker P
at the step <. The history utterance sequences for
speaker P are denoted as Up.

We compute the mutual interaction for each his-
tory step ¢ by linearly regulating each output of
GRU with the previous hidden state of another
speaker. In the forward direction, we have:

i, = {
ey

where h% represents the initial hidden state of
speaker P, the sigmoid function U(Q :_1> /(1 +
exp(—x)), {WA,WB} S RdXd, { b A, bB} S
R? represent the trainable parameters. The identi-
cal but reversed operation is applied in the back-
ward direction. The output of both forward and
backward direction at step ¢ are concatenated

along the feature dimension, denoted as ) =
[Bi; El] S R2,

_>

gga(ﬁg—lwg +bp) fP=A

Bio(Hi'Wa+ ba) if P=B

Stacked Contextual Interaction The contex-
tual encoder consists of L identical stacks. In the
[-th layer, we feed the history dialogue representa-
tions M into a bi-GRU followed by a self-attention
(SA) layer to capture the inter-dependency se-
mantics. In the first layer, M! is the sequence
of encoded context fnj, and is bi-GRU’s output
from previous layer for intermediate stacks, i.e.,
M1 > 1).

Denoting the output of bi-GRU as Mé, the
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Figure 1: Schematic illustration of the proposed model.

scaled dot product self attention is calculated as:
Q7K7V = M‘lgWQ7M_lgWK7M‘quV7 (2)
M, = softmax(d~/2QK ")V, 3)
where M € RE*2d ig passed into the bi-GRU in
the next interaction stack as the dialogue context.
Given the encoded utterance u} € R?? at [-th
layer (linearly projected multimodal features when

I = 0), we calculate the context vector for history
dialogues:

c! = M softmax (M’ ul), (€))]
®)

where the output u} is used as the input of {{41}-th
layer (i.e., ui“).

u, = tanh(u! + c),

Emotion Classifier We use L-th stack’s out-
put vector u; to get the final emotion pre-
diction through a linear transformation: ¢
arg max(W,u, + b,), where W, € R¥[¢l and
b, € Rl are parameters.

2.4 Training

Let u represent the multimodal features. The
cross entropy loss Ly between § and golden la-
bel y is used for training. To improve the gen-
eralization, we generate adversarial examples us-
ing the model parameterized by € as in (Goodfel-
low et al., 2014)—adding perturbations on extracted
multimodal features: u,gy = u + e@, where
g = VL (6;u), e € Ris selected on the held out
set. The final training objective is defined as:

L= L(0;u) + L(0; uagy).

3 Experiments

(6)

3.1 Experimental Setup

Dataset We evaluate our model on the IEMO-
CAP dataset (Busso et al., 2008) by reporting the
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accuracy (acc.) and F1 score on single and over-
all emotion class. IEMOCAP dataset contains
dyadic dialogue videos for ten unique speakers,
two of which are used for testing. We maintain the
same 80/20 split for training/test set, consisting of
5,810/1,623 utterances respectively. The utterances
are annotated as six emotion labels, i.e., happy, sad,
neutral, angry, excited, and frustrated.

Implementation Details We experiment using
the batch size 512, contextual interaction layer
number L € {1,2,3,4,5,6}, embedding size
d € {50,100, 150, 200}, history context size K €
{20, 30, 40, 50}, the extracted textual/audio/visual
feature dimensions of 100/100/512 respectively.
We use Adam optimizer (Kingma and Ba, 2015)
with initial learning rate of 1e-3. We employ the
exponential annealing with base 2 to adjust the
learning rate. For adversarial training, we select
e = 5 using validation set. To avoid overfitting,
we applies dropout keep rate p € {0.2,0.3,0.4}
and early stopping patience of 10 epoch during
training. The optimal hyperparameter settings are:
L =3,d =100, K = 40,p = 0.3. We use an
NVIDIA 2080 Ti GPU for experiments.

3.2 Results

Table 1 summarizes the performance of the pro-
posed model compared with baseline models, in
which our model overshadows previous baselines
on both averaged accuracy and F1 metric. We
found that the performance of our model ranks first
for “angry” and “frustrated” sentiment prediction
and achieves similar results on the other emotion
classes.

Ablation Study We conduct ablation study on
multi-modality (Fig. 2a), adversarial training and
Speaker Mutual Interaction (SMI) module (Fig. 2b).



Model ‘ Happy ‘ Sad ‘ Neutral ‘ Angry ‘ Excited ‘ Frustrated ‘ Average
‘Acc. Fl1 ‘Acc. F1 ‘Acc. F1 ‘Acc. Fl1 ‘Acc. F1 ‘Acc. F1 ‘Acc. Fl1
CNN (Kim, 2014) 27.77 29.86 | 57.14 53.83 | 3433 40.14 | 61.17 5244 | 46.15 50.09 | 62.99 5575 | 48.92 48.18
MemNet (Sukhbaatar et al., 2015) 2572 3353|5553 61.77 | 58.12 52.84 | 59.32 5539 | 51.50 5830 | 67.20 59.00 | 55.72 55.10
be-LSTM (Poria et al., 2017) 29.17 3443 |57.14 60.87 | 54.17 5181 | 57.06 5673 | 51.17 57.95 | 67.19 5892 | 5521 54.95
be-LSTM+Att (Poria et al., 2017) 3056 35.63 | 56.73 62.90 | 57.55 53.00 | 59.41 59.24 | 52.84 58.85 | 65.88 59.41 | 56.32 56.91
CMN (Hazarika et al., 2018b) 257 326 | 665 729 |539 562 |67.6 646 |699 679 |77 631 |619 614
ICON (Hazarika et al., 2018a) 236 328 | 706 744 |599 606 |682 682 |722 684 |7L9 662 |640 635
DialogueRNN (Majumder et al., 2019) | 25.69 33.18 | 75.10 78.80 | 58.59 59.21 | 64.71 65.28 | 80.27 7186 | 61.15 58.91 | 6340 62.75
DialogueGCN (Ghosal et al., 2019) | 40.62 4275 | 89.14 8454 | 61.92 63.54 | 6753 64.19 | 6546 63.08 | 64.18 66.99 | 6525 64.18
IterativeERC (Lu et al., 2020) - 53.17 | - 7719 | - 6131 | - 61.45 | - 69.23 | - 60.92 | - 64.37
COIN | 5312 42.50 | 85.71 73.07 | 60.05 6223 | 66.48 68.75 | 69.13 69.01 | 61.73 66.99 | 66.05 65.37

Table 1: Overall performance of emotion recognition models on IEMOCAP dataset.
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Figure 2: Visualization of experimental analysis.

Fig. 2c and Fig. 2d show the influence of embed-
ding size and stack number of context interactions.
It can be seen model performance reaches its peak
by taking the embedding size of 100 (Fig. 2¢) and

...Yeah, don't go and disappear like everyone else after they
get married and | never see them again. That'll make me mad.

[ a

. . . H T | mean, | have some duty to the man | was ]
layer number L = 3 (Fig. 2d). Fig. 2b witnesses the i (R e
influence of adversarial training and SMI on emo- - [ By, o 8

tion detection. We further conduct experiments by
applying adversarial training on various baselines,
finding that our model achieves the best results
among them. See Appendix B for discussion.

Fig. 2a show that among uni-modality, textual
features contribute most followed by the acoustic
setting whereas video features perform worst in
our system. We guess high-level visual features
extracted from CNN-3D lack of fine-grain facial
representations, which requires further improve-
ment. In dual modality settings, textual and acous-
tic features make the most contribution to predict
emotion categories in comparison with tri-modal
fusion settings.

Case Study Fig. 3 shows an instance of dialogue
snippet, where our model captures the emotion dy-
namics of the male speaker during the conversation
process. Using different RNNs to modeling various
speaker utterances may circumvent the fluctuation
of emotion transitions and effectively capture the
emotion transition of disparate speakers. It is also
observed in more examples in Appendix C.
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Sorry.
NETD

ahh | was always worried you'd be a little bit jealous
of me, but | was never quite that lucky.

Happy [

Happy [

There's still time for that.
L R

Perfect, okay, good. "sigh" 3

Excited [ I don't feel so bad then. Well, 'm excited for you. T

1 know. | can't believe it.
oA
Excited | | can't believe it.

Figure 3: Case study.

Oh, thanks. move here before you
get married. [LAUGHTER]

H

o | [BREATHING]

4 Conclusion

We propose a new dialogue contextual interaction
architecture to focus on the compact interaction
for both speaker-level dialogue history and cur-
rent utterance. By adopting adversarial training,
our model achieves the SOTA performance on the
IEMOCAP dataset for emotion recognition in con-
versation. In the future, multimodal fusion methods
could be investigated to capture richer modelily-
interactive representations at modality level.
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A Qualitative Analysis

Fig. 4 illustrates the confusion matrix of predicted
emotions. We found that negative sentiments such
as “sad”, “angry” can be easily mispredicted as
“frustrated”, and vice versa. “Happy” emotions
exhibit the worst performance among all of six
categories, which is difficult for the model to distin-
guish from “excited”. This is in line with our manu-
ally observed prediction results because sometimes
it is even not obvious for a human to distinguish the
emotions with similar polarities, such as “sad” and
“frustrated”, “happy” and “excited”. Further study
on learning sentiments of similar polarity may be a
solution to such misunderstanding.

QA, 50 4 22 1 63 4 250
&
<
> 6 38 3 1 41
0/70 200
> 9 8 248 15 24 80
§ 150
(]
<
S 0 2 2 121 0 45
o -100
3
> 29 3 57 1 206 3
&
B -50
&
> 1 9 46 41 5 279
&
& -0
&
(\0 happ\] Sad a e““a\ angv N e*cl“edm,\sﬁa‘ed

Figure 4: Confusion matrix of emotion predictions.

B Experiments on Adversarial Training

To verify the advantage of our model using ad-
versarial training (AT), we further conduct experi-
ments on different baseline models and report the
result in Table 2. It is clear that our model out-
ranks other models in terms of the overall perfor-
mance, demonstrating the advantage of our model.
Also, it is observed that emotion recognition mod-
els do not necessarily improve after incorporating
the AT method. Specifically, models using single
RNNSs to simulate the speaker utterances, such as
DialogueRNN and DialogueGCN, show the perfor-
mance drop after adding AT, whereas models using
separate RNNs to model different speakers, like
ICON and ours, illustrate the advancement. We
extrapolate that the emotion dynamics of different
speakers may vary, thus the sensitivity of emotion
models is affected by the adversarial noise derived
from the conversational context. If different RNNs
are adopted for various speaker utterance model-
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ing, the noise would greatly rely on the current
speaker’s utterances despite the noise from noisy
dialogue context, which eases the learning process
of emotion transition.

C Case Study

Fig. 5 illustrates examples of our case study, which
demonstrates that our model can capture the emo-
tion dynamics during the conversation process.



Model ‘ Happy ‘ Sad ‘ Neutral ‘ Angry ‘ Excited ‘ Frustrated ‘ Average

| Acc F1 | Acc Fl |Acc Fl |Acc FI |Acc Fl |Acc Fl |Acc Fl
ICON +AT 4793 4377 | 84.69 7528 | 58.71 60.05 | 63.49 66.85 | 7231 67.26 | 60.00 65.31 | 64.98 64.18
DialogueRNN +AT | 36.04 31.17 | 91.10 79.82 | 53.53 5535 | 6532 65.89 | 65.65 65.09 | 55.08 59.22 | 61.48 60.72
DialogueGCN +AT | 60.38 3249 | 69.23 76.10 | 61.31 59.92 | 53.65 5691 | 62.36 74.87 | 57.79 47.20 | 60.99 59.38
Ours (w/ AT) | 53.12 4250 | 85.71 73.07 | 60.05 62.23 | 66.48 68.75 | 69.13 69.01 | 61.73 66.99 | 66.05 65.37

Table 2: Performance of emotion recognition models with Adversarial Training (AT) on the IEMOCAP dataset.

Augie, do you remember the first time we came to see it? It was about
four years ago right after we got married and we thought | was pregnant.
We had a bottle of champagne but no glasses and you ask me to dance
S0 we took off our shoes. ...

[ You want me to go get some champagne? m
[ You want to get married again? Ta

..

Frustrated
o
.- Frustrated

[A vacation? A new carpet, a poodle? A bag of ice cream, a

What? You want a divorce? 3
suicide pack, what Carla? What the hell do you want?

H No, | want something to turn out the
Angry

o | VY it is suppose to turn out.
[ What. Welcome to the human race. Ta

You think this is what | had in mind? You think that when | 8

propose | had this great fantasy going that four years down
the road, we will end up on a beach arguing over fish. You
think that | knew that there would be times when you will look
at me like | am used Kleenex? Or that | will look at you and

Frustrated \ think, holy hell what's the next flight to Alaska.

(a)

H j This is standing. This is waiting. This is fighting. J
[ ]

No, | know me either. 8

I mean it is just this , | mean it includes a lot and everything
and you know it's the sand and it's the full moon and | just-I
am sorry but | couldn't help wishing | was somewhere else.

| didn't say that..
2 (o

H ﬁ But this isn't anything like | thought it would be.]
o

H

e
Sad

[ Maybe if you are with somebody else too? 78

[ No, | know, but. | know | don‘t make you happy. rg
H TFor heaven's sake Augie, wherever | am ]
8

| always wanted to be with you.

ﬁ For heaven's sake, don't you know that? ]
aa

Whatever | am doing, | wanted to be with you. | mean you
are probably the one who wishes you were with somebody
else, somebody who didn't take everything so hard and who

Happy | knows how to enjoy herself.

(©

[ Come to think of it the real cause of that roue was Peter Burden. ra

L4

Oh You knew there was nothing in that. ]

[ | knew nothing of the sort. You accepted presents from him. ra

[ He let him kiss you. You said you did. 73

i 7,
}Angry

[ Well, that's a nice point of view | must say. rz

T I'm getting very bored with this conversation. ] Angry

[ ]
Me, too, bored stiff. 8
Neural [ Do you want some brandy? ra

Well, what of it.
aa

Well it gave him a lot of pleasure and it didn't hurt me. ]
.-ﬁ g P

Well, if you hadn't been so nosey and suspicious
you never would have known about it.

H

(b)

[sit down, mom. | want to talk to you. r a

ﬁ The trouble with the god damned newspapers, ... ]

[AII right, All right mom. Listen! T ;

[ You know why | asked Annie here, don't you?r

ﬁ Well | got an idea. But what's the story? ] Neural
[ ]
[ I'm going to ask her to marry me. rz

Well that's nobody's business but yours, Chris.}
“i ' Yy Frustrated

[ You know that's not just my business. rz

} Frustrated

[ Soit's all right. | can go ahead with it then? Fa

H Well you're want to make sure your father
[ ]

H

What- What am - what are you going to do, | mean you're
[ ]

old enough to make up your own mind?

isn't you know going to--lose them.

[ So it's all right. | can go ahead with it then? r 8

(@

Figure 5: Case study examples.

18



