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Abstract

In today’s society, the rapid development of
communication technology allows us to com-
municate with people from different parts of
the world. In the process of communication,
each person treats others differently. Some
people are used to using offensive and sarcas-
tic language to express their views. These
words cause pain to others and make people
feel down. Some people are used to shar-
ing happiness with others and encouraging oth-
ers. Such people bring joy and hope to oth-
ers through their words. On social media plat-
forms, these two kinds of language are all over
the place. If people want to make the online
world a better place, they will have to deal
with both. So identifying offensive language
and hope language is an essential task. There
have been many assignments about offensive
language. Shared Task on Hope Speech Detec-
tion for Equality, Diversity, and Inclusion at
LT-EDI 2021-EACL 2021 uses another unique
perspective – to identify the language of Hope
to make contributions to society. The XLM-
Roberta model is an excellent multilingual
model. Our team used a fine-tuned XLM-
Roberta model to accomplish this task.

1 Introduction

Social media is a way to bring people from dif-
ferent regions closer together. Different people
have different cultural backgrounds and different
world views. This allows people to have a fierce
clash of ideas on social platforms. In these inter-
actions, the way people treat each other is very
different. Hate speech offensive speech and offen-
sive speech are not recommended (Chakravarthi
et al., 2020; Mandl et al., 2020; Chakravarthi et al.,
2021; Suryawanshi and Chakravarthi, 2021). So
we also do a lot of work to avoid this, for exam-
ple, we have a lot of competitions to identify of-

fensive content(GermEval1, IberLEF2). And we
welcome those who use the language of hope to en-
courage people to get back on their feet and renew
their strength in the face of hardship. To this end,
Shared Task on Hope Speech Detection for Equal-
ity, Diversity, and Inclusion at LT-EDI 2021-EACL
2021 was organized by the event organizers. Hope
Speech can help people find ways to realize their
dreams(Blasius and Phelan, 1997; Chang, 1998;
Youssef and Luthans, 2007; Cover, 2013; Snyder
et al., 1991). People can learn and master these
techniques to make their lives better. Hope Speech
is seen by medical personnel as vital to people’s
recovery. Hope speech makes the whole social en-
vironment more optimistic. Therefore, it is very
necessary to detect hope speech. The second para-
graph of the paper introduces the work done by
scholars in relevant fields, the third paragraph intro-
duces the detailed content of tasks, the fourth para-
graph introduces the details of data and the methods
of processing data, the fifth paragraph introduces
the model used by our team, the sixth paragraph
introduces the details and results of experiments,
and finally the conclusion we have reached.

2 Related Work

Some works have been done on the classification of
hope speech. (Puranik et al., 2021; Ghanghor et al.,
2021) analyze the evolving international crisis via
a substantial corpus constructed using comments
on YouTube videos. As well as detecting offensive
content, Hope speech can be classified as a useful
tool in its own field. Mathur et al. (Mathur et al.,
2018) used transfer learning to complete the task of
classifying offensive content of tweets in hot data
sets. Their team used a convolutional neural net-
work to pre-train English tweets and then re-train

1https://projects.fzai.h-da.de/iggsa/germeval/
2http://hitz.eus/sepln2019/?q=node/21
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Indo-English tweets. Kamble and Joshi (Kamble
and Joshi, 2018) used three classical deep learning
models to complete the classification of English-
Hindi tweets. By comparing these three classical
deep learning models, they found that the use of
specific embedding can improve the representation
of the target group, and thus improve the score of
F1. Santosh and Aravind (Santosh and Aravind,
2019) used different LSTM(Mathur et al., 2018)
models to classify hate speech, one is the sub-word
level LSTM model and the other is the hierarchical
LSTM model based on phonetic location words.
Waseem et al.(Waseem and Hovy, 2016) found
the influence of different extra language features
combined with N-gram characters on classification
tasks.

3 Task Details

Shared task on Hope Speech Detection for Equal-
ity, Diversity, and Inclusion at LT-EDI 2021-EACL
2021 gives the participants three languages to
choose from. The three languages are English,
Tamil and, Malayalam. The event organizer pro-
vides us with a training data set and a test data set.
Through the data set, we find that this is a tripartite
task. Our group believes that a lot of work has
already been done on the task of classifying En-
glish. So our team chose a Tamil sub-task and a
Malayalam sub-task.

4 Date Details and Data Preprocessing

4.1 Date Description
In each subtask, the data set contains three tags:

• Hope speech: This tag indicates that the com-
ment is Hope speech.

• Not hope speech: This tag indicates that a
comment is Not hope speech.

• Not in intended language: This tag indicates
that is not the language used by the subtask.

We can see that the label classification is very
clear. The details of the data set are showed in
Table 1 and Table 2.

4.2 Data Preparation
The data sets we used were collected from YouTube
(Chakravarthi, 2020; Chakravarthi and Murali-
daran, 2021). Before training the dataset, we first
clean up the dataset. The cleaned data set is more

Label Train set validation set
Non hope speech 72.45% 73.27%
Hope speech 19.48% 17.76%
Not Malayalam 8.07% 8.97%

Table 1: Label distribution of Malayalam language
subtask

Label Train set validation set
Non hope speech 48.71% 49.46%
Hope speech 39.15% 37.51%
Not Tamil 12.14% 13.03%

Table 2: Label distribution of Tamil language subtask

standardized, and we remove miscellaneous words
and symbols, reducing the amount of training. The
main work of data set cleaning is as follows:

• Deleting the emoticons

• Replacing emojis with words, such as words
’crying’ instead of a crying face emoji, and
words ’panda’ instead of a panda emoji.

• Deleting the URL

• Deleting punctuation marks

5 Model Description

In a recent categorization task competition, many
teams using the fine-tuned BERT(Devlin et al.,
2019) model did well. Our team used XLM-
Roberta(Conneau et al., 2020) as a preprocessing
model in the experiment. The XLM-Roberta model
is a multilingual processing model trained on pro-
cessing text in 100 different languages. This fits
nicely with the shared task of handling multilin-
gual text. Compared with the BERT model, the
XLM-Roberta model has improved various perfor-
mances. This is due to the increased training vol-
ume of the XLM-Roberta model, whose training
datasets are several orders of magnitude larger than
the Wiki-100 corpus used to train its predecessor.
Based on the XLM-Roberta model, we used two
fine-tuning methods to accomplish this task. The
two approaches are shown in Figures 1 and 2.

5.1 Method 1
Firstly, the pooler output of XLM-Roberta (P O)
of XLM-Roberta model is obtained through XLM-
Roberta model. Second, input the output of the
last three hidden layers of the XLM-Roberta model
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Figure 1: Method 1

Figure 2: Method 2
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Hyper-parameter Value
dropout 0.5
learning rate 1e-5
epoch 8
per gpu train batch size 32
gradient accumulation steps 8

Table 3: The hyper-parameters

into the LSTM model. Finally, the output obtained
from the LSTM model is connected with P O and
put into the classifier.

5.2 Method 2

Firstly, the Pooler output of XLM-Roberta (P O)
of the XLM-Roberta model is obtained through
the XLM-Roberta model. The second step is to
input the output of the last three hidden layers of
the XLM-Roberta model into the CNN(Simonyan
and Zisserman, 2014) model. Finally, the output
obtained from the CNN model is connected with
P O and put into the classifier.

6 Experiment and Results

In the experimental process, the same hyper-
parameter is used in the two methods. Table 3 is the
details of the hyper-parameter we used. The train-
ing set and validation set used by our team were
derived from the training set provided by the event
organization after separation using hierarchical K-
fold cross-validation. Method 1 performed better
on the validation set, so we submitted the results
of Method 1. In the Tamil language sub-task, our
final F1-score In the official test set is 0.49. In the
Malayalam language sub-task, our final F1-score
In the official test set is 0.49.

7 Conclusion

This article describes the models and results used
by the Simon team in the hope speech classification
task. Our results are not good in the leaderboard,
which may have something to do with the imbal-
ance of the data set. In the future, we will continue
to improve our model to get better results.
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