
Simplifying annotation of intersections in time normalization annotation:
exploring syntactic and semantic validation

Peiwen Su and Steven Bethard
University of Arizona

Tucson, AZ, USA
{peiwensu,bethard}@email.arizona.edu

Abstract

While annotating normalized times in food
security documents, we found that the se-
mantically compositional annotation for time
normalization (SCATE) scheme required sev-
eral near-duplicate annotations to get the cor-
rect semantics for expressions like Nov. 7th
to 11th 2021. To reduce this problem, we
explored replacing SCATE’s SUB-INTERVAL
property with a SUPER-INTERVAL property,
that is, making the smallest units (e.g., 7th and
11th) rather than the largest units (e.g., 2021)
the heads of the intersection chains. To en-
sure that the semantics of annotated time in-
tervals remained unaltered despite our changes
to the syntax of the annotation scheme, we ap-
plied several different techniques to validate
our changes. These validation techniques de-
tected and allowed us to resolve several im-
portant bugs in our automated translation from
SUB-INTERVAL to SUPER-INTERVAL syntax.

1 Introduction

Time normalization is the task of translating natu-
ral language expressions of time, e.g., three days
ago, to computer-readable forms, e.g., 2021-11-
04. Time normalization is an important component
of applications like monitoring patient symptoms
(Lin et al., 2015), matching news events across
languages (Vossen et al., 2016), and studying date-
based literature trends (Fischer and Strötgen, 2015).
As part of a larger project studying the causes and
effects of food insecurity, we were interested in
annotating normalized times in this highly time-
sensitive domain.

Several schemes have been proposed for anno-
tating normalized times. TimeML (Pustejovsky
et al., 2003; ISO, 2012) primarily focuses on times
that can be described as a prefix of YYYY-MM-
DDTHH:MM:SS, including relative time expres-
sions like next Monday, but excluding time expres-
sions like the past three summers that refer to more

than one time interval. The semantically composi-
tional annotation for time normalization (SCATE;
Bethard and Parker, 2016) scheme breaks time ex-
pressions down into individual temporal operators
like NEXT or BETWEEN, and can therefore cover
a wider variety of time expressions than TimeML.
The Time Event Ontology (TEO; Li et al., 2020)
draws ideas from both TimeML and SCATE, to
provide a simplified annotation scheme specifically
targeted at clinical notes.

Because the SCATE scheme covered the widest
variety of time expressions, we selected this
scheme for annotating normalized times in food
security documents. We annotated 17 documents
(22K words), producing 2305 time annotations, and
achieved an acceptable inter-annotator agreement
of 0.808 F1. However, during the process we no-
ticed that to get the correct temporal semantics of
expressions like Nov. 7th to 11th 2021, we had
to add many near-duplicate annotations. Under
the SCATE scheme, to get this expression inter-
preted correctly as [2021-11-07 00:00:00, 2021-11-
12 00:00:00), two MONTH-OF-YEAR annotations
are needed on Nov. and two YEAR annotations are
needed on 2021, as shown in fig. 1 (top). These
duplicate annotations are necessary because the
BETWEEN needs two intervals, one for 2021-11-07
and one for 2021-11-11, and a YEAR with a chain
of SUB-INTERVAL links can represent only a single
interval. For example, the top-most YEAR in the
figure, based on its chain of SUB-INTERVAL links,
is interpreted as 2021-11-11.

Because these types of time expressions were
common in our food security documents, we ex-
plored a possible change to the SCATE scheme
which would replace SUB-INTERVAL links with
SUPER-INTERVAL links. In essence, we would
reverse the links in the chains, removing the need
for the additional annotations, as shown in Fig-
ure 1 (bottom). This works because while in the
SUB-INTERVAL version each MONTH-OF-YEAR

MONTH-OF-YEAR

TYPE=NOVEMBER

SUB-INTERVAL

MONTH-OF-YEAR

TYPE=NOVEMBER

SUB-INTERVAL

Nov.

DAY-OF-MONTH

VALUE=7

7th

BETWEEN

START-INTERVAL

END-INTERVAL

to

DAY-OF-MONTH

VALUE=11

11th

YEAR

VALUE=2021

SUB-INTERVAL

YEAR

VALUE=2021

SUB-INTERVAL

2021

MONTH-OF-YEAR

TYPE=NOVEMBER

SUPER-INTERVAL

Nov.

DAY-OF-MONTH

VALUE=7

SUPER-INTERVAL

7th

BETWEEN

START-INTERVAL

END-INTERVAL

to

DAY-OF-MONTH

VALUE=11

SUPER-INTERVAL

11th

YEAR

VALUE=2021

2021

Figure 1: SCATE representation of Nov. 7th to 11th 2021 using standard SUB-INTERVAL (top) and proposed
SUPER-INTERVAL (bottom). Arrows of the same color are performing similar functions.

is linked to a different day and therefore cannot
be shared, in the SUPER-INTERVAL version the
MONTH-OF-YEAR can be shared because it is
linked only to the YEAR, which is also shared.

Our proposed change to SCATE is purely syntac-
tic; if implemented correctly, it should not change
the semantics of any complete time expression. But
SUB-INTERVAL is extremely common in SCATE-
annotated documents, such as the SemEval 2018
Task 6 annotated corpus Laparra et al. (2018), so
the conversion from SUB-INTERVAL to SUPER-
INTERVAL would have to be automatic, not man-
ual. We thus designed an automatic conversion
tool, and a series of validations to ensure that our
conversions behaved as expected.

Because SCATE, in addition to defining a set
of annotations syntactically, also defines a formal
semantics for each annotation, we were able to
validate our tool in two different ways: syntac-
tically, ensuring that the XML annotations were
valid SCATE annotations and lost no information,
and semantically, ensuring that the time intervals
inferrable from the SCATE annotations were iden-
tical before and after the conversion.

2 Anafora XML to LabelStudio JSON

SCATE was originally implemented in the XML
format of the Anafora annotation tool (Chen and
Styler, 2013), but that tool has not been actively
maintained since 2018. To allow easy visualiza-

tion of our annotations, we translated the SCATE
scheme into a LabelStudio1 config, and a corre-
sponding LabelStudio JSON format.

To convert between Anafora XML and Label-
Studio JSON, we created an XML-to-JSON script
that translated each <entity> into a JSON object
for its <type> and a JSON object for each of its
<properties>. The structure of these JSON ob-
jects follows the LabelStudio requirements. The
objects for type and text-based properties have an
id field, give the name via from_name, and give the
span and value in the value sub-object. The objects
for link-based properties have from_id and to_id

fields and give the name via labels. Figure 2
shows a sample of the original Anafora XML and
the corresponding LabelStudio JSON, as well as a
screenshot of LabelStudio visualizing the SCATE
annotations.

3 Validating XML-to-JSON

Before implementing the proposed SUB-INTERVAL

to SUPER-INTERVAL conversion in the JSON files,
we tested our Anafora XML to LabelStudio JSON
conversion. We first implemented a JSON-to-XML
script designed to be an inverse of the XML-to-
JSON script described in section 2, which collected
all JSON objects for each id and merged them into
a single <entity>. We then tested that the com-
position of the two scripts (i.e., XML-to-JSON-to-

1https://labelstud.io/

https://labelstud.io/

<entity>
<id>51@e@ABC19980114.1830.0611@gold</id>
29,31
<type>Month-Of-Year</type>
<parentsType>Repeating-Interval</parentsType>
<properties>
<Type>January</Type>
<Sub-Interval>50@e@ABC19980114.1830.0611@gold

</Sub-Interval>
</properties>

</entity>

{
"value": {
"start": 29, "end": 31,
"labels": ["Month-Of-Year"]},

"id": "51@e@ABC19980114.1830.0611@gold",
"from_name": "type",

},
{

"value": {
"start": 29, "end": 31,
"choices": ["January"]},

"id": "51@e@ABC19980114.1830.0611@gold",
"from_name": "Month-Of-Year-type",

},
{

"from_id": "51@e@ABC19980114.1830.0611@gold",
"to_id": "50@e@ABC19980114.1830.0611@gold",
"type": "relation",
"labels": ["Sub-Interval"]

},

Figure 2: Abbreviated example of Anafora XML format (top left), LabelStudio JSON format (right), and Label-
Studio visualization (bottom left). See fig. A1 in appendix A for the complete SUB-INTERVAL chain.

<entity>
<id>571@e@ID159_clinic_470@gold</id>
6491,6495
<type>After</type>
<parentsType>Operator</parentsType>
<properties>
<Semantics>Interval-Not-Included</Semantics>
<Interval-Type>Link</Interval-Type>
<Interval>326@e@ID159_clinic_470@gold</Interval>

</properties>
</entity>

Figure 3: An annotation error. No <entity> in the
document has id 326@e@ID159_clinic_470@gold.
The phrase Post spans the offsets 6491 to 6495 within
the phrase Postoperative. It is likely that an annotation
over the operative was lost in the original annotations.

XML) produced Anafora XML that was equivalent
to the original Anafora XML. Performing this type
of syntactic validation revealed a number of errors.

Annotation errors We found 43 cases in the
SemEval 2018 Task 6 annotated corpus where
there were errors in the original Anafora XML.
For example, fig. 3 shows an <entity> whose
<Interval> appears to link to another entity,
but the document contains no entity with id
326@e@ID159_clinic_470@gold. These were re-
vealed as exceptions in the XML-to-JSON script
when it attempted to look up the non-existing en-
tity.

Properties with multiple values Almost all
SCATE annotations allow only a single value for
each property. However, our XML-to-JSON-to-
XML validation revealed that a small number of
annotations in the SemEval 2018 Task 6 corpus
had properties with multiple values. For exam-
ple, as shown in fig. 4, and in the phrase Mon-
days and Tuesdays was annotated as a UNION with
two <Repeating-Intervals> arguments, Mon-

<entity>
<id>130@e@APW19980213.1320@gold</id>
934,937
<type>Union</type>
<parentsType>Operator</parentsType>
<properties>
<Repeating-Intervals>111@e@APW19980213.1320@gold
</Repeating-Intervals>

<Repeating-Intervals>112@e@APW19980213.1320@gold
</Repeating-Intervals>

</properties>
</entity>

Figure 4: A <Repeating-Intervals> property with
multiple values. The phrase and spans the offsets 934
to 937 in the phrase Mondays and Tuesdays. The first
<Repeating-Intervals> is an annotation over
Mondays and the second is an annotation over Tues-
days.

days and Tuesdays. Our original code assumed
one value per property, resulting in missing links in
the generated XML. We resolved the issue by en-
suring that properties with multiple values resulted
in multiple JSON objects instead of just one.

Annotations with multiple spans Almost all
SCATE annotations are over just a single, contin-
uous span of text. However, our XML-to-JSON-
to-XML validation revealed that a small number of
annotations in the SemEval 2018 Task 6 corpus had
multiple spans. For example, in fig. 5, the event
status, stable (an event from a clinical note that
describes the state of the patient) was annotated to
exclude the comma and space characters. Similar
problems arise in our food security data, where ex-
pressions like Kiremt 2016 rainy season needs a
discontinuous span for the season Kiremt . . . rainy
season. We resolved this issue by creating an extra
JSON object for each additional span, where the
ID is suffixed with continued to allow for easy
reconstruction of the multi-span annotation.

<entity>
<id>66@e@ID017_clinic_049@gold</id>
748,754;756,762
<type>Event</type>
<parentsType>Other</parentsType>

</entity>

Figure 5: An annotation with multiple spans. The
phrase status, stable spans the offsets 748 to 762, but
the comma and space are excluded from the annotation.

4 Validating Sub-to-Super-Interval

Having validated our XML-to-JSON conversion,
we implemented our SUB-INTERVAL to SUPER-
INTERVAL conversion. Our initial implementation
simply changed the labels from Sub-Interval

to Super-Interval and swapped the from_id and
to_id fields.

To perform semantic validation of this conver-
sion, we took advantage of the interpretation API
provided by Bethard and Parker (2016)2, which
takes annotations as input and produces time in-
tervals as output. For example, the BETWEEN an-
notation in fig. 1 would be interpreted as the inter-
val [2021-11-07 00:00:00, 2021-11-12 00:00:00).
Since the API requires Anafora XML, we used
our JSON-to-XML script to convert our SUPER-
INTERVAL JSON into SUPER-INTERVAL XML.
To check if our syntactic changes to the annota-
tion scheme maintained the intended semantics,
we paired up each annotation in the original SUB-
INTERVAL XML files with the corresponding an-
notation in the newly generated SUPER-INTERVAL

XML files, and tested that the paired annotations
both resulted in the same time intervals. Perform-
ing this type of semantic validation revealed a num-
ber of errors.

Mid-chain entities The validation showed that
the interpretation of entities in the middle of a
SUB-INTERVAL chain changed with the SUPER-
INTERVAL conversion. For example, the Nov. of
fig. 1 (top) is intersected with 7th via its SUB-
INTERVAL link, and is therefore interpreted as all
November 7th intervals on the timeline. On the
other hand, the Nov. of fig. 1 (bottom) is inter-
sected with 2021 via its SUPER-INTERVAL link,
and is therefore interpreted as the single interval
November 2021. This was a desirable consequence
of the conversion, since these partial interpretations
are necessary to allow re-use of expressions like
Nov. in Nov. 7th to 11th. We therefore changed

2https://github.com/clulab/timenorm/

our semantic validation code to allow mismatches
between mid-chain entities.

Entities with chain arguments Our simple
swapping of from_id and to_id turned out to be
insufficent for entities that are not part of a SUB-
INTERVAL chain, but take one as an argument. For
example, the BETWEEN in fig. 1 (top) has chains
as its START-INTERVAL and END-INTERVAL ar-
guments. In the SUB-INTERVAL encoding, these
chains are represented by YEARs, but in the SUPER-
INTERVAL encoding, these chains are represented
by DAY-OF-MONTHs. We resolved this issue
by finding entities with chain arguments, and re-
placing the root of the SUB-INTERVAL chain (i.e.,
the largest time unit) with the root of the SUPER-
INTERVAL chain (i.e., the smallest time unit).

5 Discussion

The change from SUB-INTERVAL to SUPER-
INTERVAL achieved our primary goal, success-
fully removing 69 near-duplicate annotations in
our food security corpus, without changing the se-
mantics of any time expression. There was only
one place where the switch caused a new near-
duplicate annotation to be added: Meher 2016/17.
The Meher here refers to two different seasons,
May to September 2016 and May to September
2017. With SUB-INTERVALs, both 2016 and 17
could link to the same Meher SEASON-OF-YEAR,
but with SUPER-INTERVALs, there must be two
SEASON-OF-YEARs annotated, each pointing their
SUPER-INTERVAL to exactly one of 2016 or 17.
We nonetheless consider the experiment a success:
69 near-duplicates removed, at the cost of just 1
near-duplicate added.

In terms of validation strategies, we found it
helpful to be working with an annotation scheme
that had both a syntactic specification of how an-
notations should be applied to words in the text,
and a formal semantic interpretation that converted
the annotations to explicit intervals on the timeline.
This allowed us to change the syntax of the anno-
tation scheme, while making sure that we did not
unintentionally change the semantics of the annota-
tions. Having both a syntactic specification and a
formal semantic interpretation is uncommon in an-
notation schemes. At one end of the spectrum are
purely syntactic annotation schemes, like Univer-
sal Dependencies (UD; Nivre et al., 2020), with no
formal semantic interpretation at all. At the other
end of the spectrum are purely semantic annota-

https://github.com/clulab/timenorm/

tion schemes, like abstract meaning representation
(AMR; Banarescu et al., 2013) where only the for-
mal logic-like interpretation is annotated, with no
explicit links to individual words of the original
text. Our experience was that having both a syn-
tactic and semantic specification made it easier to
apply and validate improvements to the annotation
scheme.

All code produced during this work can be found
at https://github.com/clulab/timenorm/.

References
Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Steven Bethard and Jonathan Parker. 2016. A seman-
tically compositional annotation scheme for time
normalization. In Proceedings of the Tenth Inter-
national Conference on Language Resources and
Evaluation (LREC’16), pages 3779–3786, Portorož,
Slovenia. European Language Resources Associa-
tion (ELRA).

Wei-Te Chen and Will Styler. 2013. Anafora: A web-
based general purpose annotation tool. In Proceed-
ings of the 2013 NAACL HLT Demonstration Ses-
sion, pages 14–19, Atlanta, Georgia. Association for
Computational Linguistics.

Frank Fischer and Jannik Strötgen. 2015. When Does
(German) Literature Take Place? On the Analysis
of Temporal Expressions in Large Corpora. In Pro-
ceedings of DH 2015: Annual Conference of the
Alliance of Digital Humanities Organizations, vol-
ume 6, Sydney, Australia.

ISO. 2012. Language resource management – seman-
tic annotation framework (semaf) – part 1: Time and
events (semaf-time, iso-timeml). Technical report,
ISO. 24617-1:2012.

Egoitz Laparra, Dongfang Xu, Ahmed Elsayed, Steven
Bethard, and Martha Palmer. 2018. SemEval 2018
task 6: Parsing time normalizations. In Proceedings
of The 12th International Workshop on Semantic
Evaluation, pages 88–96, New Orleans, Louisiana.
Association for Computational Linguistics.

Fang Li, Jingcheng Du, Yongqun He, Hsing-Yi Song,
Mohcine Madkour, Guozheng Rao, Yang Xiang,
Yi Luo, Henry W Chen, Sijia Liu, Liwei Wang,
Hongfang Liu, Hua Xu, and Cui Tao. 2020. Time
event ontology (TEO): to support semantic represen-
tation and reasoning of complex temporal relations

of clinical events. Journal of the American Medical
Informatics Association, 27(7):1046–1056.

Chen Lin, Elizabeth W. Karlson, Dmitriy Dligach,
Monica P. Ramirez, Timothy A. Miller, Huan Mo,
Natalie S. Braggs, Andrew Cagan, Vivian S. Gainer,
Joshua C. Denny, and Guergana K. Savova. 2015.
Automatic identification of methotrexate-induced
liver toxicity in patients with rheumatoid arthri-
tis from the electronic medical record. Journal
of the American Medical Informatics Association,
22(e1):e151–e161.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Jan Hajič, Christopher D. Manning, Sampo
Pyysalo, Sebastian Schuster, Francis Tyers, and
Daniel Zeman. 2020. Universal Dependencies v2:
An evergrowing multilingual treebank collection.
In Proceedings of the 12th Language Resources
and Evaluation Conference, pages 4034–4043, Mar-
seille, France. European Language Resources Asso-
ciation.

James Pustejovsky, José M. Castaño, Robert Ingria,
Roser Saurí, Robert J. Gaizauskas, Andrea Set-
zer, Graham Katz, and Dragomir R. Radev. 2003.
Timeml: Robust specification of event and temporal
expressions in text. In New Directions in Question
Answering, Papers from 2003 AAAI Spring Sympo-
sium, Stanford University, Stanford, CA, USA, pages
28–34. AAAI Press.

Piek Vossen, Rodrigo Agerri, Itziar Aldabe, Agata Cy-
bulska, Marieke van Erp, Antske Fokkens, Egoitz
Laparra, Anne-Lyse Minard, Alessio Palmero Apro-
sio, German Rigau, Marco Rospocher, and Roxane
Segers. 2016. NewsReader: Using knowledge re-
sources in a cross-lingual reading machine to gener-
ate more knowledge from massive streams of news.
Special Issue Knowledge-Based Systems, Elsevier.

A Appendix

Figure A1 shows an extended example of what
SUB-INTERVAL chains look like in both Anafora
XML and LabelStudio JSON.

https://github.com/clulab/timenorm/
https://aclanthology.org/W13-2322
https://aclanthology.org/W13-2322
https://aclanthology.org/L16-1599
https://aclanthology.org/L16-1599
https://aclanthology.org/L16-1599
https://aclanthology.org/N13-3004
https://aclanthology.org/N13-3004
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=37331
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=37331
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=37331
https://doi.org/10.18653/v1/S18-1011
https://doi.org/10.18653/v1/S18-1011
https://doi.org/10.1093/jamia/ocaa058
https://doi.org/10.1093/jamia/ocaa058
https://doi.org/10.1093/jamia/ocaa058
https://doi.org/10.1093/jamia/ocaa058
https://doi.org/10.1136/amiajnl-2014-002642
https://doi.org/10.1136/amiajnl-2014-002642
https://doi.org/10.1136/amiajnl-2014-002642
https://aclanthology.org/2020.lrec-1.497
https://aclanthology.org/2020.lrec-1.497
https://doi.org/dx.doi.org/10.1016/j.knosys.2016.07.013
https://doi.org/dx.doi.org/10.1016/j.knosys.2016.07.013
https://doi.org/dx.doi.org/10.1016/j.knosys.2016.07.013

<entity>
<id>50@e@ABC19980114.1830.0611@gold</id>
31,33
<type>Day-Of-Month</type>
<parentsType>Repeating-Interval</parentsType>
<properties>
<Value>14</Value>
<Sub-Interval></Sub-Interval>
<Number></Number>
<Modifier></Modifier>
</properties>

</entity>
<entity>

<id>51@e@ABC19980114.1830.0611@gold</id>
29,31
<type>Month-Of-Year</type>
<parentsType>Repeating-Interval</parentsType>
<properties>
<Type>January</Type>
<Sub-Interval>50@e@ABC19980114.1830.0611@gold
</Sub-Interval>

<Number></Number>
<Modifier></Modifier>
</properties>

</entity>
<entity>

<id>52@e@ABC19980114.1830.0611@gold</id>
25,29
<type>Year</type>
<parentsType>Interval</parentsType>
<properties>
<Value>1998</Value>
<Sub-Interval>51@e@ABC19980114.1830.0611@gold
</Sub-Interval>

<Modifier></Modifier>
</properties>

</entity>

{
"value": {
"start": 31,
"end": 33,
"labels": ["Day-Of-Month"]

},
"id": "50@e@ABC19980114.1830.0611@gold",
"from_name": "type",
"to_name": "text",
"type": "labels"

},
{

"value": {
"start": 31,
"end": 33,
"text": ["14"]

},
"id": "50@e@ABC19980114.1830.0611@gold",
"from_name": "Day-Of-Month-value",
"to_name": "text",
"type": "textarea"

},
{

"value": {
"start": 29,
"end": 31,
"labels": ["Month-Of-Year"]

},
"id": "51@e@ABC19980114.1830.0611@gold",
"from_name": "type",
"to_name": "text",
"type": "labels"

},
{

"value": {
"start": 29,
"end": 31,
"choices": ["January"]

},
"id": "51@e@ABC19980114.1830.0611@gold",
"from_name": "Month-Of-Year-type",
"to_name": "text",
"type": "choices"

},
{

"from_id": "51@e@ABC19980114.1830.0611@gold",
"to_id": "50@e@ABC19980114.1830.0611@gold",
"type": "relation",
"labels": ["Sub-Interval"]

},
{

"value": {
"start": 25,
"end": 29,
"labels": ["Year"]

},
"id": "52@e@ABC19980114.1830.0611@gold",
"from_name": "type",
"to_name": "text",
"type": "labels"

},
{

"value": {
"start": 25,
"end": 29,
"text": ["1998"]

},
"id": "52@e@ABC19980114.1830.0611@gold",
"from_name": "Year-value",
"to_name": "text",
"type": "textarea"

},
{

"from_id": "52@e@ABC19980114.1830.0611@gold",
"to_id": "51@e@ABC19980114.1830.0611@gold",
"type": "relation",
"labels": ["Sub-Interval"]

}

Figure A1: Example Anafora XML format (left) and LabelStudio JSON format (right).

