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Abstract

The Multimodal Transformer showed to be
a competitive model for multimodal tasks in-
volving textual, visual and audio signals. How-
ever, as more modalities are involved, its
late fusion by concatenation starts to have a
negative impact on the model’s performance.
Besides, interpreting model’s predictions be-
comes difficult, as one would have to look
at the different attention activation matrices.
In order to overcome these shortcomings, we
propose to perform late fusion by adding a
GMU module, which effectively allows the
model to weight modalities at instance level,
improving its performance while providing a
better interpretabilty mechanism. In the ex-
periments, we compare our proposed model
(MulT-GMU) against the original implementa-
tion (MulT-Concat) and a SOTA model tested
in a movie genre classification dataset. Our ap-
proach, MulT-GMU, outperforms both, MulT-
Concat and previous SOTA model.

1 Introduction

Information on the internet has grown exponen-
tially. Much of this information is multimodal (e.g.
images, text, videos, etc.). For example, in plat-
forms like YouTube and Facebook, multiple modal-
ities can be extracted like video frames, audio and
captions on different languages. In this context,
it becomes increasingly important to design new
methods that are able to analyze and understand au-
tomatically these type of multimodal content. One
popular scenario is the movie streaming service
(e.g. Netflix, Prime Video, etc.), where there is
also an increasing interest in performing automatic
movie understanding. In this paper we take as a
case study the task of movie genre prediction. Our
proposal exploits movie trailer frames and audio,
plot, poster and a variety of metadata information,
via Deep Learning techniques that have enough

flexibility to fuse and learn to weight from all these
modalities in a simultaneous way.

The success of the Transformer architecture
(Vaswani et al., 2017) and its variants in NLP, has
also inspired researchers to propose and extend
these architectures in multimodal settings. Some
examples include ViLBERT (Lu et al., 2019), MulT
(Tsai et al., 2019), VisualBERT (Li et al., 2019),
UNITER (Chen et al., 2020), MMBT (Kiela et al.,
2019) and LXMERT (Tan and Bansal, 2019). How-
ever, the vast majority of these multimodal archi-
tectures were designed and tested only on bimodal
data, more specifically, on text and visual infor-
mation. Besides, models that only allow for early
fusion, have the disadvantage that they rely solely
on this mechanism that hinders the interpretability.
While in models that output a feature per modal-
ity, an additional late fusion mechanism can be
implemented to further fuse modalities and learn
a richer representation, which is the case for the
MulT model. Nonetheless, late fusion in this model
was originally performed by means of concatena-
tion, diminishing its fusion capacity.

Contributions of this work are twofold: We first
adapt the MulT model (Tsai et al., 2019) to sup-
port additional number of modalities. Then, we
consider a mechanism that learns to fuse all the
modalities dynamically before making the predic-
tion over each particular instance. This is a crucial
step, given that for movies belonging to different
genres, the relevant modalities could be quite dif-
ferent. For example, in Animation movies, visual
information might be more relevant given the vi-
sual style, while for Drama movies, sound may be
more helpful because of loud noises and screams.

In order learn to fuse the final representation of
each modality we propose to adapt the GMU mod-
ule (Arevalo et al., 2019). These units are highly
interpretable gates which decide how each modal-
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ity influences the layer output activation units, and
therefore, decide how relevant each modality is in
order to make the prediction. This is a crucial step,
given that for this task, not all modalities are going
to be equally relevant for each observation, as has
been shown is previous work like (Mangolin et al.,
2020) and (Cascante-Bonilla et al., 2019). Our eval-
uation shows that our MulT-GMU model, which
uses weighted fusion by GMU, can outperform
SOTA results in the movie genre classification task
by 4%-10% on all metrics (µAP, mAP and sAP).

We explore for the first time the use of the MulT
in the movie genre prediction task. We demonstrate
that the original MulT model, which uses late fu-
sion by concatenation (MulT-Concat) can achieve
SOTA results task for this . Then, we show that
further improvements can be achieved by our pro-
posed model with the GMU module (MulT-GMU).
The contributions can be summarized as follows:

• We introduce the use of the Multimodal Trans-
former architecture (MulT) to the task of
movie genre prediction.

• We improve the MulT model by including a
GMU module on the top, which allows to suc-
cessfully fuse more modalities and improve
its prediction performance.

• We show that the interpretability of the MulT
model increases by incorporating the GMU
module, allowing to better understand the rel-
evance of each modality for each instance.

2 Approach

In Sections 2.1 and 2.2, we briefly describe the
MulT architecture and then explain how to adapt
the GMU units at the top of the model to perform a
more robust late fusion of modalities.

2.1 Multimodal Transformer (MulT)

In (Tsai et al., 2019) the MulT model was pro-
posed in the context of human multimodal lan-
guage understanding, involving a mixture of natu-
ral language, facial gestures, and acoustic behav-
iors. Thus, it operates with three different modali-
ties, Language (L), Video (V) and Audio (A).

Each modality is represented as a sequence of
features Xα ∈ RTα×dα with α ∈ {L, V,A} being
the modality. T(.) and d(.) are used to represent se-
quence length and feature dimension, respectively.
Sequences are fused by pairs through crossmodal

attention modules. These modules take two input
modalities, α, β ∈ {L, V,A}, and their respective
sequences, Xα ∈ RTα×dα and Xβ ∈ RTβ×dβ . The
crossmodal attention block will try to adapt latently
the modality β into α. To achieve this, queries from
one modality are combined with keys and values
from the other modality. D crossmodal transformer
layers are stacked to form a crossmodal transformer.
Another crossmodal transformer is used to provide
the latent adaptation of modality α into β. Yielding
representations Zβ→α and Zα→β , respectively.

In the case of three modalities (L, V, A), six
crossmodal transformers are needed in order to
model all pair interactions. Interactions that share
the same target modality are concatenated. For ex-
ample, the final representation of Language will
be ZL = [Z

[D]
V→L, Z

[D]
A→L] ∈ RT{L,V,A}×2d. Finally,

each modality is passed through L transformer en-
coder layers, separately. The last element of each
sequence is concatenated and passed through fully
connected layers to make predictions.

2.2 MulT-GMU: Extending MulT through
GMU-based late fusion

The MulT model expects the inputs to be sequences
of features, but there could be modalities that are
not sequences but a fixed vector (e.g. an image).
A simple approach would be to concatenate them
alongside the MulT outputs (ZL, ZV , ZA) just be-
fore the fully connected layers. We argue that this
is not optimal given that the fully connected layers
will not be able to properly weight the relevance of
each modality. In this work, we propose to adapt
the MulT model by changing the concatenation
fusion with a GMU module, as shown in Figure 1.

The GMU module receives a feature vector xi ∈
Rdi associated to modality i. Then the associated
gate, zi ∈ Rshared, controls the contribution of that
modality to the overall output of the GMU module.
For this, the first step is to calculate an intermedi-
ate representation, hi = tanh(Wix

T
i ) ∈ Rshared

with Wi ∈ Rshared×di , where all modalities have
the same dimension so they can be added and
weighted by zi. The next step is to calculate the
gates zi = σ(Wzi [xi]

N
i=1) ∈ Rshared where N

is the number of modalities and [xi]
N
i=1 means

the concatenation of vectors from x1 to xn. Fi-
nally, given the gates z1, z2, ..., zN and hidden fea-
tures h1, h2, ..., hN , fusion is performed through
h =

∑n
i=1 zi�hi, where� represents component-

wise vector multiplication. This operation allows



3

the GMU module to have a global view of all
modalities, whereas MulT only allows for early
fusion by modality pairs.
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Figure 1: Proposed extension to the MulT architecture
with a GMU module.

3 Evaluation

3.1 Datset

We base all of our experiments in the dataset Movi-
escope (Cascante-Bonilla et al., 2019). This is a
large-scale datset comprising around 5,000 movies
with corresponding movie trailers (video and au-
dio), movie posters (images), movie plots (text),
and metadata. The available data is already pre-
processed. For the trailer video, we have 200 fea-
tures vectors of size 4096, associated to 200 video
frames subsampled by taking 1 every 10 frames.
For the audio, log-mel scaled power spectrograms
are provided. Poster images are provided in both,
raw format and as a feature vector of size 4096.
For the plot and metadata, raw data is provided. In
the case of text, we use the pre-trained BERT-base
model to extract features. For the metadata we fol-
low (Cascante-Bonilla et al., 2019), extracting 13
different metadata values concatenated as a vector.

3.2 Experimental Framework

We compare three different models. The MulT
model that works by concatenation of modalities
(MulT-Concat), the extension of the MulT model
with the GMU module (MulT-GMU), and the base-
line model proposed in (Cascante-Bonilla et al.,
2019), which is inspired by fastText (Joulin et al.,
2017) to encode a sequence of features from text
into a single vector, and a sequence of video fea-
tures extracted from a pre-trained CNN also into
single vector. The fusion of modalities is performed
through a weighted regression, which could be con-
sidered as a form of modal attention. We refer to
this model as Fast Modal Attention (Fast-MA).

In the case of the MulT-Concat and MulT-GMU,
we show their mean performance over 5 runs with
different random seeds. For the Fast-MA model we
include the original results presented in (Cascante-
Bonilla et al., 2019). The different modalities are
denoted as V (Video), A (Audio), P (Poster), T
(Text) and M (Metadata). The Fast-MA model
was only tested in four of the presented settings
(VA, VAP, TVAP and TVAPM). Furthermore, to
investigate the impact of the GMU module we also
include a more exhaustive list of experiments.

3.3 Results

We compared both baseline models, Fast-MA,
MulT-Concat (late fusion by concatenation) with
our proposed architecture MulT-GMU. Results on
four different modality settings are shown in Ta-
ble 1. They indicate that both MulT-Concat and
MulT-GMU were able to outperform the state-of-
the-art model Fast-MA when several modalities
are considered. These results also show that Fast-
MA outperformed both MulT-Concat and MulT-
GMU in two of the modality settings, namely VA
(Video and Audio) and VAP (Video, Audio and
Poster). Note that these two settings are the only
ones where Text (T) is not included, which con-
firms previous studies showing that for this task,
text is the most relevant modality while audio is
the least relevant (Mangolin et al. (2020), Cascante-
Bonilla et al. (2019)). This explains in part, the low
performance of the MulT models in these two set-
tings. Once text is included, performance in MulT
models increases dramatically. For example, from
Table 2, we show that either bimodal MulT model
that included text (TV or TA) already outperformed
the best Fast-MA model (TVAPM).

Once we show the outstanding performance of
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both MulT models, in Table 2 we further compare
them on more modality settings. We can see that
MulT-GMU outperforms MulT-Concat in almost
all the settings except in TV (Text and Video). For
example, from experimental settings TVPM and
TVAPM, we can observe that MulT-Concat has
difficulty handling the Metadata features, dropping
quite considerably the performance. In contrast,
MulT-GMU is able to handle these features and
maintain or even increase its performance.

Modality Model µAP mAP sAP

VA Fast-MA 70.3 61.5 78.8
MulT-Concat 59.2±0.3 53.1±0.5 71.1±0.7
MulT-GMU 58.9±0.7 52.5±0.6 70.6±0.6

VAP Fast-MA 70.4 61.7 78.8
MulT-Concat 63.1±0.5 54.3±0.5 73.9±0.5
MulT-GMU 64.1±0.9 55.0±0.7 74.5±0.5

TVAP Fast-MA 74.9 67.5 82.3
MulT-Concat 78.9±0.3 75.7±0.5 85.6±0.3
MulT-GMU 79.8±0.4 76.0±0.9 86.1±0.4

TVAPM Fast-MA 75.3 68.6 82.5
MulT-Concat 64.8±5.8 61.3±7.2 76.9±4
MulT-GMU 79.5±0.5 76.4±0.3 85.6±0.3

Table 1: Comparison against MulT-Concat (Tsai et al.,
2019) and Fast-MA (Cascante-Bonilla et al., 2019) on
different modality combinations. Metrics reported cor-
respond to average precision, micro (µAP ), macro
(mAP ) and sample (sAP ) averaged.

Modality Model µAP mAP sAP

TV MulT-Concat 77.5±0.5 73.5±0.2 84.4±0.2
MulT-GMU 76.9±0.3 73.2±0.2 84.2±0.4

TA MulT-Concat 76.2±0.7 72.4±0.8 84±0.5
MulT-GMU 76.3±0.4 71.1±0.4 84.1±0.2

TVA MulT-Concat 77.2±0.7 74.8±0.4 84.2±0.5
MulT-GMU 78.2±0.5 74.9±0.5 85±0.3

TVP MulT-Concat 78.4±0.5 75.1±0.4 85.1±0.5
MulT-GMU 78.9±0.1 75.2±0.4 85.7±0.3

TVPM MulT-Concat 46.1±11 43.2±10.7 62.8±8.8
MulT-GMU 79.1±0.3 75.4±0.2 85.4±0.4

Table 2: Comparison of the proposed model MulT-
GMU and MulT-Concat (Tsai et al., 2019) with addi-
tional modality combinations. Metrics reported cor-
respond to average precision, micro (µAP ), macro
(mAP ) and sample (sAP ) averaged.

4 Qualitative analysis

To understand how the GMU units are weighting
the relevance of each modality according to each

instance (movie) i, we inspected the gates zi of the
GMU module for all the observations in the test
set. To achieve this, we selected the observations
that contained each of the genres and averaged the
gate activations per modality. We show results for
5 different movie genres in Figure 2, where each
row already takes into account the average of all
test movies of the corresponding genre.

In general, text and visual modalities were the
most relevant according to the GMU module. We
can see relatively low activations for the audio
modality compared with the other ones. This is
expected as it has been shown that audio modal-
ity is not as useful as the other ones, for this task
(Mangolin et al. (2020), Cascante-Bonilla et al.
(2019)). There is also a relationship between audio
and video signals. In genres where video is the
strongest, audio is the weakest.

Taking the Audio modality as an example, where
Horror and Drama had the highest GMU activa-
tions overall, we could think that this was the case
given that this kind of movies usually have loud
noises like screams in the trailers, so this could be
a good indicator that the movie is likely to belong
to one of these two genres. There are other inter-
esting scenarios, for example the text modality had
the highest activation for genres like Comedy and
Drama. In the case of the video modality, Comedy
and Family genres had the highest activation.

Figure 2: Average proportion of GMU unit activations
normalized by genre for all the observations in test set.
We only show the activations for 5 movie genres.

5 Conclusion

We proposed an adapted version of the Multimodal
Transformer, MulT-GMU, by performing weighted
late fusion with a GMU module. This approach
achieved SOTA results in the multimodal movie



5

genre classification task. Moreover, we improved
the interpretability of the MulT model by perform-
ing a qualitative analysis, visualizing the activa-
tions of the GMU module, which allowed us to
have a better understanding about relevant modali-
ties for the model, depending on the genre of the
movie. To the best of our knowledge, this is the first
time multimodal transformer-based architectures
are tested in the task of movie genre classification.
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