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Abstract

This work describes the adaptation of a pre-
trained sequence-to-sequence model to the
task of scientific claim verification in the
biomedical domain. We propose a system
called VERT5ERINI that exploits T5 for ab-
stract retrieval, sentence selection, and label
prediction, which are three critical sub-tasks
of claim verification. We evaluate our pipeline
on SCIFACT, a newly curated dataset that re-
quires models to not just predict the verac-
ity of claims but also provide relevant sen-
tences from a corpus of scientific literature
that support the prediction. Empirically, our
system outperforms a strong baseline in each
of the three sub-tasks. We further show
VERT5ERINI’s ability to generalize to two
new datasets of COVID-19 claims using evi-
dence from the CORD-19 corpus.

1 Introduction

The popularity of social media and other means of
disseminating content, combined with automated
algorithms that create “echo chamber” effects, has
increased the proliferation of misinformation on-
line. This has led to increased attention in the
community on building better fact verification sys-
tems. Until recently, most fact verification datasets
were constrained to domains such as Wikipedia,
discussion blogs, and social media (Thorne et al.,
2018; Hanselowski et al., 2019).

In the current environment, amidst the COVID-
19 pandemic and the unease that comes with insuffi-
cient insight about the virus, there has been a sharp
increase in curiosity among the general public to-
ward scientific knowledge. While such curiosity is
always appreciated, this has inadvertently resulted
in a large spike of scientific facts being misrepre-
sented, often to push a personal or political agenda,
inducing ineffective and frequently even harmful
policies and behaviours.

To mitigate this issue, Wadden et al. (2020) in-
troduced the task of scientific claim verification,
where systems need to evaluate the veracity of a
claim against a scientific corpus. To facilitate this,
they introduced the SCIFACT dataset that consists
of scientific claims accompanied with abstracts that
either support or refute the claim. The dataset also
provides a set of rationale sentences for each claim
that is necessary and sufficient to conclude its ve-
racity. In addition, the authors provide VERISCI,
a baseline for this task that takes inspiration from
previous state-of-the-art systems (DeYoung et al.,
2020) for the FEVER claim verification dataset
(Thorne et al., 2018). This pipeline retrieves rele-
vant abstracts by TF-IDF similarity, uses a BERT-
based model (Devlin et al., 2019) to select rationale
sentences, and finally labels each abstract as either
SUPPORTS, NOINFO, or REFUTES with respect to
the claim.

Despite the success of BERT for tasks like
passage-level (Nogueira et al., 2019), document-
level (Dai and Callan, 2019; MacAvaney et al.,
2019; Akkalyoncu Yilmaz et al., 2019) and
sentence-level (Soleimani et al., 2019) retrieval,
there is evidence that ranking with sequence-to-
sequence models can achieve even better effective-
ness, particularly in zero-shot scenarios or with lim-
ited training data (Nogueira et al., 2020; Pradeep
et al., 2021). This was further demonstrated in
the TREC-COVID challenge (Roberts et al., 2020)
where one of the best performing systems used
sequence-to-sequence models for retrieval (Zhang
et al., 2020; Pradeep et al., 2021). Similar trends
are noted in CovidQA (Tang et al., 2020), a ques-
tion answering dataset for COVID-19, where zero-
shot sequence-to-sequence models outperformed
other baselines.

Hence, we propose VERT5ERINI, where all
three steps—abstract retrieval, sentence selection,
and label prediction exploit T5 (Raffel et al., 2020),
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a powerful sequence-to-sequence language model.
VERT5ERINI outperforms the VERISCI baseline
on the SCIFACT tasks by a large margin and ad-
vances the state of the art for the task of Scientific
Claim Verification. We also demonstrate the effec-
tiveness of our system in verifying two different
sets of COVID-19 claims with no additional train-
ing or hyperparameter tuning.

2 Task

In the SCIFACT task (Wadden et al., 2020), systems
are provided with a scientific claim q and a corpus
of abstracts C and tasked to return:

• A set of evidence abstracts Ê(q).

• A label ŷ(q, a) that maps claim q and abstract a
to one of {SUPPORTS, REFUTES, NOINFO}.

• A set of rationale sentences Ŝ(q, a) when
ŷ(q, a) ∈ {SUPPORTS, REFUTES}.

Given the ground truth label y(q, a), the set of
gold abstracts E(q), and the set of gold rationales
R(q, a) (each gold rationale is a set of sentences),
the predictions are evaluated in two ways:

• Abstract-level evaluation, where systems are
judged on whether they can identify abstracts
that support or refute the claim. First, a ∈ Ê(q)
is correctly labelled if both a ∈ E(q) and
ŷ(q, a) = y(q, a). Second, it is correctly ratio-
nalized, if in addition, ∃R ∈ R(q, a) such that
R ⊆ Ŝ(q, a).1 These evaluations are referred
to as AbstractLabel-Only and AbstractLabel+Rationale,
respectively.

• Sentence-level evaluation, where systems are
evaluated on whether they can identify sentences
sufficient to justify the abstract-level predic-
tions. First, ŝ ∈ Ŝ(q, a) is correctly selected
if ∃R ∈ R(q, a) such that both ŝ ∈ R and
R ⊆ Ŝ(q, a). Second, it is correctly labelled,
if in addition, ŷ(q, a) = y(q, a). These evalua-
tions are referred to as SentenceSelection-Only and
SentenceSelection+Label, respectively.

Specifically, SCIFACT uses a corpus of 5,183 ab-
stracts. Abstracts that support or refute each claim
are annotated with rationale sentences (see Table 3
for examples). The label distribution is provided in

1In SCIFACT’s abstract-level evaluation, it is required that
|Ŝ(q, a)| ≤ 3.

Set SUPPORTS NOINFO REFUTES Total

Train 332 304 173 809
Dev 124 112 64 300
Test 100 100 100 300

Table 1: SCIFACT label distribution.

Claim Set SUPPORTS REFUTES Total

COVID-19 SCIFACT - - 36

COVID-19 Scientific 41 101 142

Table 2: COVID-19 claims.

Table 1. There are 1,409 claims, 809 of which are
part of the training set and the rest are split equally
across the development and test sets. Although the
test set is balanced with 100 claims for each class
(SUPPORTS, NOINFO, and REFUTES), it is clear
that the training and development sets have signifi-
cant class imbalance. This, coupled with the small
dataset size, highlights the importance of zero- or
few-shot systems for this task.

To show that our system is able to verify claims
related to COVID-19 by identifying evidence from
the much larger CORD-19 corpus,2 we evaluate
VERT5ERINI in a zero-shot setting on two other
datasets:

COVID-19 SCIFACT (Wadden et al., 2020) is a set
of 36 COVID-related claims curated by a medical
student. In this set, the same claim can sometimes
be both supported and refuted by different abstracts,
a scenario not observed in the main SCIFACT task.
Two examples in this set are shown in Table 4.

COVID-19 Scientific (Lee et al., 2020) contains
142 claims (label distribution in Table 2) gath-
ered by collecting COVID-related scientific truths
and myths from sources like the U.S. Centers for
Disease Control and Prevention (CDC), Medical-
NewsToday, and the World Health Organization
(WHO). Unlike the other two datasets, COVID-
19 Scientific only provides a single label y(q) ∈
{SUPPORTS, REFUTES} for a claim. According to
the authors, during the construction of the dataset,
claims that were unverifiable according to the CDC
or the WHO were mapped to REFUTES. Hence, we
make the following modifications to VERT5ERINI:

1. If ŷ(q, a) = NOINFO, then ŷ(q, a) is modified
to REFUTES.
2We use the 2020-06-17 dump of CORD-19, which con-

tains 192,459 abstracts, about 40 times as many abstracts as
those in SCIFACT.
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Claim Label Evidence
ALDH1 expression
is associated with
poorer prognosis in
breast cancer.

SUPPORTS Application of stem cell biology to breast cancer research has been limited
by the lack of simple methods for identification and isolation of normal and
malignant stem cells. . . . In a series of 577 breast carcinomas, expression of
ALDH1 detected by immunostaining correlated with poor prognosis. . . .

CX3CR1 on the
Th2 cells impairs T
cell survival

REFUTES Allergic asthma is a T helper type 2 (T(H)2)-dominated disease of the lung.
. . . We found that CX3CR1 signaling promoted T(H)2 survival in the in-
flamed lungs, and injection of B cell leukemia/lymphoma-2 protein (BCl-
2)-transduced CX3CR1-deficient T(H)2 cells into CX3CR1-deficient mice
restored asthma. . . .

Arterioles have a
larger lumen diam-
eter than venules.

NOINFO N/A

Table 3: Three SCIFACT claims, their labels, and their corresponding evidence (rationale highlighted in bold) if
available. VERT5ERINI correctly predicts these labels and retrieves the matching evidence.

Claim Label Evidence
Hypertension and Dia-
betes are the most com-
mon comorbidities for
COVID-19.

SUPPORTS Investigations reported that hypertension, diabetes, and cardiovascular
diseases were the most prevalent comorbidities among the patients with
coronavirus disease 2019 (COVID-19). . . . The aim of this review was to
summarize the current knowledge about the relationship between hypertension
and COVID-19 and the role of hypertension on outcome in these patients.

The Secondary Attack
rate of COVID-19
is 10.5% for house-
hold members/close
contacts.

REFUTES Background: As of April 2, 2020, the global reported number of COVID-19
cases has crossed over 1 million with more than 55,000 deaths. . . . We esti-
mated the household SAR to be 13.8% (95% CI: 11.1–17.0%) if household
contacts are defined as all close relatives and 19.3% (95% CI: 15.5–23.9%)
if household contacts only include those at the same residential address as
the cases, assuming a mean incubation period of 4 days and a maximum
infectious period of 13 days.

Table 4: Two COVID-19 claims from SCIFACT, their predicted labels and their corresponding predicted evidence
(rationale highlighted in bold).

Claim Label Evidence
Some people become
infected by COVID-19
but don’t develop any
symptoms and don’t
feel unwell.

SUPPORTS COVID-19 is an emerging infectious disease with widespread transmission of
the coronavirus SARS-CoV-2 in the Netherlands. . . . Others do not show any
symptoms, but can still contribute to the transmission of the virus. . . .

Young people will not
get COVID-19.

REFUTES Objective: To explore the epidemiological characteristics of COVID-19 associ-
ated with SARS-Cov-2 in Guizhou province, and to compare the differences
in epidemiology with other provinces. . . . Most of COVID-19 patients were
18-45 years old (52.27%). . . . CONCLUSION: Among the cases, most
patients were young adults.

Bill Gates caused the in-
fection of COVID-19.

REFUTES N/A

Table 5: Three COVID-19 Scientific claims from Lee et al. (2020), their predicted labels and their corresponding
predicted evidence (rationale highlighted in bold). Note that if the system cannot find any supporting evidence for
a claim, it is considered refuted.
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Figure 1: Illustration of the VERT5ERINI pipeline. In stage H0,0, given a query q, the top k0,0 (= 5 in the figure)
candidate documents R0,0 are retrieved using BM25. In stage H0,1, Abstract T5 produces a relevance score pi
for each pair of query q and candidate ai ∈ R0,0. The top k0,1 (= 2 in the figure) candidates with respect to
these relevance scores are expanded to sentence-level granularity and passed to stage H1, in which Sentence T5
computes a relevance score pi,j for each pair of query q and candidate sentence si,j . Sentences for a particular
abstract ai scoring above a threshold form its set of rationale sentences ei and each set along with the query q are
passed to stage H2, in which Label T5 predicts the label.

2. ŷ(q) = maxa∈Ê(q) ŷ(q, a).

3. If |
⋃

a∈Ê(q) Ŝ(q, a)| = 0, i.e., the set of all ev-
idence sentences across the abstracts is empty,
then ŷ(q) = REFUTES.

Three examples from this set are shown in Table 5.
As one can imagine, it would be impossible to find
any discussion of outlandish claims like “Bill Gates
caused the infection of COVID-19” in a corpus of
biomedical literature and hence VERT5ERINI maps
them to REFUTES.

3 Methods

Our proposed system, VERT5ERINI (see Figure 1),
has three major components:

1. H0: Abstract Retrieval — which given claim
q retrieves the top-k abstracts from corpus C.

2. H1: Sentence Selection — which given claim
q and one of the top-k abstracts a, selects sen-
tences from a that form Ŝ(q, a).

3. H2: Label Prediction — which given claim q
and the rationale sentences Ŝ(q, a), predicts the
final label ŷ(q, a).

3.1 H0: Abstract Retrieval

Given a scientific claim q and a corpus C of sci-
entific abstracts, H0 is tasked with retrieving the
top-k abstracts from C. We propose both a single-
stage and a two-stage abstract retrieval pipeline.

In both cases, the first stage H0,0 involves treat-
ing the query as a “bag of words” for ranking ab-
stracts from the corpus using the BM25 scoring
function (Robertson et al., 1994). Our implementa-
tion uses the Anserini IR toolkit (Yang et al., 2017,
2018),3 which is built on the popular open-source
Lucene search engine, and its Pyserini Python in-
terface (Akkalyoncu Yilmaz et al., 2020; Lin et al.,
2021) to support simple keyword search capabili-
ties on the corpus. The output of this stage is a list
of k0 candidate abstracts.

The second abstract reranking stage, H0,1, is
tasked to estimate a score p quantifying how rele-
vant a candidate abstract a is to a query q. In this
stage, the abstracts retrieved in H0,0 are reranked
by a pointwise reranker, which we call monoT5.
Our reranker is based on Nogueira et al. (2020),
which uses T5 (Raffel et al., 2020), a sequence-to-
sequence model pretrained with a similar masked
language modeling objective as BERT. In this
model, all target tasks are cast as sequence-to-
sequence tasks. We adapt the approach to abstract
reranking by using the following input sequence:

Query: q Document: a Relevant:

The model is fine-tuned to produce the words “true”
or “false” depending on whether the abstract is rel-
evant or not to the query. That is, “true” and “false”
are the “target words” (i.e., ground truth predic-
tions in the sequence-to-sequence transformation).

3http://anserini.io/

http://anserini.io/
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Since a considerable number (≈ 15%) of SCIFACT

abstracts are longer than the context limit of T5
(512 tokens), we first segment each abstract (on av-
erage 9 sentences) into spans by applying a sliding
window of 6 sentences with a stride of 3.

In order to fine-tune monoT5 on abstract rerank-
ing in SCIFACT, we use all cited abstracts in the
training set as positive examples. For each claim,
we select negative examples by randomly select-
ing a non-ground truth abstract among the top-10
BM25 ranked candidates. We train on this set with
a batch size of 128 for 200 steps, which corre-
sponds to approximately 5 epochs.

At inference time, we first compute probabili-
ties for each query–segment pair (in a reranking
setting) by applying a softmax only on the logits
of the “true” and “false” tokens. We then obtain
the relevance score of the document as the highest
probability assigned to the “true” token among all
segments. The top-k0 abstracts, R0, with respect
to these scores are then selected.

We run inference with three different monoT54

settings for abstract reranking: (1) fine-tuned on
the MS MARCO passage dataset (Bajaj et al.,
2016); (2) fine-tuned on MS MARCO and then
fine-tuned again on the medical subset of MS
MARCO (MacAvaney et al., 2020); and (3) fine-
tuned on MS MARCO and then fine-tuned again
on SCIFACT.

We choose to “pre–fine-tune” relevance classi-
fiers on MS MARCO passages as it has been shown
to help in various other tasks (Akkalyoncu Yilmaz
et al., 2019; Zhang et al., 2020; Nogueira et al.,
2020; Pradeep et al., 2021). Similarly, MacAvaney
et al. (2020) demonstrated that fine-tuning the clas-
sifiers on the medical subset of MS MARCO helps
with biomedical-domain relevance ranking.

3.2 H1: Sentence Selection

In this stage, the goal is to select rationale sentences
Ŝ(q, a) from each abstract a for each of the top-k
abstracts retrieved Ê(q). We use T5 for this task
also. The following input sequence is used:

Query: q Document: s Relevant:

where s is a sentence in the abstract a.
We fine-tune a monoT5 (pre–fine-tuned on MS

MARCO passage) on SCIFACT’s gold rationales as
positive examples and sentences randomly sampled

4All models are T5-3B.

from E(q) as negatives. We train on this set of
sentences with a batch size of 128 for 2500 steps.

During inference, similar to abstract ranking,
we compute a probability of the sentence being
relevant based on the logits of the “true” and “false”
tokens. Finally, we filter out all sentences whose
“true” probability is below the threshold of 0.999
to obtain Ŝ(q, a).

3.3 H2: Label Prediction

Given the claim q, an abstract a and their cor-
responding set of rationale sentences Ŝ(q, a),
H2 is tasked to predict a label ŷ(q, a) ∈
{SUPPORTS, NOINFO, REFUTES}. Yet again, we
use T5 for this task with the input sequence:

hypothesis: q sentence1: s1 · · · sentencez: sz

where s1, · · · , sz are the rationale sentences in
Ŝ(q, a). The target sequence is one of “true”,
“weak”, or “false” tokens corresponding to the la-
bels SUPPORTS, NOINFO, or REFUTES, respec-
tively. Note that a feature of this approach is feed-
ing a collection of sentences into the model at once,
as opposed to the perhaps more obvious approach
of performing per-sentence independent label pre-
diction. This requires the model to process longer
input sequences, but allows predictions to incor-
porate evidence from multiple sources. In the par-
lance of learning to rank in the context of infor-
mation retrieval, this would be called a “listwise”
approach (Li, 2011).

SUPPORTS and REFUTES training examples are
selected from evidence sets of cited abstracts for
each claim. The sentences in each evidence set
are concatenated with the claim in the above in-
put sequence template as a single example for the
corresponding label. The NOINFO examples are
selected by concatenating one or two randomly-
selected non-rationale sentences from each of the
cited abstracts across all labels. Here, we fine-
tune a fresh T5-3B (that was just pretrained on the
mixture task) and not a pre–fine-tuned monoT5
since there is no natural transfer from the relevance
ranking task. We use a batch size of 128 and select
the best checkpoint after [200, 400, 600, 800, 1000]
steps based on the development set scores.

During inference, the token with the highest
probability is assigned the label ŷ(q, a) for abstract
a ∈ E(q).

https://microsoft.github.io/MSMARCO-Passage-Ranking/
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Method R@3 R@5

Oracle 97.61 100.00
TF-IDF 69.38 75.60

BM25 79.90 84.69
T5 (MS MARCO) 86.12 89.95
T5 (MS MARCO MED) 85.65 89.00
T5 (SCIFACT) 86.60 89.40

Table 6: Comparison of abstract retrieval methods on
the development set of SCIFACT.

4 Results

4.1 Baselines

For the SCIFACT and COVID-19 SCIFACT

end-to-end tasks, the baseline system used is
VERISCI (Wadden et al., 2020). It has an abstract
retrieval module that uses TF-IDF, a sentence se-
lection module trained on SCIFACT, and a label
prediction module trained on FEVER + SCIFACT.
For the abstract retrieval module, the authors report
the best full-pipeline development set scores by
retrieving the top three documents.

For the COVID-19 Scientific task, we compare
with the following two baselines established by Lee
et al. (2020):

• LiarMisinfo (Lee et al., 2020) uses a BERT-
large (Devlin et al., 2019) label prediction model
fine-tuned on LIAR-PolitiFact (Wang, 2017), a
set of 12.8k claims collected from PolitiFact. It
is worth noting that LIAR-PolitiFact does not
contain any claims related to COVID-19.

• LM Debunker (Lee et al., 2020) uses GPT-
2 (Radford et al., 2019) to determine the per-
plexity of the claim given evidence sentences.
Claims with a perplexity score higher than a
threshold are labeled REFUTES while the oth-
ers are labeled SUPPORTS.

The sentence selection module in both baselines
employ TF-IDF followed by some rule-based ev-
idence filtering to select the top three sentences
for each claim. LiarMisinfo represents a zero-shot
model where no fine-tuning is performed on the
COVID-19 Scientific set. LM Debunker, on the
other hand, first partitions the data into a validation
and a test set. The validation set is used to tune the
perplexity threshold for the model following which
evaluation is performed on the test set.

Method P R F1

RoBERTa-large 73.71 70.49 72.07

T5 79.29 73.22 76.14

Table 7: Comparison of different sentence selection
methods on SCIFACT’s development set.

Method Label P R F1

SUPPORTS 92.56 81.16 86.49
RoBERTa-large NOINFO 74.82 92.86 82.87

REFUTES 77.05 66.20 71.21

SUPPORTS 93.13 88.41 90.71
T5 NOINFO 85.25 92.86 88.89

REFUTES 86.76 83.10 84.89

Table 8: Comparison of different label prediction mod-
els on SCIFACT’s development set.

4.2 Abstract Retrieval

Table 6 reports recall at rank three (R@3) and rank
five (R@5) for abstract retrieval. The oracle (first
row) shows that most claims from the development
set have fewer than three relevant abstracts and all
have fewer than five. For comparison, we show
the effectiveness of the TF-IDF method used by
Wadden et al. (2020).

We find that using BM25 results in an effective-
ness improvement of around 10 points in compari-
son to the TF-IDF baseline. Using T5 to rerank the
top-20 abstracts retrieved from BM25 results in a
17-point improvement over the baseline.

However, results show almost no difference in ef-
fectiveness whether T5 was fine-tuned on SCIFACT

or on MS MARCO MED. This might be due to the
relatively small size of the SCIFACT dataset and
the fact that MS MARCO MED data is not entirely
relevant to the target task. Hence, we use T5 fine-
tuned only on the full MS MARCO dataset (i.e.,
no further fine-tuning) in the end-to-end pipeline
experiments (Section 4.5).

4.3 Sentence Selection

Table 7 reports the precision, recall, and F1 scores
for the sentence selection task. We find that T5 (MS
MARCO) fine-tuned on SCIFACT outperforms the
RoBERTa-large baseline fine-tuned on SCIFACT

used by Wadden et al. (2020). This result, together
with results from Table 6, demonstrates the effec-
tiveness of the T5 model at selecting evidence at
various levels of granularity.
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Label Only

Method P R F1

(1) Oracle (VERISCI) 90.97 67.46 77.47
(2) Oracle (ours) 92.70 78.95 85.27

(3) VERISCI 55.31 47.37 51.03

(4) VERT5ERINI (BM25) 70.88 61.72 65.98
(5) VERT5ERINI (T5) 65.07 65.07 65.07

Label+Rationale

Method P R F1

(6) Oracle (VERISCI) 85.16 63.16 72.53
(7) Oracle (ours) 88.76 75.60 81.65

(8) VERISCI 52.51 44.98 48.45

(9) VERT5ERINI (BM25) 67.03 58.37 62.40
(10) VERT5ERINI (T5) 61.72 61.72 61.72

Table 9: Full pipeline abstract-level effectiveness on
SCIFACT’s development set.

4.4 Label Prediction

In Table 8, we present label-wise precision, recall,
and F1 scores for the label prediction task. For SUP-
PORTS and REFUTES labels, the input to the model
comprises gold rationales from cited abstracts. For
NOINFO labels, recall that cited abstracts are avail-
able but no gold rationales exist. In this case, we
pick the two most similar sentences according to
TF-IDF from each abstract.

The results across all labels demonstrate that
T5 fine-tuned on SCIFACT’s label prediction task
shows significant improvements over the baseline
RoBERTa-large that was fine-tuned on FEVER fol-
lowed by fine-tuning on SCIFACT’s label predic-
tion task. We believe some of this can be credited
to T5’s pretraining on a mixture of multiple tasks.
Although this mixture does not include FEVER,
the corpus contains various other NLI datasets, in-
cluding MNLI (Williams et al., 2018) and QNLI
(Rajpurkar et al., 2016).

4.5 Full Pipeline

In Tables 9 and 10, we report the precision, re-
call, and F1 scores of abstract-level evaluation
and sentence-level evaluation, respectively, for full
pipeline systems.

Rows 1, 2, 6, 7 present the scores in the or-
acle abstract retrieval setting, where gold evi-
dence abstracts are provided to systems. We
see that our pipeline outperforms VERISCI by
around 10 F1 points at both the abstract and sen-
tence level. The improvements are even larger in
the AbstractLabel+Rationale and SentenceSelection+Label

Selection Only

Method P R F1

(1) Oracle (VERISCI) 79.41 59.02 67.71
(2) Oracle (ours) 83.54 72.13 77.42

(3) VERISCI 52.46 43.72 47.69

(4) VERT5ERINI (BM25) 67.70 53.83 59.97
(5) VERT5ERINI (T5) 64.81 57.37 60.87

Selection+Label

Method P R F1

(6) Oracle (VERISCI) 71.32 53.01 60.82
(7) Oracle (ours) 78.16 67.49 72.43

(8) VERISCI 46.89 39.07 42.62

(9) VERT5ERINI (BM25) 63.92 50.82 56.62
(10) VERT5ERINI (T5) 60.80 53.83 57.10

Table 10: Full pipeline sentence-level effectiveness on
SCIFACT’s development set.

evaluation settings (rows 6, 7 in Tables 9 and 10,
respectively) which require more from systems in
terms of sentence selection and label prediction.

In rows 3–5 and 8–10, we report scores in the full
pipeline setting where systems are also required to
retrieve relevant abstracts. We evaluate two full
pipeline systems, one that uses BM25 alone and
another that uses BM25 followed by T5 (MARCO)
for abstract retrieval. Both these systems outper-
form the baseline system VERISCI by about 14 F1

points. This comes as no surprise seeing that our
models display notable improvements for each of
the three sub-tasks.

Notice that in Table 6, using T5 (MARCO)
brings large gains in terms of R@3 over the BM25
baseline. Yet, in the case of the full pipeline, with
these two abstract retrieval methods, we only ob-
serve comparable effectiveness on the development
set. We believe this might be linked to the rela-
tively small size of the development set; below, we
choose to probe the SCIFACT hidden test set with
both configurations.

From Table 11, it is clear that in the hidden
test set, both our systems outperform the base-
line VERISCI, with evaluation aspects like Sen-
tence+Label (rows 10–12) showing relative im-
provements of around 50%. Comparing with the
corresponding conditions in Tables 9 and 10, we
also see no indication of overfitting. We also note
that abstract retrieval using the two-stage approach
brings large gains here (rows 5, 11 vs. 6, 12) un-
like in the development set. This shows that neural
reranking, even though used in a zero-shot formu-
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Label Only

Method P R F1

(1) VERISCI 47.5 47.3 47.4
(2) VERT5ERINI (BM25) 63.1 60.8 61.9
(3) VERT5ERINI (T5) 63.6 66.2 64.9

Label+Rationale

Method P R F1

(4) VERISCI 46.6 46.4 46.5
(5) VERT5ERINI (BM25) 60.3 58.1 59.2
(6) VERT5ERINI (T5) 61.5 64.0 62.7

Selection Only

Method P R F1

(7) VERISCI 45.0 47.3 46.1
(8) VERT5ERINI (BM25) 64.9 58.9 61.8
(9) VERT5ERINI (T5) 66.2 63.5 64.8

Selection+Label

Method P R F1

(10) VERISCI 38.6 40.5 39.5
(11) VERT5ERINI (BM25) 58.3 53.0 55.5
(12) VERT5ERINI (T5) 60.0 57.6 58.8

Table 11: Full pipeline effectiveness of VERT5ERINI
on SCIFACT’s test set.

lation, is critical to getting higher quality abstracts
from the corpus C, thereby improving effectiveness
in later stages too.

4.6 Verification of COVID-19 Claims
Finally, we evaluate our most effective pipeline
configuration, VERT5ERINI (T5), on the two sets
of COVID-related claims. We do this in a zero-shot
setting in that we do not fine-tune our model on
either of these datasets.

In the COVID-19 SCIFACT set, for each claim
q, we use VERT5ERINI (T5) to predict evidence
abstracts, Ê(q). A (q, Ê(q)) pair is considered plau-
sible if at least half of the evidence abstracts in Ê(q)
are found to have reasonable rationales and labels.
For 30 out of 36 claims, we find that VERT5ERINI

(T5) provides plausible evidence abstracts. These
claims have reasonable labels and evidence ratio-
nales selected successfully from evidence abstracts.
This is in comparison to the 23 out of 36 claims
for which VERISCI provides plausible evidence,
demonstrating the effectiveness of our system in
the zero-shot setting.

In the COVID-19 Scientific set, we compare
the effectiveness of VERT5ERINI with that of two
baselines considered by Lee et al. (2020). Table 12
reports the accuracy, the F1-Macro, and the F1-
Binary scores on the test set. The F1-Binary score

Method Accuracy F1-Macro F1-Binary

LiarMisinfo 61.5 59.2 82.8
LM Debunker 75.4 69.8 83.1

VERT5ERINI (T5) 78.2 73.2 83.8

Table 12: Label prediction effectiveness on COVID-19
Scientific claims

corresponds to the F1 score of the REFUTES label,
since debunking misinformation is critical. Note
that the LM Debunker baseline uses the average
scores across four-fold cross-validation on the test
set, unlike VERT5ERINI and LiarMisinfo. We ob-
serve that VERT5ERINI outperforms both base-
lines in a zero-shot setting, without any in-task
tuning like the LM Debunker. The adaptability
of VERT5ERINI to both these new tasks with no
additional training makes a strong case for the ef-
fectiveness of our system.

5 Conclusions

In this paper, we introduced VERT5ERINI, a novel
system for scientific claim verification that exploits
a generation-based approach to abstract ranking,
sentence selection, and claim verification. Such
systems are of significance in this age of misin-
formation, amplified by the COVID-19 pandemic.
Experiments show that our system outperforms the
state of the art in the end-to-end task on the SCI-
FACT dataset. We note improvements in each of
the three sub-tasks, demonstrating the importance
of this sequence-to-sequence approach as well as
zero-shot and few-shot transfer capabilities. Fi-
nally, we find that VERT5ERINI generalizes to two
new COVID-19 related datasets with no tuning of
parameters while maintaining high effectiveness.

Yet, there is still a large gap between our system
and an oracle. Ideally, a system that performs sci-
entific claim verification should possess additional
attributes such as:

• Numerical reasoning — the ability to interpret
statistical and numerical findings and ranges.

• Biomedical background — the ability to lever-
age knowledge about domain-specific lexical re-
lationships.

Future work that incorporates such attributes might
be critical towards building higher-quality scientific
fact verification systems. We report progress, but
there is much more work to be done.
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