End-to-end style-conditioned poetry generation:
What does it take to learn from examples alone?

Jorg Wockener! and Thomas Haider? and Tristan Miller’
Thanh Tung Linh Nguyen' and The-Khang Nguyen' and Minh Vu Pham'
Jonas Belouadi! and Steffen Eger!

I Technische Universitit Darmstadt

2 Universitit Gottingen

3 Austrian Research Institute for Artificial Intelligence

Abstract

In this work, we design an end-to-end model for
poetry generation based on conditioned recur-
rent neural network (RNN) language models
whose goal is to learn stylistic features (poem
length, sentiment, alliteration, and rhyming)
from examples alone. We show this model suc-
cessfully learns the ‘meaning’ of length and
sentiment, as we can control it to generate
longer or shorter as well as more positive or
more negative poems. However, the model
does not grasp sound phenomena like alliter-
ation and rhyming, but instead exploits low-
level statistical cues. Possible reasons include
the size of the training data, the relatively low
frequency and difficulty of these sublexical phe-
nomena as well as model biases. We show that
more recent GPT-2 models also have problems
learning sublexical phenomena such as rhym-
ing from examples alone.

1 Introduction

Poetry is a very old form of human language use
which is deeply embedded in the heritage of many
cultures (Beissinger, 2012; Fabb and Halle, 2010).
It is characterized by refined, creative, and sublime
expressions and linguistic structure. Thus, it comes
as little surprise that automatic poetry generation
has long captivated artificial intelligence (Al) re-
searchers (Gervas, 2001; Gongalo Oliveira et al.,
2017), for any general solution to this task will have
assuredly brought us a step closer to understanding
human creativity.!

1Poetry generation systems may have manifold applications.
For example, an Al tool that could assist songwriters in
composing lyrics to a given tune, or even generate them entirely
automatically, would have commercial potential. Besides
such entertainment-oriented applications, producing tools for
poetry generation will necessarily involve the development
of poetry analysis tools — since generation and analysis are
complementary aspects of poetry (Jhamtani et al., 2019) —
which may prove useful in their own right. And the production
and application of these analysis tools could result in insights
into the structural and aesthetic features that distinguish human-
penned poetry from its artificially produced counterpart.

57

-+ - - T IR
felt fun in brain ,
-+ - +] - +
mourn , to fro ,
-+ -] - T I
tread , tread , till seemed
-+ - +] - +
sense break through .

Figure 1: Example of alliteration (red), a (near) rhyme
(blue), and metre (black/grey). This is the first stanza of
‘I felt a Funeral, in my Brain’ by Emily Dickinson. The
rhyme scheme is ‘abcb’, the overall lexical sentiment of
the stanza is negative (many words are associated with
negative sentiment), and the time period is the 19th
century.

A crucial factor when producing poetry (either by
humans or automatically) is style. While definitions
of style have varied considerably over time, space,
and fields of study (Herrmann et al., 2015), there is
widespread agreement that the study of literary form,
not (just) content, is what allows us to determine
the criteria for aesthetic appreciation and impact.
That is, it is formal or stylistic features that often
distinguish sophisticated, effectual, or simply ‘good’
poetry from poetry that is pedestrian, mundane, or
just plain ‘bad’ (Jakobson, 1960; Shlovsky, 1965;
Ganjigunte Ashok et al., 2013; Kao and Jurafsky,
2015; Menninghaus et al., 2017).

In this work, we consider the problem of style-
conditioned poetry generation, where the user may
specify stylistic factors that the generated text has
to fulfil. Our stylistic factors include rhyme, al-
literation, sentiment, text length, and time period.
Examples of some of our stylistic features (par-
ticularly rhyme and alliteration) can be found in
Figure 1. (We include metre in the example, but do
not consider it in the experiments.)

In generating poetry conditioned upon stylistic
factors, we explore a theme in the automatic gen-

Proceedings of LaTeCH-CLfL 2021, pages 57-66
Punta Cana, Dominican Republic (Online), November 11, 2021.

eration of poetry that we believe will dominate the
field in the upcoming years: end-to-end generation
of formal poetry from examples alone, without the
need for human involvement in designing the model
or filtering its output (e.g., via hard-coded stylistic
constraints on rhyme, alliteration, etc.). We believe
advances in this task serve as an indicator of the ma-
turity of natural language processing (NLP) systems
as they progress towards true Al. Indeed, the recent
success of GPT-3 (Brown et al., 2020) with its focus
on few-shot learning (i.e., learning from a few illus-
trative examples, even without model updating) is
inspiration for our work to design poetry generation
models that learn relevant stylistic features without
any other form of human intervention.

We find that, while our models can capture senti-
ment, time epoch, and text length, they have trouble
learning intricate phonetic stylistic features from ex-
amples alone, instead learning low-level statistical
cues that are weakly correlated with these target
features. This holds both for a classical RNN lan-
guage model and more recent transformer models
(GPT-2). We take this as a negative result and as
a challenge for future poetry generation systems,
viz., to be able to produce typical relevant stylistic
factors of poetry without hard-coding them into the
model architecture.

2 Related work

Poetry analysis. Computational analysis of po-
etry has been concerned largely with formal features
such as metre (Greene et al., 2010; Agirrezabal et al.,
2016; Estes and Hench, 2016), rhyme (Reddy and
Knight, 2011; Haider and Kuhn, 2018), and en-
jambment (Ruiz et al., 2017; Baumann et al., 2018).
More recently, higher-level phenomena, including
semantic coherence (Herbelot, 2015), metaphor
(Reinig and Rehbein, 2019; Kesarwani et al., 2017),
and diachronic analysis of tropes (Haider and Eger,
2019) have come into focus. Haider et al. (2020)
annotate poetry for fine-grained aesthetic emotion
categories elicited in readers.

Poetry generation. In the era of statistical NLP,
text generation has evolved along the path of n-gram
language models (Kneser and Ney, 1995), whose in-
herent modelling limitations allow them to consider
only a finite amount of history when generating
next output symbols, to recurrent neural network
(RNN) language models (Sutskever et al., 2011),
which can take an infinite history into account but
suffer from vanishing and exploding gradients, to

58

transformer models (Vaswani et al., 2017), which
have constant path lengths between inputs and out-
puts. Transformers are feed-forward networks that
use self-attention between consecutive layers. Their
shorter paths between inputs and outputs make it
easier to learn long-range dependencies. They can
also be parallelized easier. As a consequence, they
can be pre-trained on massive amounts of data,
where they acquire general text generation abilities
(Radford et al., 2019).

Approaches to poetry generation can be categor-
ized into pre- and post-deep learning era approaches.
Pre-deep learning approaches were highly hand-
engineered and ‘top-down’, using specific grammar
formalisms and linguistic resources to generate po-
etry; they typically built stylistic aspects such as
rhyme and rhythm into their model architectures
(Manurung et al., 2000; Gervés, 2001; Gongalo Oli-
veira, 2013; Colton et al., 2012).

Neural approaches to poetry generation learn
from collections of real poetry data. Most of them
use RNN language models (Zhang and Lapata,
2014; Lau et al., 2018). This framework has also
been extended to related tasks such as generating
poetry from images (Liu et al., 2018), translating
poetry (Ghazvininejad et al., 2018), and generating
song lyrics given an input melody (Watanabe et al.,
2018). A drawback shared by most poetry gen-
eration systems, including even very recent ones
(Van de Cruys, 2020; Agarwal and Kann, 2020),
is that they require hard- and hand-coded rules
to generate poetry with specific properties, such
as rhyming and alliteration, or to filter output not
having these properties. For example, to ensure
rhyming, Lau et al. (2018) exploit the fact that
their data (sonnets) has a particular structure from
which they can infer that certain word pairs must
rhyme, which they incorporate in the modelling.
Héamaildinen and Alnajjar (2019) define rules for
style features. Agarwal and Kann (2020) tell the
model when a rhyming word is required and then
modify the prediction process. This means that
the models themselves lack the ability to discover
elementary properties of poetry themselves, but in-
stead rely on the modeller’s intention and ingenuity
to do so.

Recently, Jhamtani et al. (2019) introduced an
intriguing approach to poetry generation that learns
rhyming constraints using an adversarial model:
an RNN language model (the generator) generates
poetry and a discriminator (the adversary) decides

whether the line endings of the generated text are
plausible for poetry. The generator and the discrim-
inator compete against each other: the generator
tries to generate poetry that the discriminator mis-
classifies and the discriminator aims at distinguish-
ing generated poetry from human-authored poetry.
The authors show that this competition leads to
models learning rhyming with higher probability.
While this model comes close to our envisioned
ideal of a poetry generation system learning from
examples alone, it still has the drawback that the
modellers need to make the model aware of what to
pay attention to (i.e., character information of end-
ing words). This is unsatisfactory given the large
space of possible features to consider in generated
poetry.

Formally similar approaches to ours are those of
Ficler and Goldberg (2017) and Manjavacas et al.
(2019) (without emphasizing the ‘examples-only’
aspect, however). Ficler and Goldberg (2017) con-
ditioned RNN language models on stylistic features
such as length and whether the text appears to be
professionally written, and on sentiment and theme.
They showed this approach to be successful for
the given conditions in the movie reviews domain,
though they did not deal with the much more chal-
lenging case of poetry. Manjavacas et al. (2019)
generate hip-hop lyrics conditional upon rhythm
and rhyme. To enforce rhyming, they feed phon-
etic rhyme representations to the model, and thus
also encode relevant knowledge top-down into the
model.

2.1 Poetry evaluation

Evaluation of generated poetry is usually done
either automatically or manually. Zhang and Lapata
(2014) compare generated lines to manually pro-
duced ‘gold-standard’ lines using BLEU (Papineni
etal., 2002), a metric borrowed from machine trans-
lation, for the task of continuing an initial line of
poetry. They also report perplexity, a widely used
metric for language model evaluation. For manual
evaluation, they ask human annotators to rate the
generated poems for fluency, coherence, meaning,
and poeticness. Hopkins and Kiela (2017) and
Lau et al. (2018) use a sort of Turing test where
they ask human participants to distinguish between
human- and computer-generated poems. Lau et al.
(2018) additionally have an expert rate generated
poetry with respect to metre, rhyme, readability, and
emotion. Ghazvininejad et al. (2017) ask crowd-

59

workers to give star ratings for the general quality of
the generated poems, and then investigate whether
users give higher scores to style-adjusted poems
compared to the default poems.

In our work, we choose a simple evaluation
scheme that measures whether the generated po-
etry satisfies user constraints. We do not measure
other qualities of the generated poetry as we are
mostly interested in whether end-to-end systems
can successfully generate poetry from examples
alone, without human intervention.

3 Models

Our goal is to design an end-to-end poetry genera-
tion model that learns to associate a desired style
feature vector with poetic content and form purely
inductively, using examples rather than hand-coded
knowledge about what rhyming, alliteration, metre,
and sentiment are. To do so, we implement a condi-
tioned language model that samples the next word
wes1 to be generated conditioned on the history
of past words wy, ..., w, and a style constraint c.
That is, it samples w1 from the conditional distri-
bution P(ws+1 | wo, Wi, ..., W, ¢). We implement
the model in this formula by a unidirectional RNN
language model. At every time step, the RNN
predicts the next word to be generated by sampling
from a softmax distribution over the whole vocabu-
lary, taking the current word vector w; as well as the
current history vector h,, which summarizes all past
inputs, into account. The model starts generation
from a special input token, ‘SOS’, and generates
until it encounters an end-of-sentence token ‘EOS’.
To take the context ¢ into account, we encode it as
a feature vector ¢ and concatenate it to every input
representation. While there are other possible ways
of including ¢, our way constantly ‘reminds’ the
model of the style context, which we hope better
enforces that style in the output. The model is
illustrated in Figure 2. Our RNN language model
also uses character-level information to build input
representations, which may help it to generalize
to rare words or sublexical phenomena, such as
rhyming. Our implementation is taken from that of
Reimers and Gurevych (2017).2

For the conditions ¢, we consider the following:

Rhyming: How much rhyming is present in a
base unit (e.g., a stanza or full poem) of poetry?
We measure the degree of rhyming by using a

2https://github.com/UKPLab/
emnlp2017-bilstm-cnn-crf

https://github.com/UKPLab/emnlp2017-bilstm-cnn-crf
https://github.com/UKPLab/emnlp2017-bilstm-cnn-crf

Y1 y2 EOS
CITN N T
\T\ \“ \“
T~ T~ \ T~
T) N N
SOS ¢ Y1 c y2 c

Figure 2: A conditioned RNN language model.

supervised rhyme model based on character-level
Siamese bidirectional long short-term memory (Bi-
LSTM) networks (Haider and Kuhn, 2018), avail-
able for English and German. We count both in-
ternal and end rhymes as contributing to the rhyme
level of a base unit of poetry.

Alliteration: Alliteration is a device, often as-
sociated with humour (Mihalcea and Strapparava,
2006), where consecutive words begin with the
same sound or sounds. As a character does not
uniquely specify a sound in most writing systems
(cf. cat and chase), it is not sufficient to compare
the first characters of the words. Instead, we use
the CMU Sphinx Sequence-to-Sequence grapheme-
to-phoneme toolkit® for converting words into a
phonemic representation and then check whether
subsequent words start with the same phoneme. We
measure the degree of alliteration by counting how
many alliterating word sequences occur within a
base unit of poetry.

Sentiment: To determine the sentiment of a base
unit of poetry, we use a lexicon lookup approach.
For English, we use the opinion lexicon developed
by Hu and Liu (2004) and for German, we use
the German polarity clues word lists by Waltinger
(2010). The English lexicon consists of 2,007
positive and 4,782 negative words and the German
lexicon consists of 17,627 positive and 19,962
negative words. In each base unit of poetry, we
count the number of words that appear in the positive
and negative lists of the lexicon, respectively, and
then calculate the difference between these two
numbers. The final result is normalized by dividing
by the number of total matches for this unit, resulting
in the formula ¢ = £, where p is the number of
positive words found and » is the number of negative
words found. For instance, if four words of the unit
were found in the positive list and six words in the
negative list, the final rating is —2/10 = -0.2.

Shttps://github.com/cmusphinx/g2p-seq2seq

60

3.1 Training and testing mode

In training mode, we extract sentiment, rhyme, and
alliteration levels of poems (or stanzas) and pair
them with the poems themselves. The model then
predicts the text of poems (next words) based on the
previous text and the context vector ¢. The model
is end to end and has no built-in understanding of
rhyme, sentiment, nor alliteration, except for what
it gleans from its input examples. In testing mode,
the user may select a context specification in terms
of rhyme, alliteration, and sentiment, which is fed
into the RNN language model. The model starts
generating from the SOS token and terminates when
it has produced the EOS token.

4 Experiments

4.1 Experimental setup

For training data, we use two small corpora, one
English and one German. The English corpus,
the Chicago Rhyming Poetry Corpus,* has 15,672
training and 1,979 development quatrains, and the
German corpus is a small curated subset of Text-
grid> with 67,054 training and 6,697 development
quatrains. We generate quatrain stanzas instead
of full poems for speed reasons. As our network
architecture, we use a single hidden layer RNN with
64 hidden units, a dropout of 0.2 and input word
embeddings of 300 (trained on poetry data using
word2vec (Mikolov et al., 2013)) with an additional
character-level word representation of dimensional-
ity 25. As optimizer, we use Adam (Kingma and
Ba, 2014) with a learning rate of 0.001; we set the
batch size to 25.

In general, we obtained very similar results across
our two English and German datasets. We report
results only for one language per experimental
condition.

4.2 Results

Text length. As a sanity check, we test whether
we can generate stanzas of a desired length. We
select lines that have between 4 and 14 tokens from
the English Chicago corpus. We then calculate a
normalized condition ¢; which divides the number
of tokens in a line by the maximum number avail-
able in the subcorpus, which is 14. The values for
¢, thus range from 4/14 to 1 in the training data. For
evaluation, we let the condition ¢; range from 0 to
1 in steps of 1/10; we also include the value 2. Note

4https://github.com/sravanareddy/rhymedata
Shttps://textgrid.de

https://github.com/cmusphinx/g2p-seq2seq
https://github.com/sravanareddy/rhymedata
https://textgrid.de

that all values below 4/14 ~ 0.2857 as well as 2
were not seen during training. Figure 3 (top) shows
average line length per condition c;, averaged over
100 generated lines for any value of ¢;. We see
that the value of ¢, and the length of the generated
output lines correlate strongly. The average line
length for ¢; = 0.3 is 4, which matches the length of
training lines with that value. The model can even
extrapolate to unseen values, at least to a certain
degree — with a value of 2, the line length exceeds
the limit of 100 tokens, indicating overgeneraliz-
ation, while values smaller than 4/14 are smoothly
extrapolated.

Sentiment. We infer sentiment from the corpus
with the help of word lists: each quatrain receives
a rating ¢, as previously defined which we then
divide by the maximum sentiment rating of the
corpus, normalizing the values to a range of —1 (for
very negative sentiment) to 1 (for very positive sen-
timent). After training, we generate 100 quatrains
for each ¢, ranging from —1 to +1 in steps of 1/10.
Additionally, we add the extreme values of —2 and
+2, which were never seen during training. Figure 3
(right) shows the average sentiment rating value
in the generated test data as a function of the ¢,
condition. The average rating of the sentiment in
the test data increases linearly with c¢,. The model
can even extrapolate to the unseen extreme values.
Table 1 shows examples of quatrains generated with
positive and negative c¢,. With a positive ¢, the
model tends to sample stanzas containing positively
connotated words like ‘himmels’ (heaven), ‘liebe’
(love), and ‘kuesst’ (kisses), while a negative ¢,
increases the selection of negatively connotated
words like ‘schwache’ (weak), ‘angst’ (fear), and
‘heuchler’ (hypocrite). Apparently, the model has
understood the semantics of positive and negative
sentiment on the sole basis of examples.

Alliteration. In order to control the alliteration
level in the generated quatrains, we count how many
alliterating sequences there are in a quatrain, as de-
scribed in Section 3. To normalize these values, we
divide them by the maximum number of alliterating
sequences in the quatrains of the corpus and add the
normalized values as conditional information c,.
We then generate 100 quatrains for each ¢, ranging
from O to 1 in steps of 1/10. Figure 4 (left) shows
that the alliteration level in the test data indeed
increases as ¢, increases. However, Figure 4 (right)
shows that increasing ¢, for the test poems has

61

100 A

80

60

40

Length of quatrain

201

0 01 02 03 04 05 06 07 08 09 1.0 2.0
condition ¢

0.6 1

0.44

o
N}

0.

1=}

Sentiment Score

|
o
N

—0.44

—0.6

-08 -06 -04 -02 0 02 04 06 08 12
condition ¢

Figure 3: Conditioning on length (c;, top) and polar
sentiment (c,, bottom). The input condition (a real
number) is shown on the x axis and the average value
measured in the generated output is on the y axis.

the effect that the model generates longer stanzas;
when we further normalize the degree of alliteration
measured in the output by the number of tokens in
the output, then the correlation between the input
condition and the measured normalized alliteration
degree in the output disappears. Thus, the model
apparently does not understand the phenomenon
of alliteration, but instead increases the number
of words generated: the longer a poem, the more
likely it is to (coincidentally) contain instances of
alliteration. We also experimented with the input
condition ¢, Wwhich measures the degree of al-
literation per token in a poem, to see if the models
would understand the phenomenon of alliteration
when they cannot rely on length. Figure 5 (left)
shows that this is not the case. There is no clearly
visible effect of the input condition on the measured
normalized alliteration degree in the generated test
data.

Rhyme. We similarly experiment with internal
rhymes within a verse and end rhymes within a
quatrain. We consider all possible pairs of distinct

ein zeuge o der schoenen du

fuer die schuldlos buch bluehend

dein schoenstes und noch sieht ein licht
jedwedes blatt zum joche ein tor

schwerer streit und weinend flehn
vom letzten wort mit farb ergeben hirn
und bluete in die der natur

ist freude ist des ihm thut

in liebe die streng umgekehret
eins sei mein ewig zugethan
erfuelle des himmels wieder
dass das mit kuesst den lauf

komm doch er sey der heuchler
sei nicht dann im spott

du solltest eh mir geschrieben
die schwache angst

Table 1: Examples of automatically generated sentiment-conditioned quatrains using the sentiment conditions

co = +1 (left) and ¢, = —1 (right).

words in a verse and feed them into the rhyme
classifier described in Section 3, which returns a
cosine distance for each pair. If the distance is
smaller than a threshold of 0.2, the pair is classified
as thyming. The number of rhyming word pairs in a
quatrain is normalized by division by the maximum
number of thyming word pairs found in the quatrains
of the corpus. The results are values between 0 (for
no rhyming word pair) and 1 (for quatrains with the
most rhyming word pairs). Since also the degree of
rhyming is positively correlated with the number of
tokens in a stanza, we further divide these values
by the number of tokens of the respective quatrain,
then scale them again to a range between 0 and 1.
We denote this rthyme level as ¢, .. As before,
we let ¢, range from O to 1 in steps of 1/10 and
generate 100 quatrains for each value. Figure 5
(right) shows the fraction of rhyming words among
all generated words in the output as a function of
Conorm- Similar to the results of conditioning on
alliterations, there is no positive correlation of the
measured output rhyme level and the input rhyme
degree condition when stanza length is accounted
for.

4.3 Discussion

In our experiments, we found that end-to-end learn-
ing of word-level properties such as sentiment and
poem length works — the models successfully learn
to generate longer or shorter, and more positive or
negative poems, when we condition them on these
variables. This means that they have understood
the semantics of these conditions on the sole basis
of examples — i.e., without the need to explicitly
encode the conditions into the model architecture.
In contrast, conditioning on sublexical phenomena
such as rhyming and alliteration was not successful.
Instead, we found that the models learned dataset
artifacts and biases — in particular, they learned to

62

generate longer stanzas, which coincidentally have
higher degrees of rhyming and alliteration. When
controlling for this factor, we could not find evid-
ence that the models learn rhyming or alliteration
from examples alone. There are several possible
explanations for this finding:

Dataset size. All our datasets were relatively
small in size. It is unclear how model results
depend on dataset size in terms of the conditioning
variables considered here. In terms of the fluency,
coherence, etc. of the generated texts, there is clear
evidence that size improves model output — see our
discussion of GPT-2 in Section 4.4.

Frequency of phenomena. On a per-token level,
very few words rhyme or alliterate: for example,
less than 3% of tokens in our datasets are part of
an alliteration. This makes it harder to detect the
meaning of these phenomena from examples alone.
Also, very few stanzas have alliteration or rhyming
levels that exceed (0.5, meaning that the model is in
‘extrapolation mode’ for most of them. A possible
remedy for this would be to artificially augment the
training data with stanzas having large degrees of
alliteration or rhyming.

Word-level vs. sublexical phenomena. We note
that sentiment is mostly expressed on the word level
and rhyme and alliteration are expressed sublexic-
ally (i.e., on the sub-word-level). As RNNs (and
other text generation models) produce lexical tokens
(one after the other), they may be more naturally
suited for the former types of phenomena.

Size of character-level representation. For
computational reasons, we kept our RNN language
models small, with few hidden units (64) and a
small dimensionality of character-level representa-
tions for words (25). It is possible that the model
simply did not have enough capacity to store the

Alliteration Score
I 4 o g = I
- o [[=] N S

°
)

o
o

0O 01 02 03 04 05 06 07 08 09 1.0
condition ¢

w w N
® © o

w
=

Alliteration quatrain length (tokens)
w w w
5 &G o

w
w

w
N

T T T T T T T
04 05 06 07 08 09 10

condition ¢

T T T T
0 01 02 03

Figure 4: Top: Conditioning on degree of alliteration
(cq) on the English Chicago corpus data. The input
condition (a real number) is shown on the x axis and
the average value measured in the generated output is
reported on the y axis. Bottom: Increasing c, generally
leads to an increase in the length of the generated poems.

relevant information about the sublexical phenom-
ena of interest. However, it must also be said that
increasing model capacity runs the risk of severe
overfitting when the training data size is small, as
is the case for our datasets.

Heterogeneity of poetry data. It is possible that
the heterogeneity of the poetry data (with some
stanzas having high and others very low degrees
of rhyming and alliteration) confuses the models
(Hopkins and Kiela, 2017), particularly when some
of these phenomena are very infrequent.

While the explanations above are specific to our
task of style-conditioned poetry generation, the
more general problem of deep models learning
dataset artifacts or shortcuts that exploit low-level
statistical regularities has often been remarked upon
in recent years: Such observations have been made
for natural language inference (Poliak et al., 2018)
and argumentation mining (Niven and Kao, 2019),
among many other tasks.

63

o
=
@
S

o o e o
o o o o
= =3 N]
IS « S) o

Alliteration score / number of tokens

0.005 -

0.000 -
0O 01 02 03 04 05 06 07 08 09 10

condition ¢

o o o o
o =} 1=} 1=}
N} @ & @

o
o
=

Rhyming word pairs / number of tokens

0O 01 02 03 04 05 06 07 08 09 10
condition ¢

Figure 5: Conditioning on normalized alliteration de-
gree (Capom» top) and normalized thyme degree (¢p, s
bottom) on the English Chicago corpus data. The input
condition (a real number) is shown on the x axis and
the average value measured in the generated output is
reported on the y axis.

In the following subsection, we re-evaluate our
findings using a different model architecture trained
on more data.

4.4 Using GPT-2 instead of an RNN

In order to explore the capabilities of a transformer
model over a generic RNN, we also tuned style-
conditioned GPT-2 models on poetry. The main
advantage of GPT-2 (based on transformer net-
works) over standardly trained RNNss is their trans-
fer learning ability: While a standardly trained
RNN needs to learn language modelling capabilit-
ies only from small amounts of poetry data, GPT-2
is already equipped with general language model-
ling abilities, obtained from having seen billions
of tokens of written English. This makes the out-
put of GPT-2 much more semantically coherent,
fluent, and grammatically correct. Nevertheless,
we believe that even GPT-2 may have the same
problems learning poetry-specific characteristics
such as rhyme, metre, and alliteration that our RNN

And much, in fact, this lesser world can show

Of grief and crime that in the greater grow

“You saw,” said George, “in that still-hated school
How the meek suffer, how the haughty rule

Table 2: Example pseudo-quatrain in our data for GPT-
2, with (predicted) rhyme scheme ‘aabb’, negative sen-
timent, and 18th-century time period.

had, presumably because these characteristics have
low statistical support in the pre-trained data (e.g.,
Wikipedia) and for the other reasons named above.
We therefore conducted two sets of experiments
concerning the generation of style-conditioned po-
etry where the conditions include rhyme, sentiment,
and the time epoch of the poetry to be produced, in
English poetry.

Rhyme, sentiment, time epoch. We used a
GPT-2 model® trained on a larger English poetry
corpus’ that additionally contains information about
the time period in which the poems were written; we
used pseudo-quatrains (any consecutive sequence
of four lines), amounting to over 770K unique ex-
amples.® A sample pseudo-quatrain from the data
is shown in Table 2.

Since GPT-2 can more naturally be run with
discrete input text, we trained the model on the
24 different rhyming patterns (‘abab’, ‘abcd’, etc.)
that we found in the corpus, three sentiment values
(positive, negative, neutral), and five different time
periods (16th to 20th centuries). We determine
the sentiment of a newly generated poem as above
but using thresholding (e.g., a poem has a posit-
ive sentiment if it has more positive than negative
terms), rhyming is predicted as for the RNN, and
the time period is learned on the annotated data
using a multi-layer perceptron. We tested vari-
ous hyperparameter configurations and in all cases
observed the same result: the model has great diffi-
culty learning rhyming, but can capture the other
two stylistic features. The last two phenomena are
informed largely by lexical choice while rhyming is
informed by sublexical information. To illustrate,
with the default configuration, we see accuracy of
7.5% for rhyming (with a random baseline perform-
ance of 4.2%), 63% for sentiment (random baseline

Shttps://huggingface.co/gpt2

"https://github.com/tnhaider/
english-gutenberg-poetry

80Qur model is available at https://github.com/
thekhangnguyen/poetry-gen.

64

of 33%) and 63% for time period (random perform-
ance of 20%) when generating about 5,000 poems
with the desired styles. Even though the model is
not entirely at the random guessing baseline for
rhyming, it does not perform much above it and is
considerably below the majority baseline of 22%
(always producing a poem with ‘aabb’ rhyme style).
Also, the rhyme scheme predicted best by far is
‘abcd’ involving no rhyming. This requires the
model not to rhyme, which the model then also
satisfies. Here, the model satisfies 53% of all such
user constraints, while it satisfies only 0.4% of more
complex constraints such as ‘aabb’.

5 Concluding remarks

Traditional, ‘formal’ poetry is characterized by in-
tricate form that often expresses itself on the sound
level: among the key features are rhyme, metre,
and alliteration. Computational treatments typic-
ally handle these phenomena by hard-coding them
as in purely symbolic Al, by exploiting dataset-
specific properties (Lau et al., 2018), or by having
models pay special attention to the phenomena in
question (e.g., making the models concentrate on
the character-level structure of line-ending words)
(Jhamtani et al., 2019). However, as we show, cur-
rent models still seem unable to learn sound-level
stylistic aspects from examples alone, without prim-
ing them, and even when we specifically condition
on such features. This raises the question of where
this discrepancy between human and machine text
processing (Eger et al., 2019) comes from and how
it can be addressed in the general case. We envision
several solutions for future work: It is possible that
end-to-end modelling of phonetic stylistic features
is an emergent phenomenon that appears once data-
set sizes are large enough; it is also possible that
datasets need to be sufficiently clean (e.g., contain-
ing only very few different rhyming schemes); or
that new model architectures, which do not operate
on words or sublexical units, are required (Xue
et al., 2021).

Acknowledgments

This work has been supported by the Austrian Sci-
ence Fund (FWF) under project M 2625-N31 and
by the German Research Foundation as part of
the Research Training Group Adaptive Prepara-
tion of Information from Heterogeneous Sources
(AIPHES) at the Technische Universitiat Darmstadt
under grant GRK 1994/1.

https://huggingface.co/gpt2
https://github.com/tnhaider/english-gutenberg-poetry
https://github.com/tnhaider/english-gutenberg-poetry
https://github.com/thekhangnguyen/poetry-gen
https://github.com/thekhangnguyen/poetry-gen

References

Rajat Agarwal and Katharina Kann. 2020. Acrostic
poem generation. In Proc. EMNLP, pages 1230—
1240.

Manex Agirrezabal, Ifiaki Alegria, and Mans Hulden.
2016. Machine learning for metrical analysis of Eng-
lish poetry. In Proc. COLING, pages 772-781.

Timo Baumann, Hussein Hussein, and Burkhard Meyer-
Sickendiek. 2018. Style detection for free verse po-
etry from text and speech. In Proc. COLING, pages
1929-1940.

M. H. Beissinger. 2012. Oral poetry. In R. Greene
et al., editor, The Princeton Encyclopedia of Poetry
and Poetics, 4th edition, pages 978-81. Princeton
University Press.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clem-
ens Winter, Chris Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Simon Colton, Jacob Goodwin, and Tony Veale. 2012.
Full-FACE poetry generation. In Proc. 3rd Inter-
national Conference on Computational Creativity,
pages 95-102.

Steffen Eger, Gozde Giil Sahin, Andreas Riicklé, Ji-Ung
Lee, Claudia Schulz, Mohsen Mesgar, Krishnkant
Swarnkar, Edwin Simpson, and Iryna Gurevych.
2019. Text processing like humans do: Visually at-
tacking and shielding NLP systems. In Proc. NAACL,
volume 1, pages 1634-1647.

Alex Estes and Christopher Hench. 2016. Supervised
machine learning for hybrid meter. In Proc. 5th Work-
shop on Comp. Ling. for Literature, pages 1-8.

Nigel Fabb and Morris Halle. 2010. Meter in Poetry: A
New Theory. Cambridge University Press.

Jessica Ficler and Yoav Goldberg. 2017. Controlling
linguistic style aspects in neural language generation.
In Proc. Workshop on Stylistic Variation, pages 94—
104.

Vikas Ganjigunte Ashok, Song Feng, and Yejin Choi.
2013. Success with style: Using writing style to
predict the success of novels. In Proc. EMNLP, pages
1753-1764.

Pablo Gervés. 2001. An expert system for the compos-
ition of formal Spanish poetry. Knowledge-based
Syst., 14(3—4):181-188.

65

Marjan Ghazvininejad, Yejin Choi, and Kevin Knight.
2018. Neural poetry translation. In Proc. NAACL,
volume 2, pages 67-71.

Marjan Ghazvininejad, Xing Shi, Jay Priyadarshi, and
Kevin Knight. 2017. Hafez: An interactive poetry
generation system. In Proc. ACL (System Demon-
strations), pages 43-48.

Hugo Gongalo Oliveira. 2013. PoeTryMe: A versatile
platform for poetry generation. In Proc. Workshop
on Computational Creativity, Concept Invention, and
General Intelligence, volume 1-2012, pages 21-26.

Hugo Gongalo Oliveira, Raquel Hervés, Alberto Diaz,
and Pablo Gervis. 2017. Multilingual extension and
evaluation of a poetry generator. Nat. Lang. Eng.,
23(6):929-967.

Erica Greene, Tugba Bodrumlu, and Kevin Knight.
2010. Automatic analysis of rhythmic poetry with
applications to generation and translation. In Proc.
EMNLP, pages 524-533.

Thomas Haider and Steffen Eger. 2019. Semantic
change and emerging tropes in a large corpus of
New High German poetry. In Proc. Ist Interna-
tional Workshop on Computational Approaches to
Historical Language Change, pages 216-222.

Thomas Haider, Steffen Eger, Kim Evgeny, Roman
Klinger, and Winfried Menninghaus. 2020. PO-
EMO: Conceptualization, annotation, and modeling
of aesthetic emotions in German and English poetry.
In Proc. LREC, pages 1652—-1663.

Thomas Haider and Jonas Kuhn. 2018. Supervised
rhyme detection with Siamese recurrent networks.
In Proc. LaTeCH-CLfL, pages 81-86.

Mika Himildinen and Khalid Alnajjar. 2019. Let’s
FACE it. Finnish poetry generation with aesthetics
and framing. In Proc. 12th International Conference
on Natural Language Generation, pages 290-300.

Aurélie Herbelot. 2015. The semantics of poetry: A
distributional reading. Digit. Scholarsh. Humanit.,
30(4):516-531.

J. Berenike Herrmann, Karina van Dalen-Oskam, and
Christof Schoch. 2015. Revisiting style, a key
concept in literary studies. J. Lit. Theory, 9(1):25—
52.

Jack Hopkins and Douwe Kiela. 2017. Automatically
generating rhythmic verse with neural networks. In
Proc. ACL, volume 1, pages 168-178.

Minqging Hu and Bing Liu. 2004. Mining and sum-
marizing customer reviews. In Proc. ACM SIGKDD,
pages 168-177.

Roman Jakobson. 1960. Linguistics and poetics. In
Style in Language, pages 350-377. MIT Press.

https://doi.org/10.18653/v1/2020.emnlp-main.94
https://doi.org/10.18653/v1/2020.emnlp-main.94
https://www.aclweb.org/anthology/C16-1074
https://www.aclweb.org/anthology/C16-1074
https://aclanthology.org/C18-1164
https://aclanthology.org/C18-1164
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://computationalcreativity.net/iccc2012/wp-content/uploads/2012/05/095-Colton.pdf
https://doi.org/10.18653/v1/N19-1165
https://doi.org/10.18653/v1/N19-1165
https://doi.org/10.18653/v1/W16-0201
https://doi.org/10.18653/v1/W16-0201
https://doi.org/10.1017/CBO9780511755040
https://doi.org/10.1017/CBO9780511755040
https://doi.org/10.18653/v1/W17-4912
https://doi.org/10.18653/v1/W17-4912
https://www.aclweb.org/anthology/D13-1181
https://www.aclweb.org/anthology/D13-1181
https://doi.org/10.1016/S0950-7051(01)00095-8
https://doi.org/10.1016/S0950-7051(01)00095-8
https://doi.org/10.18653/v1/N18-2011
https://aclanthology.org/P17-4008
https://aclanthology.org/P17-4008
https://portal.ikw.uni-osnabrueck.de/en/system/files/01-2012.pdf
https://portal.ikw.uni-osnabrueck.de/en/system/files/01-2012.pdf
https://doi.org/10.1017/S1351324917000171
https://doi.org/10.1017/S1351324917000171
https://aclanthology.org/D10-1051
https://aclanthology.org/D10-1051
https://doi.org/10.18653/v1/W19-4727
https://doi.org/10.18653/v1/W19-4727
https://doi.org/10.18653/v1/W19-4727
https://aclanthology.org/2020.lrec-1.205
https://aclanthology.org/2020.lrec-1.205
https://aclanthology.org/2020.lrec-1.205
https://aclanthology.org/W18-4509
https://aclanthology.org/W18-4509
https://doi.org/10.18653/v1/W19-8637
https://doi.org/10.18653/v1/W19-8637
https://doi.org/10.18653/v1/W19-8637
https://doi.org/10.1093/llc/fqu035
https://doi.org/10.1093/llc/fqu035
https://doi.org/10.1515/jlt-2015-0003
https://doi.org/10.1515/jlt-2015-0003
https://doi.org/10.18653/v1/P17-1016
https://doi.org/10.18653/v1/P17-1016
https://doi.org/10.1145/1014052.1014073
https://doi.org/10.1145/1014052.1014073

Harsh Jhamtani, Sanket Vaibhav Mehta, Jaime Carbon-
ell, and Taylor Berg-Kirkpatrick. 2019. Learning
rhyming constraints using structured adversaries. In
Proc. EMNLP/IJCNLP, pages 6025-6031.

Justine T. Kao and Dan Jurafsky. 2015. A computa-
tional analysis of poetic style: Imagism and its in-
fluence on modern professional and amateur poetry.
Linguist. Issues Lang. Technol., 12(3):1-31.

Vaibhav Kesarwani, Diana Inkpen, Stan Szpakowicz,
and Chris Tanasescu. 2017. Metaphor detection in a
poetry corpus. In Proc. LaTeCH-CLfL, pages 1-9.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv e-prints,
1412.6980.

Reinhard Kneser and Hermann Ney. 1995. Improved
backing-off for m-gram language modeling. In Proc.
1995 International Conference on Acoustics, Speech,
and Signal Processing, volume 1, pages 181-184.

Jey Han Lau, Trevor Cohn, Timothy Baldwin, Julian
Brooke, and Adam Hammond. 2018. Deep-speare:
A joint neural model of poetic language, meter and
rhyme. In Proc. ACL, volume 1, pages 1948—1958.

Bei Liu, Jianlong Fu, Makoto P. Kato, and Masatoshi
Yoshikawa. 2018. Beyond narrative description:
Generating poetry from images by multi-adversarial
training. In Proc. 26th ACM International Confer-
ence on Multimedia, pages 783-791.

Enrique Manjavacas, Mike Kestemont, and Folgert
Karsdorp. 2019. Generation of hip-hop lyrics with
hierarchical modeling and conditional templates. In
Proc. 12th International Conference on Natural Lan-
guage Generation, pages 301-310.

Hisar Maruli Manurung, Graeme Ritchie, and Henry
Thompson. 2000. Towards a computational model
of poetry generation. In Proc. AISB Symposium on
Creative and Cultural Aspects and Applications of
Al and Cognitive Science, pages 79-86.

Winfried Menninghaus, Valentin Wagner, Eugen
Wassiliwizky, Thomas Jacobsen, and Christine A
Knoop. 2017. The emotional and aesthetic powers
of parallelistic diction. Poetics, 63:47-59.

Rada Mihalcea and Carlo Strapparava. 2006. Learning
to laugh (automatically): Computational models for
humor recognition. Comp. Intel., 22(2):126-142.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. arXiv e-prints, 1301.3781.

Timothy Niven and Hung-Yu Kao. 2019. Probing neural
network comprehension of natural language argu-
ments. In Proc. ACL, pages 4658-4664.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A method for automatic
evaluation of machine translation. In Proc. ACL,
pages 311-318.

66

Adam Poliak, Jason Naradowsky, Aparajita Haldar,
Rachel Rudinger, and Benjamin Van Durme. 2018.
Hypothesis only baselines in natural language infer-
ence. In Proc. 7th Joint Conference on Lexical and
Computational Semantics, pages 180—-191.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. Article
on openai.com.

Sravana Reddy and Kevin Knight. 2011. Unsupervised
discovery of rhyme schemes. In Proc. ACL, pages
77-82.

Nils Reimers and Iryna Gurevych. 2017. Reporting
score distributions makes a difference: Performance
study of LSTM-networks for sequence tagging. In
Proc. EMNLP, pages 338-348.

Ines Reinig and Ines Rehbein. 2019. Metaphor detec-
tion for German poetry. In Proc. KONVENS, pages
149-160.

Pablo Ruiz, Clara Martinez Cant6n, Thierry Poibeau,
and Elena Gonzélez-Blanco. 2017. Enjambment de-
tection in a large diachronic corpus of spanish son-
nets. In Proc. LaTeCH-CLfL, pages 27-32.

Victor Shlovsky. 1965. Art as technique. In Lee T.
Lemon and Marion J. Reis, editors, Russian Form-
alist Criticism: Four Essays, pages 3—24. University
of Nebraska Press.

Ilya Sutskever, James Martens, and Geoffrey Hinton.
2011. Generating text with recurrent neural net-
works. In Proc. 28th International Conference on
Machine Learning, pages 1017-1024.

Tim Van de Cruys. 2020. Automatic poetry generation
from prosaic text. In Proc. ACL, pages 2471-2480.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30, pages 5998—6008. Curran Asso-
ciates.

Ulli Waltinger. 2010. GermanPolarityClues: A lexical
resource for German sentiment analysis. In Proc.
LREC, pages 1638—1642.

Kento Watanabe, Yuichiroh Matsubayashi, Satoru
Fukayama, Masataka Goto, Kentaro Inui, and To-
moyasu Nakano. 2018. A melody-conditioned lyrics
language model. In Proc. NAACL, volume 1, pages
163-172.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-
Rfou, Sharan Narang, Mihir Kale, Adam Roberts,
and Colin Raffel. 2021. Byt5: Towards a token-free
future with pre-trained byte-to-byte models.

Xingxing Zhang and Mirella Lapata. 2014. Chinese
poetry generation with recurrent neural networks. In
Proc. EMNLP, pages 670-680.

https://doi.org/10.18653/v1/D19-1621
https://doi.org/10.18653/v1/D19-1621
https://doi.org/10.33011/lilt.v12i.1377
https://doi.org/10.33011/lilt.v12i.1377
https://doi.org/10.33011/lilt.v12i.1377
https://doi.org/10.18653/v1/W17-2201
https://doi.org/10.18653/v1/W17-2201
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1109/ICASSP.1995.479394
https://doi.org/10.1109/ICASSP.1995.479394
https://doi.org/10.18653/v1/P18-1181
https://doi.org/10.18653/v1/P18-1181
https://doi.org/10.18653/v1/P18-1181
https://doi.org/10.1145/3240508.3240587
https://doi.org/10.1145/3240508.3240587
https://doi.org/10.1145/3240508.3240587
https://doi.org/10.18653/v1/W19-8638
https://doi.org/10.18653/v1/W19-8638
https://doi.org/10.1016/j.poetic.2016.12.001
https://doi.org/10.1016/j.poetic.2016.12.001
https://doi.org/10.1111/j.1467-8640.2006.00278.x
https://doi.org/10.1111/j.1467-8640.2006.00278.x
https://doi.org/10.1111/j.1467-8640.2006.00278.x
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://doi.org/10.18653/v1/P19-1459
https://doi.org/10.18653/v1/P19-1459
https://doi.org/10.18653/v1/P19-1459
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/S18-2023
https://doi.org/10.18653/v1/S18-2023
https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/
https://aclanthology.org/P11-2014
https://aclanthology.org/P11-2014
https://doi.org/10.18653/v1/D17-1035
https://doi.org/10.18653/v1/D17-1035
https://doi.org/10.18653/v1/D17-1035
https://corpora.linguistik.uni-erlangen.de/data/konvens/proceedings/papers/KONVENS2019_paper_37.pdf
https://corpora.linguistik.uni-erlangen.de/data/konvens/proceedings/papers/KONVENS2019_paper_37.pdf
https://doi.org/10.18653/v1/W17-2204
https://doi.org/10.18653/v1/W17-2204
https://doi.org/10.18653/v1/W17-2204
https://icml.cc/Conferences/2011/papers/524_icmlpaper.pdf
https://icml.cc/Conferences/2011/papers/524_icmlpaper.pdf
https://doi.org/10.18653/v1/2020.acl-main.223
https://doi.org/10.18653/v1/2020.acl-main.223
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/91_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/91_Paper.pdf
https://doi.org/10.18653/v1/N18-1015
https://doi.org/10.18653/v1/N18-1015
http://arxiv.org/abs/2105.13626
http://arxiv.org/abs/2105.13626
https://doi.org/10.3115/v1/D14-1074
https://doi.org/10.3115/v1/D14-1074

