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Abstract

Analysis and deciphering code-mixed data
is imperative in academia and industry,
in a multilingual country like India, in
order to solve problems apropos Natural
Language Processing. This paper proposes
a bidirectional long short-term memory
(BiLSTM) with attention-based approach, in
solving hope speech detection problem. Using
this approach an F1-score of 0.73 (9 th rank)
in Malayalam-English data set was achieved
from a total of 31 teams who participated in
the competition.

1 Introduction

Code-mixing may be defined as the phenomenon
of mixing of elements of speech or text, from
two or more languages, into a single utterance.
Code-mixing is widely observed in social social-
media platforms (Chakravarthi, 2020b). Code
mixing imposes diverse challenges in Natural
Language Processing (NLP) tasks like sentiment
analysis (SA), named entity recognition (NER),
and parts-of-speech (POS) tagging (Jose et al.,
2020; Priyadharshini et al., 2020).

Nowadays, as more people lean on online
communication platforms, it is incumbent on
bloggers to stop the spread of negativity through
online posts (Mandl et al., 2020; Chakravarthi
et al., 2020, 2021). Studies have been carried out
to surveil and cease the consumption of abusive
comments on social-media platforms like You-tube
and Twitter (Ghanghor et al., 2021a; Yasaswini
et al., 2021; Hegde et al., 2021). Besides curbing
dissemination of negativity, it is imperative for
users online to endorse and promote positivity
and hope (Chakravarthi and Muralidaran, 2021).
As studies have shown that hope is an important
factor in prevention of self-immolation and

self-harm Snyder et al. (2002). Hope is generally
attributed as assurance, encouragement, support, or
motivation instilled in individuals by their peers or
surroundings Chakravarthi (2020a); Puranik et al.
(2021); Ghanghor et al. (2021b)

However, there is not much study done in
understanding hope speech in the domain of code
mixed communications. Hope Speech Detection
for Equality, Diversity, and Inclusion-EACL 2021
is first such task 1 to detect hope speech in low
resourced code-mixed languages like Malayalam-
English, Tamil-English, Kannada-English.

2 Literature Survey

Since Hope Speech Detection for Equality,
Diversity, and Inclusion-EACL 2021 is the first
task in Hope Speech Detection, there is not much
focus in this area. Most of the studies have been
done in the NLP aspects of NER, SA and POS
tagging on code mixed data.

In Sravani et al. (2018) the authors experimented
with various word embedding techniques using
6 different classifiers and showed that Term
Frequency and Inverse Document Frequency (TF-
IDF) word embeddings yielded better results for
NER task on English-Hindi code-mixed data.

In Thara and Poornachandran (2018) the authors
discusses on the literature survey of code-mixed
problems and datasets.

In Sasidhar et al. (2020) authors created a
corpus of 12000 Hindi-English code mixed texts
from various online communication platforms and
annotated them as Happy, Sad and Anger based on
the emotions. The authors achieved an accuracy of
83.21% using CNN-BiLSTM architecture.

In Sreelakshmi et al. (2020) the authors have

1https://competitions.codalab.org/
competitions/27653
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used Support Vector Machine (SVM)-Radial Basis
Funcrion (RBF) classifier on features extracted
using fastText for hate speech detection in Hindi-
English code mixed corpus of 10000 texts which
are equally divided into hate and non-hate classes.
The authors obtained an accuracy of 0.75% using
SVM-RBF algorithm.

In Liu et al. (2020) used an adversarial training
with a pre-trained multilingual model XLM-R
Conneau et al. (2020) on code-mixed Hindi-
English data 2 and achieved an F1-score of 0.75
(1st rank) for SA.

3 Proposed Method

3.1 Data Description

Dataset consists of comments taken from
YouTube3 video comment section. Data set is
classified into three classes namely Hope speech,
Non-hope speech, not-Malayalam.

Hope speech: Comments having positive
intentions, infused with inspiration provided by
peers to an individual, promoting wellbeing, joy
and happiness, comments promoting morals like
equality, diversity and inclusion are labelled as
Hope speech.

Non-hope speech:Comments that are biased
and criticize without considering the outcome, and
promote cultural, racially hatred interactions are
classified as non-hope speech

Not-Malaylam: Comments that are not
Malayalam or in Malayalam-English are
categorized as not-Malayalam.

We merged the train and development data sets
into a single data set. The merged data set is
comprised of 9634 comments in total (Table 1),
whereas the test data set (Table 2) has an aggregate
of 1071 comments. 90 % of this merged data as
were used as train data (Table 3) and 10 % as
development data set (Table 4). Majority of the
comments in the data set are labelled as non-hope
speech, the data set as such is imbalanced

2https://competitions.codalab.org/
competitions/20654

3https://www.youtube.com/

Class Count Percentage
Not-Malayalam 786 8.2 %
Hope speech 1860 19.3 %
Non-hope speech 6988 72.5 %
Total 9634

Table 1: Total Data Statistics.

Class Count Percentage
Not-Malayalam 101 9.4 %
Hope speech 194 18.1 %
Non-hope speech 776 72.5 %
Total 1071

Table 2: Test Data Statistics

Class Count Percentage
Not Malayalam 707 8.2 %
Hope speech 1674 19.3 %
Non-hope speech 6289 72.5 %
Total 8670

Table 3: Train Data Statistics

Class Count Percentage
Not Malayalam 79 8.2 %
Hope speech 186 19.3 %
Non-hope speech 699 72.5 %
Total 964

Table 4: Development Data Statistics

https://competitions.codalab.org/competitions/20654
https://competitions.codalab.org/competitions/20654
https://www.youtube.com/


151

3.2 Data Preprocessing

Manual Cleaning: Data set contains 109159
comments/posts from YouTube video comment
Section is comprised of abbreviations like:
RSS (Rashtriya Swayamsevak Sangh), CAA
(Citizenship Amendment Act), UAE (United Arab
Emirates), ICMR (Indian Council of Medical
Research), and usage of common internet slang
like bro, sis, subs (subscriber) is widely observed
throughout the data set. We manually expanded
most of the abbreviation in train, development, and
test data. We replaced commonly used internet
slang like u (you), luv (love), vid (video), bro
(brother), sis (sister), btw (by the way), rip (rest
in peace) with the complete form of the word.
We manually corrected misspelled English words.
Numerical short-cuts like "3.5k" , "4 M" were
rewritten in complete numerical form i.e. as
"3500", "4000000". We desegmented words which
have English prefix and Malayalam suffix like
"machineil", "storyil", "collegeil" as "machine
il", "story il","college il". Dates which are in
numerical format like "29-12-2020" are rewritten
as "December 29 2020". Symbols "&","+","%" are
replaced with "and", "plus", "percentage".

Preprocessing: After manually cleaning the
data, the following steps were used to preprocess
the data.

Step 1: Remove emojis in the data and convert
all words in Latin script into lower case

Step 2: Remove punctuation marks, @ from
user mentions, # from hashtags.

Step 3: Replace characters and words which are
occurring consecutively more than two times with
a single occurrence.

3.3 Feature Extractions

Word2Vec and FastText algorithms were used for
feature extractions

Word2Vec: Word2Vec (Mikolov et al., 2013)
is a neural network based model which takes in
text corpus as inputs, and yields word embeddings
as output ( a set of vectors). It is done using
two different methods, one is Continuous-Bag-of
Words (CBOW) and the other one is Skip-gram

In CBOW, initially every word in the vocabulary
is given a random vector representation and the
model is given a set of neighboring words, both
from front and back of the word. The number of

neighboring words is a hyperparameter, called as
window size. The model is then asked to predict
the present word. When training completes, the
model outputs unique vector representation to each
word in the vocabulary.

In Skip-gram method, just like with CBOW the
model starts with a random vector representation
for each word in the corpus. The model is then
given a word and is asked to predict its surrounding
neighbors, from the front and back of the word.

FastText : FastText, an extended version of
Word2Vec is based on (Joulin et al., 2016;
Bojanowski et al., 2017). FastText uses sub- word
information to extract features. FastText first
generates character n-grams for each word.
Example: 3-gram for word “bharat" would be < bh,
har,ara, rat, at >. Unlike Word2Vec, FastText can
handle Out-of-Vocabulary (OOV) words making
use of the n-gram approach. OOV word vector
representations can be obtained by adding the
vector representations of sub words. Gensim
implementation4 were used for both FastText and
Word2Vec.

3.4 Classification Model:

CNN: Studies have shown that CNN can be
used in NLP. In (Kim, 2014), author shows that
CNN with Word2Vec can attain remarkable
results in sentence classification, with minimal
hyperparameter training. The author has used
seven different sets of data for this study. In
(Zhang and Wallace, 2016) an extensive study on
sensitivity of the model’s performance for sentence
classification was performed, based on model
architecture and other hyperparameters.

In our experiments, we implemented a single
layer 1-dimensional convolutional neural network
(1D-CNN) with 256 kernels of size 1, followed
by two feed-forward layers, where the first neural
network has 256 units and the last one has 3
units, which is acting as the classification layer.
A dropout is (Srivastava et al., 2014)used for
regularization. The key-idea of dropout is to
prevent units in the neural network (NN) from co-
adapting too much, by randomly dropping units and
their connection in the network during training.

4https://pypi.org/project/gensim/

https://pypi.org/project/gensim/
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Bi-LSTM: Long Short Term Memory
networks(LSTM) (Hochreiter and Schmidhuber,
1997) are variants of RNN, designed to overcome
the long term dependency problems in RNN.
LSTMs address the long-term dependency problem
by using an internal memory called cell state.
LSTMs have the privilege to remove or add
new information to this cell state by regulating a
structure called gates.

We have implemented Bidirectional LSTM
(BiLSTM) with attention mechanism. Bi-LSTM
gives up representation of the input text from
both directions, using two different LSTMs.
Embeddings from Word2Vec and FastText are fed
into the BiLSTM, the hidden states of BiLSTM
layer are then fed into the attention layer which
then gives a weighted context vector. The context
vector is conveyed to a feed-forward layer having
3 units to classify the input.

4 Experiments and Results

We implemented all our models in tensorflow5.

4.1 Experimental Methods
Word Embeddings: We experimented with
embeddings of 100, 200, and 300 dimensions. We
used Word2Vec and FastText (both Skip-gram and
CBOW) embedding techniques, which yielded a
best weighted F1-score.

Dropout and L2 regularization: We have
considered a range of values between 0.0 and 1.0
for both dropout and regularization.

Optimizers: Adagrad, Adadelta, Adam,
RMSprop, Stochastic Gradient Descent (SGD)
were used as optimizers; the optimizer which
resulted in a better F1-score was selected as the
preferred optimizer.

Learning rate: We have considered a range of
values between 10−5 to 10−3.

Epochs: Range of values between 30 and 100
with an interval of 10 were considered.

Data imbalance: The majority of the comments
in the dataset belong to non-hope speech category.
To address this data imbalance we experimented
with up-sampling and data augmentation using
back translation. We applied random up-sampling
method to minority classes.

5https://www.tensorflow.org

4.2 Results
CNN with Word2Vec embeddings: Word
embeddings from Word2Vec are feed into 1-D
CNN; the results were evaluated using weighted
F1-score. Various hyperparameters and word
embeddings dimensions were experimented
with. 1-D CNN with up-sampled data using
Word2Vec embeddings (CNN_W2V_UP) obtained
a weighted F1-score of 0.73 on development
data set. 1-D CNN without any augmentation
technique (CNN_W2V_NORM) obtained a
weighted F1-score of 0.62 on development data
set. 1-D CNN with data augmentation using
back translation (CNN_W2V_AUG) obtained a
weighted F1-score of 0.69 on development data set.
See Table 5 and Figures: 2,3,4

Model Dev_data Test Data
CNN_W2V_NORM 0.62 0.62
CNN_W2V_AUG 0.69 0.68
CNN_W2V_UP 0.73 0.75

Table 5: F1-score for development and test
data.CNN_W2V_UP: 1-D CNN with up-sampled data
using Word2Vec embeddings, CNN_W2V_NORM: 1-
D CNN without any augmentation technique using
Word2Vec embeddings, CNN_W2V_AUG: 1-D CNN
with data augmentation using back translation with
Word2Vec embeddings.

CNN with FastText embeddings: Word
embeddings from FastText are feed into 1-
D CNN and we evaluated the results using
weighted F1-score. We experimented with
various hyperparameters and word embeddings
dimensions. 1-D CNN with up-sampled data using
FastText embeddings (CNN_ft_UP) obtained a
weighted F1-score of 0.74 on development data
set. 1-D CNN without any augmentation technique
(CNN_ft_NORM) obtained a weighted F1-score
of 0.70 on development data set. 1- D CNN
with data augmentation using back translation
(CNN_ft_AUG) obtained a weighted F1-score of
0.63 on development data set, see Table 6 and
Figures: 5,6,7

Bi-LSTM with attention using FastText: Our
initial experiments have shown that up-sampling
yields better results compared to data augmentation
using back translation, so we have used FastText as
the feature extraction method and we used random
up-sampling with attention based Bi-LSTM model.
We obtained a weighted F1-score of 0.85 on the

https://www.tensorflow.org
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Figure 1: Confusion matrix for test data: 1-D CNN
without any augmentation technique using Word2Vec
embeddings.

Figure 2: Confusion matrix for test data: 1-D CNN
with data augmentation using back translation with
Word2Vec embeddings.

Figure 3: Confusion matrix for test data: 1-D CNN
with up-sampled data using Word2Vec embeddings

Figure 4: Confusion matrix for test data: 1-D CNN
without any augmentation technique using FastText
embeddings.

Figure 5: Confusion matrix for test data: 1-D CNN
with data augmentation using back translation with
FastText embeddings.
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Model Dev_data Test Data
CNN_ft_AUG 0.63 0.62
CNN_ft_NORM 0.70 0.70
CNN_ft_UP 0.74 0.76

Table 6: F1-score for development and test
data.CNN_ft_UP: 1-D CNN with up-sampled data
using FastText embeddings, CNN_ft_NORM: 1-D
CNN without any augmentation technique using
FastText embeddings, CNN_ft_AUG: 1-D CNN with
data augmentation using back translation with FastText
embeddings.

Figure 6: Confusion matrix for test data: 1-D CNN
with up-sampled data using FastText embeddings.

development data set. We achieved an F1-score
of 0.73 in the test data. As the F1-score for
development data set of this model was the best
compared to the rest of the models we submitted
this model’s results in the task. On the test data this
model obtained an F1-score of 0.73, see Figure 8.

Model Dev_data Test Data
BiLSTM_ft_UP 0.85 0.73
CNN_W2V_UP 0.73 0.75
CNN_ft_UP 0.74 0.76

Table 7: F1 score for development and test
data.CNN_W2V_UP: 1-D CNN with up-sampled data
using Word2Vec embeddings,CNN_ft_UP: 1-D CNN
without any augmentation technique using Word2Vec
embeddings, Bi-LSTM_ft_UP: Bi-LSTM with up
sampled data using FastText embeddings.

Figure 7: Confusion matrix for test data: Bi-LSTM
with up-sampled data using FastText embeddings.

5 Conclusion

We evaluated the performance of our models on the
test data using sklearn F1-score 6, we found that
1-D CNN on up-sampled data with both Word2Vec
and FastText embeddings performed better than the
Bi-LSTM model which we submitted for the task.
However, Bi-LSTM performed relatively better on
the development data set (see Table 7). We also
observed that random up-sampling yielded better
results compared to data augmentation with back
translation method.
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