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Abstract

Neural encoders of biomedical names are
typically considered robust if representations
can be effectively exploited for various down-
stream NLP tasks. To achieve this, encoders
need to model domain-specific biomedical se-
mantics while rivaling the universal applica-
bility of pretrained self-supervised represen-
tations. Previous work on robust representa-
tions has focused on learning low-level distinc-
tions between names of fine-grained biomed-
ical concepts. These fine-grained concepts
can also be clustered together to reflect higher-
level, more general semantic distinctions, such
as grouping the names nettle sting and tick-
borne fever together under the description
puncture wound of skin. It has not yet been
empirically confirmed that training biomed-
ical name encoders on fine-grained distinc-
tions automatically leads to bottom-up encod-
ing of such higher-level semantics. In this
paper, we show that this bottom-up effect ex-
ists, but that it is still relatively limited. As
a solution, we propose a scalable multi-task
training regime for biomedical name encoders
which can also learn robust representations us-
ing only higher-level semantic classes. These
representations can generalise both bottom-
up as well as top-down among various se-
mantic hierarchies. Moreover, we show how
they can be used out-of-the-box for improved
unsupervised detection of hypernyms, while
retaining robust performance on various se-
mantic relatedness benchmarks. Our code is
open-source and can be found at www.github.
com/clips/higherlevelsemantics.

1 Introduction

Recent work on representation learning for biomed-
ical names has mainly involved the training of neu-
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ral encoder architectures such as LSTMs (Kart-
saklis et al., 2018) or Transformers (Sung et al.,
2020; Kalyan and Sangeetha, 2020) to finetune
name representations for biomedical normalization
tasks. Such representations are often tailored to-
wards normalization tasks (e.g. linking names to
corresponding concept identifiers), without provid-
ing explicit guarantees about their transferability
to other use contexts and applications. As a solu-
tion for this issue, the Biomedical Name Encoder
(BNE) model (Phan et al., 2019) has been proposed
as a comprehensive framework for robust and trans-
ferable representations.

According to this framework, the robustness of
biomedical name representations is characterized
along three dimensions. Firstly, semantic simi-
larity between names should be reflected by their
closeness in the embedding space. Secondly, the
variety of textual contexts in which a name appears
should be somehow represented in the encoding.
Lastly, a name embedding should be sufficiently
close to a pretrained prototypical representation of
its conceptual meaning, e.g. a representation of its
corresponding concept identifier from a biomedical
ontology.

Such a multi-task model can be effectively
trained using synonym sets extracted from ontolo-
gies such as the UMLS or SNOMED-CT. How-
ever, these synonym sets typically reflect only fine-
grained distinctions between the lowest-level con-
cepts from ontologies. If robust name represen-
tations should truly reflect semantic similarity in
general, then the assumption is being made that
training on such fine-grained synonym sets learns
biomedical semantics in a bottom-up way, expect-
ing names of lower-level concepts to spontaneously
form relevant higher-level clusters.
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C0564444

Levell wound of skin
C0561369
Level2 puncture wound of skin
Level 3 C0561546 C0576723
Ve bite wound sting of skin
C1302713 C0275134 C0576722 C0576724

Level 4 . . . . . . :

animal bite wound  poisoning due to lizard venom  animal sting  plant sting

Example name tick-borne fever

poisoning caused by
gila monster venom

poisoning by

bombus nettle sting

Table 1: Examples of how names from the SNOMED-CT ontology can be grouped into larger classes using parent
concepts in the ontological graph. This allows us to investigate higher-level semantic relations, such as grouping
poisoning by bombus and nettle sting under the concept of sting of skin, or e.g. grouping them together with

tick-borne fever under puncture wound of skin.

However, such assumptions have not yet been
empirically validated, for instance by showing that
an encoder not only learns the differences between
names such as nettle sting and tick-borne fever, but
also simultaneously learns that they can be grouped
together under the more general description punc-
ture wound of skin. Moreover, research on repre-
sentation learning and hierarchical classification
for e.g. computer vision has indicated that neural
models can leverage substantially different discrim-
inative information for higher, more general levels
of categorization than for more fine-grained lower
levels (Hase et al., 2019). Such hierarchical differ-
ences can be exploited to generalize from higher
to lower levels (Guo et al., 2017; Taherkhani et al.,
2019), but they can also be difficult to integrate
consistently into a single neural model (Wu et al.,
2019).

In this paper, we investigate to what extent
robust biomedical name representations can en-
code higher-level semantics while retaining rele-
vant lower-level fine-grained information as well.
To address this research question, we group syn-
onym sets under increasingly coarse-grained se-
mantic categories, using parent-child relations in
the ontological graph. Table 1 gives an example of
how names from the SNOMED-CT ontology can
be grouped into larger classes. Such a hierarchy
can be used to train and test a variety of semantic
relations between names. For instance, a model
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might be able to encode that the names poisoning
by bombus and nettle sting can be both described as
sting of skin, but fail to represent their similarity to
poisoning caused by gila monster venom as a punc-
ture wound of skin. We believe that an evaluation
of this nature is a crucial step towards achieving
truly robust biomedical name representations, since
it clearly requires more semantic inference from
the encoder than merely resolving synonyms.

Apart from introducing this evaluation to the
field of biomedical NLP, we also show that we can
effectively adapt the BNE framework (Phan et al.,
2019) to be trained using such large higher-level
semantic classes. Most importantly, we replace the
BiLSTM (Graves and Schmidhuber, 2005) encoder
architecture of the BNE model with a lightweight
Deep Averaging Network (DAN) (Iyyer et al.,
2015). This allows us to easily scale to large
amounts of training data, caused by the explosive
amount of possible pairwise combinations between
semantically similar names as classes grow larger.

Training on higher-level classes involves addi-
tional challenges such as handling imbalanced data
distributions as well as implicit hierarchical and
semantic differences among names grouped under
the same class. Our aim is not to tailor the pro-
posed approach to such artefacts. Rather, the main
contribution of this paper is to show that our sim-
ple modification of the BNE model is generally
applicable to a range of coarse-grained biomedical



categorizations, without any finetuning apart from
the size of the DAN encoder. As of such, it can
be used as a low-cost but effective benchmark for
future models that are more specialized.

Our experimental results for hierarchical
SNOMED-CT data show that our DAN model
improves semantic similarity ranking both in a
bottom-up as well as top-down manner along var-
ious hierarchies. Interestingly, this observation
holds even when we train on a few dozens of
very broad categories. We also apply extrinsic
evaluations to investigate the transferability of our
DAN model. Firstly, we validate the robustness
of higher-level representations on semantic related-
ness benchmarks. Secondly, we perform unsuper-
vised detection of SNOMED-CT hypernym disor-
der names which were not observed during training.
For this task, our DAN model scores substantially
better than the publicly released pretrained BNE
model, which was trained on a large amount of
fine-grained disorder concepts from SNOMED-CT
using an elaborate BiLSTM architecture. These re-
sults provide tangible evidence that training name
representations on large coarse-grained categories
can help to encode exploitable higher-level seman-
tics.

2 Related work

While context-dependent self-supervised represen-
tations usually outperform other text representa-
tions on a variety of BioNLP problems, such as
semantic similarity and question answering, there
is no single embedding model for biomedical and
clinical texts that is consistently superior and thus
can serve as a generally suitable bio-encoder (Taw-
fik and Spruit, 2020). To this date, the BNE model
by Phan et al. (2019) is the most prominent attempt
at developing a supervised resource for encoding
biomedical names. It uses a multi-task training
regime in which it combines objectives from differ-
ent aspects of deep representation learning, such as
a contrastive loss (Le-Khac et al., 2020), concep-
tual grounding (see e.g. (Kartsaklis et al., 2018)),
and explicit regularization of the learned represen-
tations (e.g. used by Vuli¢ and Mrksi¢ (2018)).
Our modifications to the original BNE model are
informed by such literature.

Our application of a Deep Averaging Network
(DAN) (Iyyer et al., 2015) is inspired by a recent
subfield of NLP research which has emphasized
the effectiveness of random encoders (Wieting and
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Kiela, 2019) and simple pooling mechanisms of
word embeddings. The fastText encoder which
we use as a baseline and as input for the DAN is
an example of a Simple Word-Embedding-based
Model (SWEM) with average pooling (Shen et al.,
2018).

3 Encoding model

3.1 Encoder architecture

Our encoder is a Deep Averaging Network (DAN)
(Iyyer et al., 2015) which extracts a fixed-size rep-
resentation for an input name n:

)

where V; is the bag of tokens from a name, u;
is a pretrained word embedding of a token, u,, is
a name embedding created by averaging all the
pretrained word embeddings of all tokens, and
enc is a feedforward neural network with Recti-
fied Linear Unit (ReLU) as non-linear activation
function. As pretrained word embeddings we use
300-dimensional fastText (Bojanowski et al., 2017)
representations which we train on 76M sentences
of preprocessed MEDLINE articles released by
Hakala et al. (2016). This fastText model also al-
lows for constructing word embeddings for out-of-
vocabulary tokens by composing character n-gram
embeddings.

3.2 Training objectives

Our proposed approach is a simple modification of
the multi-task training regime of the BNE model.
We use cosine distance as distance function d for
all three training objectives.

Semantic similarity The semantic similarity ob-
jective is a generalization from the synonym simi-
larity objective of the BNE model to any level of
relevant semantic similarity. To enforce embedding
similarity between names that are semantically re-
lated, we use a siamese triplet loss (Chechik et al.,
2010). This loss forces the encoding of a biomed-
ical name f(n) to be closer to the encoding of a
semantically similar name f(n,,,) than that of an
encoded negative sample name f(7yeg4), within a



specified (possibly tuned) margin:

pos = d(f(n), f(npos))
neg = d(f(n), f(nneg))

Lsem = max(pos — neg + margin, 0)

2)

To select negative names during training we apply
distance-weighted negative sampling (Wu et al.,
2017) over all training names, since this has been
proven more effective than hard or random negative
sampling.

Contextual meaningfulness The contextual
meaningfulness objective forces the encoding
of a biomedical name to be similar to its local
contexts. The summary of these local contexts is
approximated by taking the pretrained embedding
representation u,, of the name:

Lcont - d(f(n), un) (3)

This constraint implies that the dimensionality of
the encoder output should be the same as that of
the input. However, if the input dimensionality
is smaller than the desired output dimensionality,
this could be solved using e.g. random projections,
which work well for increasing the dimensionality
of neural encoder inputs (Wieting and Kiela, 2019).

Conceptual grounding The conceptual ground-
ing objective is a modification of the conceptual
meaningfulness objective of the BNE model. The
conceptual meaningfulness objective forces the en-
coding of a biomedical name to be similar to a
prototypical representation of its concept. This
concept representation is approximated by averag-
ing the pretrained embedding representations of all
the names belonging to the concept:

>
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While converging to this pretrained target is feasi-
ble for small synonym sets, such convergence is
unnecessary and overfitting for larger classes of
names with graded differences in semantic sim-
ilarity among the class members. To retain the
robustness of the encodings, we only want to pull
the names in the direction of their pretrained con-
cepts, rather than minimizing their distance entirely.
To this end, we simply take the average of the pre-
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trained name representation and the pretrained con-
cept representation:

Up + Un
2
Lground = d(f(n)7 Uground)

Vground =

&)

Multi-task setup Our multi-task setup sums the
losses of the 3 training objectives:

L = aLsem + BLcont + ’VLground 6)

where «, 3, and ~ are possible weights for the
individual losses. Since the 3 losses all directly
reflect cosine distances, they are similarly scaled
and don’t require weighting to work properly. In
our experiments, « = 3 = v = 1 showed the most
robust performance along all settings.

4 Data and task setup

4.1 Extracting hierarchical data

Following previous research (Kotitsas et al., 2019;
Camacho-Collados et al., 2018), we use IS-A
relations between concepts from the SNOMED-
CT! ontology as biomedical hypo-hypernymy re-
lations. For direct comparison with the publicly
released BNE embeddings, which were trained on
all disorder concepts of SNOMED-CT, we use the
2018AB release of the UMLS? to extract only those
SNOMED-CT concepts which are included in the
semantic group of disorders®, and extract their ref-
erence terms as disorder names. While the resulting
directed graph should be acyclic, there are many
inconsistencies, which we resolve by removing all
cyclic edges, similar to the naive approach used by
Mougin and Bodenreider (2005).

For our experiments, we select 3 different (yet
slightly overlapping) subgraphs of IS-A relations
by sampling 3 high-level concepts which have
around 10K child concepts in our cleaned graph.
We extract consistent taxonomies from these sub-
graphs by removing relations which form shortcuts
between otherwise non-consecutive levels of the
taxonomy, and by leaving out dead-end concepts
which don’t have a path to the required level of
specification down the taxonomy. Child concepts
can have mutually inclusive relations to multiple
higher-level concepts on the same level of catego-
rization.

'https://www.snomed.org

https://uts.nlm.nih.gov/home.html

*https://metamap.nlm.nih.gov/
SemanticTypesAndGroups.shtml
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C1290864 ‘ min max mean stdev
Level 1 1 10203 1015 2053
Level 2 1 10203 291 1101
Level 3 1 3840 118 411
Level 4 1 2607 48 195

Table 2: Descriptive statistics about the number of
names per class for the different levels sampled from
the subgraph with parent concept C1290864 (disorder
of abdomen). These statistics show that lower levels
have less extreme imbalances between classes.

4.2 Data setup

For each subgraph, we select 4 consecutive levels
of parent concepts (level 1 is highest, level 4 is
lowest). The concepts on these 4 levels are used
as class labels for the names from all concepts be-
low level 4. In other words, names belonging to
the parent concepts themselves are not used during
training: the parent concepts are only used as ref-
erence to cluster the names from the lower levels.
Table 1 visualizes an example of this process.

This method of aggregating names can lead to
very imbalanced classes. Table 2 shows how large
this imbalance can get as we go up the hierarchy.
While the training regime of our proposed model
should be robust against such data artefacts, we
want to take a representative test sample across all
classes to empirically validate our approach. There-
fore, for multiple iterations, we sample one held-
out test name for each class on level 4. This test
name is then also used for levels 1-3. Afterwards,
we carry out the same procedure to sample vali-
dation data for calculating the stopping criterion
during training. Table 3 shows the distributions of
concepts and names used during training, valida-
tion, and testing.

4.3 Task setup

We perform 2 tasks on the held-out SNOMED-CT
test data to validate our approach. Evidently, we
always evaluate on individual levels of categoriza-
tion. As intrinsic evaluation, we evaluate trained
encoders on semantic similarity ranking. We also
include the task of unsupervised hypernym detec-
tion as extrinsic evaluation. As we don’t use the
names of higher-level concepts during training, we
can exploit them as previously unobserved hyper-
nymic data to show how much higher-level seman-
tics are being modeled by encoders. If the encoder
has learned to represent biomedical semantics more
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effectively, then the name embedding space can re-
flect that by being more suited for unsupervised
detection of hypernyms.

Table 1 gives examples of hypernym names on
all 4 levels. Successful hypernym detection for
this data implies e.g. that we rank the previously
unobserved hypernym bite wound over another pre-
viously unobserved hypernym sting of skin for the
name tick-borne fever. This task clearly requires
more semantic inference than merely resolving syn-
onyms. In this case, the encoder has to represent
that ticks are insects that bite instead of sting.

Semantic similarity ranking We evaluate en-
coders on the ability to reflect semantic similarity
between names by their cosine similarity. Given
a mention m of a biomedical name which belongs
to the higher-level class c, we have to rank the set
of all training names S which includes C,, C S,
a set of training names which belong to the same
class c as the test mention. To rank the biomedical
names according to their similarity to the mention,
we first encode both the mention m as well as every
name n € S, and then rank every name n using
the cosine similarity between the encoded mention
f(m) and the encoded name f(n). We then calcu-
late the Mean Average Precision (mAP) over all
test mentions for retrieving training names from
the same higher-level class.

Unsupervised hypernym detection Given a test
mention m of a biomedical name which belongs to
the higher-level class ¢, we have to rank the set of
all hypernym names H belonging to a specific level
of categorization. This set includes C, C H, the
set of hypernym names which belong to the same
class c as the test mention. To rank the biomedical
names according to their similarity to the mention,
we first encode both the mention m as well as every
hypernym name h € H, and then rank every hyper-
nym name h using the cosine similarity between
the encoded mention f(m) and the encoded hyper-
nym f(h). We then calculate the Mean Reciprocal
Rank (MRR) over all test mentions for retrieving
hypernym names from the same higher-level class.

5 Experiments and results

5.1 Reference model and baselines

We compare our DAN model against the the pub-
licly released pretrained BNE model with skip-
gram word embeddings, BNE + SGy,* which was

*nttps://github.com/minhcp/BNE
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C1290864 C0560169 C0263661
disorder of abdomen  osteoarthropathy  dermatological finding
Level 1 27 30 35
Level 2 98 86 80
Level 3 248 236 231
Level 4 610 536 602
Lower-level names | 24737 /1557/763 20574/ 1335/ 649 25659/ 1567/ 814

Table 3: An overview of the distribution of higher-level classes for the 3 subgraphs used in our experiments. The
lower-level names are divided into train / test / validation.

trained on approximately 16K synonym sets of dis-
ease concepts in the UMLS, containing 156K dis-
ease names. We also include 2 baselines: our 300-
dimensional fastText name embeddings (defined
in Equation 1 in Section 3.1), and averaged 728-
dimensional context-specific token activations ex-
tracted from the publicly released BioBERT model
(Lee et al., 2019).

5.2 Training and implementation details

The DAN model is implemented in PyTorch
(Paszke et al., 2019). Both the input and output
dimensionality are 300 (which is the dimension-
ality of the input fastText embeddings described
in Section 3.1). All encoders for which we report
results are finetuned to one hidden layer, which has
76,800 dimensions. Adam optimization (Kingma
and Ba, 2015) is performed on a batch size of 64,
using a learning rate of 0.001 and a dropout rate of
0.5. Input strings are first tokenized using the Pat-
tern tokenizer (Smedt and Daelemans, 2012) and
then lowercased. We use a triplet margin of 0.1 for
the siamese triplet loss Lge,, defined in Equation
2.

To train the model, we iterate over all names in
the training data and apply the 3 training objectives
for each name in a batch. To avoid overfitting on
the largest classes, we always sample one siamese
triplet per name, using random sampling for the
positive name and distance-weighted sampling for
the negative name. As stopping criterion we use the
mAP of semantic similarity ranking (as defined in
Section 4.3) for held-out validation names: we stop
training once this score hasn’t improved anymore
over 10 epochs. This relaxed stopping criterion al-
lows the model to optimize the subsampled siamese
triplet loss in a balanced stochastic way over many
epochs without quitting too early.
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5.3 Results and discussion

Semantic similarity ranking Table 4 shows the
test performance for semantic similarity ranking.
First and foremost, the robustness of the Level 1
DAN models is consistently great for all 3 sub-
graphs. For instance, in the case of the subgraph
C1290864 (disorder of abdomen), the DAN is
trained on only 27 large classes but outperforms
the fastText baseline for the 610 classes on Level 4.
Secondly, all DAN models generalize both bottom-
up and top-down along the hierarchical levels to
the extent that they consistently outperform the
fastText baseline by a substantial margin.

Thirdly, the slight superiority of BioBERT over
fastText for this task is most pronounced for the
lowest levels. As we go up in the hierarchy, the
difference grows smaller, which leads us to believe
that the improvements are not so much of a seman-
tic nature. Interestingly, the pretrained BNE model
is competitive with our DAN models for the lower
levels, which are still more coarse-grained than the
fine-grained distinctions on which the BNE was
trained. However, such a bottom-up effect is lack-
ing for the highest levels of categorization. These
observations reinforce the notion that both the size
(the BNE was trained on 156K disorder names, our
models on 20-25K) and the granularity of the data
matter for deep representation learning.

Unsupervised hypernym detection Table 5
shows the test performance for unsupervised hyper-
nym detection. These results clearly show trends
which are similar to the semantic similarity ranking.
Most remarkably, the bottom-up and bottom-down
effects are almost as consistent here: the highest-
level DAN still outperforms the baselines for the
lowest levels and vice versa. One major difference
with the results for semantic similarity ranking is
the relatively worse performance from BioBERT



C1290864 C0560169 C0263661

1 2 3 4 1 2 3 4 1 2 3 4
DANlevel 1 | 0.57 | 0.50 | 0.39 | 0.43 || 0.70 | 0.44 | 0.36 | 0.37 || 0.64 | 0.55 | 0.36 | 0.36
DANlevel 2 | 0.49 | 0.58 | 0.46 | 0.48 || 0.55 | 0.58 | 0.44 | 0.44 | 0.58 | 0.59 | 0.40 | 0.39
DAN level 3 | 0.43 | 0.51 | 0.56 | 0.54 || 0.51 | 0.51 | 0.52 | 0.54 || 0.52 | 0.52 | 0.51 | 0.48
DAN level 4 | 0.38 | 0.43 | 0.47 | 0.60 || 0.45 | 0.45 | 048 | 0.58 || 0.45 | 0.44 | 0.41 | 0.54
fastText 0.26 | 0.27 | 0.25 | 0.33 || 0.36 | 0.29 | 0.28 | 0.32 || 0.33 | 0.30 | 0.24 | 0.30
BioBERT | 0.27 | 0.29 | 0.29 | 0.39 || 0.38 | 0.32 | 0.31 | 0.37 || 0.36 | 0.33 | 0.27 | 0.35
BNE 035 (041|042 | 057 || 043 | 0.41 | 0.45 | 0.59 || 0.44 | 0.44 | 0.39 | 0.51

Table 4: Test performance of semantic similarity ranking per level, as measured by mAP. The highest score per
level of each subgraph is denoted in bold; the second highest score is underlined.

C1290864 C0560169 C0263661

1 2 3 4 1 2 3 4 1 2 3 4
DANlevel 1 | 0.60 | 0.58 | 0.59 | 0.68 || 0.48 | 0.54 | 0.52 | 0.63 || 0.52 | 0.57 | 0.55 | 0.62
DANlevel 2 | 0.52 | 0.59 | 0.62 | 0.70 || 0.45 | 0.58 | 0.56 | 0.67 || 0.50 | 0.60 | 0.57 | 0.63
DAN level 3 | 0.55 | 0.57 | 0.66 | 0.73 || 0.41 | 0.54 | 0.58 | 0.70 || 0.48 | 0.57 | 0.62 | 0.67
DAN level 4 | 0.53 | 0.52 | 0.63 | 0.74 || 0.39 | 0.53 | 0.58 | 0.74 || 0.46 | 0.54 | 0.59 | 0.71
fastText 0.46 | 0.44 | 0.53 | 0.65 || 0.34 | 0.47 | 0.49 | 0.63 || 0.38 | 0.45 | 0.50 | 0.59
BioBERT | 0.41 | 0.41 | 0.50 | 0.62 || 0.28 | 0.41 | 0.46 | 0.58 || 0.39 | 0.47 | 0.48 | 0.59
BNE 0.43 | 0.50 | 0.60 | 0.71 || 0.42 | 0.48 | 0.57 | 0.70 || 0.49 | 0.49 | 0.54 | 0.68

Table 5: Test performance for unsupervised hypernym detection per level, as measured by MRR. The highest score
per level of each subgraph is denoted in bold; the second highest score is underlined.

here compared to fastText. This is in line with
the findings by Yu et al. (2020), who report that
BERT does not yield considerable improvement
for hypernymy detection in their experiments. It
also puts into perspective to what extent we can
expect higher-level semantics to be encoded solely
through self-supervised methods.

Table 6 gives an example of hypernym rankings
for the test mention poisoning caused by mexican
beaded lizard bite. By clustering similar names
together with other bite wounds during training,
the DAN model has learned to recognize the test
mention as a bite wound. The BNE has failed to
do so.

The effectiveness of our unsupervised method
using only cosine similarity contrasts with earlier
approaches which explicitly require more than co-
sine similarity to properly work. For example,
Vuli¢ and Mrksié¢ (2018) use vector norms to en-
code hierarchical hypernymic relations, while other
research into hypernymy even requires other geo-
metric spaces than Euclidean space, such as hyper-
bolic space (Dhingra et al., 2018). Our results can
indicate that cosine similarity in Euclidean space
still shows potential for encoding these hierarchical
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relations given the right training objectives.

5.4 Semantic relatedness benchmarks

We also evaluate our name encoders on two biomed-
ical benchmarks of semantic similarity, which al-
low to compare cosine similarity between name
embeddings with human judgments of related-
ness. MayoSRS (Pakhomov et al., 2011) contains
multi-word name pairs of related but different fine-
grained concepts. UMNSRS (Pakhomov et al.,
2016) contains only single-word pairs, which also
stem from different fine-grained concepts. This
benchmark makes a distinction between similarity
and relatedness.

The correlations in Table 7 show that the major-
ity of our trained encoders remain robust out-of-the
box, with a large portion of them outperforming
the fastText baseline which they use as input. The
highest-level model trained on the C0560169 sub-
graph (dermatological finding) is even competitive
with the pretrained BNE, having been trained on
only 30 classes. All in all, these results confirm
that our proposed model is relatively robust against
variable granularity of clustering, and is not overly
tailored to the data artefacts of one specific sub-



C0560169

poisoning caused by mexican beaded lizard bite
bite wound / bite wound (disorder)

BNE
infestation caused by fly larvae (disorder)
fly larva infestation
infestation caused by fly larvae
infestation by fly larvae (disorder)

Subgraph

Level 3

Test mention

Matching hypernyms
DAN Level 1
bite wound (disorder)
bite wound
Top 5 ranking open traumatic dislocation of hip, unspecified
open traumatic dislocation of hip, unspecified (disorder)

open dislocation of phalanx of foot (disorder)

infestation by fly larvae

Table 6: A comparison between our DAN encoder and the BNE reference model for unsupervised hypernym
ranking of the Level 3 test mention poisoning caused by mexican beaded lizard bite. The DAN model generalizes
from the training data to associate the test mention correctly with bite wounds. In the training process, it seems
to have clustered bite wounds together with open dislocations. The BNE model apparently associates lizards with
infestations by fly larvae, but fails to recognize that there is a bite wound mentioned in the test mention.

graph.

5.5 Discussion

While our empirical results are certainly encourag-
ing, the true robustness of our proposed framework
remains an open question. Whereas our proposed
DAN model remains robust over entire hierarchies
for semantic similarity ranking and unsupervised
hypernym detection, its relative performance for
the semantic relatedness benchmarks is not entirely
predictable from those tasks. One the one hand,
this likely has to do with the modest sizes of the
benchmarks, for which small to very small margins
in performance are not very reliable or indicative.

On the other hand, we also have to consider that
our finetuned DAN only contains a single, yet very
wide, hidden layer. This implies that the encoder
network relies more on what can considered to be
an elaborate weighted average than a deep multi-
layer transformation of the input. While this is
not very surprising in the context of transferable
representations (and emphasizes the effectiveness
of exploiting word embeddings according to their
full potential in simple ways, as suggested by Wi-
eting and Kiela (2019)), it still raises the question
whether there are straightforward regularization
alternatives to the contextual meaningfulness ob-
jective which can allow for deep transformations
with the DAN.

6 Conclusion and future work

In this paper, we have introduced the challenge
of integrating higher-level semantics into robust
biomedical name representations. We provide a
framework to both train and evaluate encoders for
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MayoSRS | UMNSRS | UMNSRS

(rel) (rel) (sim)

fastText 0.44 0.47 0.48
Level 1 C0560169 0.42 0.55 0.54
Level 2 C0560169 0.47 0.51 0.50
Level 3 C0560169 0.50 0.51 0.50
Level 4 C0560169 0.50 0.51 0.50
Level 1 C1290864 0.52 0.42 0.46
Level 2 C1290864 0.55 0.46 0.40
Level 3 C1290864 0.53 0.46 0.50
Level 4 C1290864 0.56 0.45 0.50
Level 1 C0263661 0.46 0.49 0.51
Level 1 C0263661 0.51 0.47 0.50
Level 3 C0263661 0.55 0.50 0.53
Level 4 C0263661 0.52 0.50 0.50
Phan et al. (2019) 0.63 0.58 0.61

Table 7: Spearman’s rank correlation coefficient be-
tween cosine similarity scores of name embeddings
and human judgments, reported on semantic similarity
(sim) and relatedness (rel) benchmarks. The highest
score is denoted in bold; the second highest is under-
lined.



this task. Moreover, we have proposed a modifica-
tion of the Biomedical Name Encoder model which
is directly applicable to a variety of coarse-grained
categorizations. This modification replaces more
complex neural architectures with a lightweight
Deep Averaging Network encoder, which is easily
scalable to the large amounts of required training
data, while remaining sufficiently robust. The only
important hyperparameter to tune for this encoder
is the size of the Feedforward Neural Network.

Experiments indicate that our proposed frame-
work can even be effective using only around 30
coarse-grained classes. This opens up possibili-
ties for applying our framework to data beyond
carefully curated ontologies, for instance in self-
supervised or semi-supervised settings. Future
work will try to understand and define the limits of
applying our framework to such settings.
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