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Abstract

In this work, we design an end-to-end model for
poetry generation based on conditioned recur-
rent neural network (RNN) language models
whose goal is to learn stylistic features (poem
length, sentiment, alliteration, and rhyming)
from examples alone. We show this model suc-
cessfully learns the ‘meaning’ of length and
sentiment, as we can control it to generate
longer or shorter as well as more positive or
more negative poems. However, the model
does not grasp sound phenomena like alliter-
ation and rhyming, but instead exploits low-
level statistical cues. Possible reasons include
the size of the training data, the relatively low
frequency and difficulty of these sublexical phe-
nomena as well as model biases. We show that
more recent GPT-2 models also have problems
learning sublexical phenomena such as rhym-
ing from examples alone.

1 Introduction

Poetry is a very old form of human language use
which is deeply embedded in the heritage of many
cultures (Beissinger, 2012; Fabb and Halle, 2010).
It is characterized by refined, creative, and sublime
expressions and linguistic structure. Thus, it comes
as little surprise that automatic poetry generation
has long captivated artificial intelligence (Al) re-
searchers (Gervas, 2001; Gongalo Oliveira et al.,
2017), for any general solution to this task will have
assuredly brought us a step closer to understanding
human creativity.!

1Poetry generation systems may have manifold applications.
For example, an Al tool that could assist songwriters in
composing lyrics to a given tune, or even generate them entirely
automatically, would have commercial potential. Besides
such entertainment-oriented applications, producing tools for
poetry generation will necessarily involve the development
of poetry analysis tools — since generation and analysis are
complementary aspects of poetry (Jhamtani et al., 2019) —
which may prove useful in their own right. And the production
and application of these analysis tools could result in insights
into the structural and aesthetic features that distinguish human-
penned poetry from its artificially produced counterpart.
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-+ - - T IR
felt fun in brain ,
-+ - + ] - +
mourn , to fro ,
-+ - ] - T I
tread , tread , till seemed
-+ - + ] - +
sense break through .

Figure 1: Example of alliteration (red), a (near) rhyme
(blue), and metre (black/grey). This is the first stanza of
‘I felt a Funeral, in my Brain’ by Emily Dickinson. The
rhyme scheme is ‘abcb’, the overall lexical sentiment of
the stanza is negative (many words are associated with
negative sentiment), and the time period is the 19th
century.

A crucial factor when producing poetry (either by
humans or automatically) is style. While definitions
of style have varied considerably over time, space,
and fields of study (Herrmann et al., 2015), there is
widespread agreement that the study of literary form,
not (just) content, is what allows us to determine
the criteria for aesthetic appreciation and impact.
That is, it is formal or stylistic features that often
distinguish sophisticated, effectual, or simply ‘good’
poetry from poetry that is pedestrian, mundane, or
just plain ‘bad’ (Jakobson, 1960; Shlovsky, 1965;
Ganjigunte Ashok et al., 2013; Kao and Jurafsky,
2015; Menninghaus et al., 2017).

In this work, we consider the problem of style-
conditioned poetry generation, where the user may
specify stylistic factors that the generated text has
to fulfil. Our stylistic factors include rhyme, al-
literation, sentiment, text length, and time period.
Examples of some of our stylistic features (par-
ticularly rhyme and alliteration) can be found in
Figure 1. (We include metre in the example, but do
not consider it in the experiments.)

In generating poetry conditioned upon stylistic
factors, we explore a theme in the automatic gen-
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eration of poetry that we believe will dominate the
field in the upcoming years: end-to-end generation
of formal poetry from examples alone, without the
need for human involvement in designing the model
or filtering its output (e.g., via hard-coded stylistic
constraints on rhyme, alliteration, etc.). We believe
advances in this task serve as an indicator of the ma-
turity of natural language processing (NLP) systems
as they progress towards true Al. Indeed, the recent
success of GPT-3 (Brown et al., 2020) with its focus
on few-shot learning (i.e., learning from a few illus-
trative examples, even without model updating) is
inspiration for our work to design poetry generation
models that learn relevant stylistic features without
any other form of human intervention.

We find that, while our models can capture senti-
ment, time epoch, and text length, they have trouble
learning intricate phonetic stylistic features from ex-
amples alone, instead learning low-level statistical
cues that are weakly correlated with these target
features. This holds both for a classical RNN lan-
guage model and more recent transformer models
(GPT-2). We take this as a negative result and as
a challenge for future poetry generation systems,
viz., to be able to produce typical relevant stylistic
factors of poetry without hard-coding them into the
model architecture.

2 Related work

Poetry analysis. Computational analysis of po-
etry has been concerned largely with formal features
such as metre (Greene et al., 2010; Agirrezabal et al.,
2016; Estes and Hench, 2016), rhyme (Reddy and
Knight, 2011; Haider and Kuhn, 2018), and en-
jambment (Ruiz et al., 2017; Baumann et al., 2018).
More recently, higher-level phenomena, including
semantic coherence (Herbelot, 2015), metaphor
(Reinig and Rehbein, 2019; Kesarwani et al., 2017),
and diachronic analysis of tropes (Haider and Eger,
2019) have come into focus. Haider et al. (2020)
annotate poetry for fine-grained aesthetic emotion
categories elicited in readers.

Poetry generation. In the era of statistical NLP,
text generation has evolved along the path of n-gram
language models (Kneser and Ney, 1995), whose in-
herent modelling limitations allow them to consider
only a finite amount of history when generating
next output symbols, to recurrent neural network
(RNN) language models (Sutskever et al., 2011),
which can take an infinite history into account but
suffer from vanishing and exploding gradients, to
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transformer models (Vaswani et al., 2017), which
have constant path lengths between inputs and out-
puts. Transformers are feed-forward networks that
use self-attention between consecutive layers. Their
shorter paths between inputs and outputs make it
easier to learn long-range dependencies. They can
also be parallelized easier. As a consequence, they
can be pre-trained on massive amounts of data,
where they acquire general text generation abilities
(Radford et al., 2019).

Approaches to poetry generation can be categor-
ized into pre- and post-deep learning era approaches.
Pre-deep learning approaches were highly hand-
engineered and ‘top-down’, using specific grammar
formalisms and linguistic resources to generate po-
etry; they typically built stylistic aspects such as
rhyme and rhythm into their model architectures
(Manurung et al., 2000; Gervés, 2001; Gongalo Oli-
veira, 2013; Colton et al., 2012).

Neural approaches to poetry generation learn
from collections of real poetry data. Most of them
use RNN language models (Zhang and Lapata,
2014; Lau et al., 2018). This framework has also
been extended to related tasks such as generating
poetry from images (Liu et al., 2018), translating
poetry (Ghazvininejad et al., 2018), and generating
song lyrics given an input melody (Watanabe et al.,
2018). A drawback shared by most poetry gen-
eration systems, including even very recent ones
(Van de Cruys, 2020; Agarwal and Kann, 2020),
is that they require hard- and hand-coded rules
to generate poetry with specific properties, such
as rhyming and alliteration, or to filter output not
having these properties. For example, to ensure
rhyming, Lau et al. (2018) exploit the fact that
their data (sonnets) has a particular structure from
which they can infer that certain word pairs must
rhyme, which they incorporate in the modelling.
Héamaildinen and Alnajjar (2019) define rules for
style features. Agarwal and Kann (2020) tell the
model when a rhyming word is required and then
modify the prediction process. This means that
the models themselves lack the ability to discover
elementary properties of poetry themselves, but in-
stead rely on the modeller’s intention and ingenuity
to do so.

Recently, Jhamtani et al. (2019) introduced an
intriguing approach to poetry generation that learns
rhyming constraints using an adversarial model:
an RNN language model (the generator) generates
poetry and a discriminator (the adversary) decides



whether the line endings of the generated text are
plausible for poetry. The generator and the discrim-
inator compete against each other: the generator
tries to generate poetry that the discriminator mis-
classifies and the discriminator aims at distinguish-
ing generated poetry from human-authored poetry.
The authors show that this competition leads to
models learning rhyming with higher probability.
While this model comes close to our envisioned
ideal of a poetry generation system learning from
examples alone, it still has the drawback that the
modellers need to make the model aware of what to
pay attention to (i.e., character information of end-
ing words). This is unsatisfactory given the large
space of possible features to consider in generated
poetry.

Formally similar approaches to ours are those of
Ficler and Goldberg (2017) and Manjavacas et al.
(2019) (without emphasizing the ‘examples-only’
aspect, however). Ficler and Goldberg (2017) con-
ditioned RNN language models on stylistic features
such as length and whether the text appears to be
professionally written, and on sentiment and theme.
They showed this approach to be successful for
the given conditions in the movie reviews domain,
though they did not deal with the much more chal-
lenging case of poetry. Manjavacas et al. (2019)
generate hip-hop lyrics conditional upon rhythm
and rhyme. To enforce rhyming, they feed phon-
etic rhyme representations to the model, and thus
also encode relevant knowledge top-down into the
model.

2.1 Poetry evaluation

Evaluation of generated poetry is usually done
either automatically or manually. Zhang and Lapata
(2014) compare generated lines to manually pro-
duced ‘gold-standard’ lines using BLEU (Papineni
etal., 2002), a metric borrowed from machine trans-
lation, for the task of continuing an initial line of
poetry. They also report perplexity, a widely used
metric for language model evaluation. For manual
evaluation, they ask human annotators to rate the
generated poems for fluency, coherence, meaning,
and poeticness. Hopkins and Kiela (2017) and
Lau et al. (2018) use a sort of Turing test where
they ask human participants to distinguish between
human- and computer-generated poems. Lau et al.
(2018) additionally have an expert rate generated
poetry with respect to metre, rhyme, readability, and
emotion. Ghazvininejad et al. (2017) ask crowd-
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workers to give star ratings for the general quality of
the generated poems, and then investigate whether
users give higher scores to style-adjusted poems
compared to the default poems.

In our work, we choose a simple evaluation
scheme that measures whether the generated po-
etry satisfies user constraints. We do not measure
other qualities of the generated poetry as we are
mostly interested in whether end-to-end systems
can successfully generate poetry from examples
alone, without human intervention.

3 Models

Our goal is to design an end-to-end poetry genera-
tion model that learns to associate a desired style
feature vector with poetic content and form purely
inductively, using examples rather than hand-coded
knowledge about what rhyming, alliteration, metre,
and sentiment are. To do so, we implement a condi-
tioned language model that samples the next word
wes1 to be generated conditioned on the history
of past words wy, ..., w, and a style constraint c.
That is, it samples w1 from the conditional distri-
bution P(ws+1 | wo, Wi, ..., W, ¢). We implement
the model in this formula by a unidirectional RNN
language model. At every time step, the RNN
predicts the next word to be generated by sampling
from a softmax distribution over the whole vocabu-
lary, taking the current word vector w; as well as the
current history vector h,, which summarizes all past
inputs, into account. The model starts generation
from a special input token, ‘SOS’, and generates
until it encounters an end-of-sentence token ‘EOS’.
To take the context ¢ into account, we encode it as
a feature vector ¢ and concatenate it to every input
representation. While there are other possible ways
of including ¢, our way constantly ‘reminds’ the
model of the style context, which we hope better
enforces that style in the output. The model is
illustrated in Figure 2. Our RNN language model
also uses character-level information to build input
representations, which may help it to generalize
to rare words or sublexical phenomena, such as
rhyming. Our implementation is taken from that of
Reimers and Gurevych (2017).2

For the conditions ¢, we consider the following:

Rhyming: How much rhyming is present in a
base unit (e.g., a stanza or full poem) of poetry?
We measure the degree of rhyming by using a

2https://github.com/UKPLab/
emnlp2017-bilstm-cnn-crf
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Figure 2: A conditioned RNN language model.

supervised rhyme model based on character-level
Siamese bidirectional long short-term memory (Bi-
LSTM) networks (Haider and Kuhn, 2018), avail-
able for English and German. We count both in-
ternal and end rhymes as contributing to the rhyme
level of a base unit of poetry.

Alliteration: Alliteration is a device, often as-
sociated with humour (Mihalcea and Strapparava,
2006), where consecutive words begin with the
same sound or sounds. As a character does not
uniquely specify a sound in most writing systems
(cf. cat and chase), it is not sufficient to compare
the first characters of the words. Instead, we use
the CMU Sphinx Sequence-to-Sequence grapheme-
to-phoneme toolkit® for converting words into a
phonemic representation and then check whether
subsequent words start with the same phoneme. We
measure the degree of alliteration by counting how
many alliterating word sequences occur within a
base unit of poetry.

Sentiment: To determine the sentiment of a base
unit of poetry, we use a lexicon lookup approach.
For English, we use the opinion lexicon developed
by Hu and Liu (2004) and for German, we use
the German polarity clues word lists by Waltinger
(2010). The English lexicon consists of 2,007
positive and 4,782 negative words and the German
lexicon consists of 17,627 positive and 19,962
negative words. In each base unit of poetry, we
count the number of words that appear in the positive
and negative lists of the lexicon, respectively, and
then calculate the difference between these two
numbers. The final result is normalized by dividing
by the number of total matches for this unit, resulting
in the formula ¢ = £, where p is the number of
positive words found and » is the number of negative
words found. For instance, if four words of the unit
were found in the positive list and six words in the
negative list, the final rating is —2/10 = -0.2.

Shttps://github.com/cmusphinx/g2p-seq2seq
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3.1 Training and testing mode

In training mode, we extract sentiment, rhyme, and
alliteration levels of poems (or stanzas) and pair
them with the poems themselves. The model then
predicts the text of poems (next words) based on the
previous text and the context vector ¢. The model
is end to end and has no built-in understanding of
rhyme, sentiment, nor alliteration, except for what
it gleans from its input examples. In testing mode,
the user may select a context specification in terms
of rhyme, alliteration, and sentiment, which is fed
into the RNN language model. The model starts
generating from the SOS token and terminates when
it has produced the EOS token.

4 Experiments

4.1 Experimental setup

For training data, we use two small corpora, one
English and one German. The English corpus,
the Chicago Rhyming Poetry Corpus,* has 15,672
training and 1,979 development quatrains, and the
German corpus is a small curated subset of Text-
grid> with 67,054 training and 6,697 development
quatrains. We generate quatrain stanzas instead
of full poems for speed reasons. As our network
architecture, we use a single hidden layer RNN with
64 hidden units, a dropout of 0.2 and input word
embeddings of 300 (trained on poetry data using
word2vec (Mikolov et al., 2013)) with an additional
character-level word representation of dimensional-
ity 25. As optimizer, we use Adam (Kingma and
Ba, 2014) with a learning rate of 0.001; we set the
batch size to 25.

In general, we obtained very similar results across
our two English and German datasets. We report
results only for one language per experimental
condition.

4.2 Results

Text length. As a sanity check, we test whether
we can generate stanzas of a desired length. We
select lines that have between 4 and 14 tokens from
the English Chicago corpus. We then calculate a
normalized condition ¢; which divides the number
of tokens in a line by the maximum number avail-
able in the subcorpus, which is 14. The values for
¢, thus range from 4/14 to 1 in the training data. For
evaluation, we let the condition ¢; range from 0 to
1 in steps of 1/10; we also include the value 2. Note

4https://github.com/sravanareddy/rhymedata
Shttps://textgrid.de
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that all values below 4/14 ~ 0.2857 as well as 2
were not seen during training. Figure 3 (top) shows
average line length per condition c;, averaged over
100 generated lines for any value of ¢;. We see
that the value of ¢, and the length of the generated
output lines correlate strongly. The average line
length for ¢; = 0.3 is 4, which matches the length of
training lines with that value. The model can even
extrapolate to unseen values, at least to a certain
degree — with a value of 2, the line length exceeds
the limit of 100 tokens, indicating overgeneraliz-
ation, while values smaller than 4/14 are smoothly
extrapolated.

Sentiment. We infer sentiment from the corpus
with the help of word lists: each quatrain receives
a rating ¢, as previously defined which we then
divide by the maximum sentiment rating of the
corpus, normalizing the values to a range of —1 (for
very negative sentiment) to 1 (for very positive sen-
timent). After training, we generate 100 quatrains
for each ¢, ranging from —1 to +1 in steps of 1/10.
Additionally, we add the extreme values of —2 and
+2, which were never seen during training. Figure 3
(right) shows the average sentiment rating value
in the generated test data as a function of the ¢,
condition. The average rating of the sentiment in
the test data increases linearly with c¢,. The model
can even extrapolate to the unseen extreme values.
Table 1 shows examples of quatrains generated with
positive and negative c¢,. With a positive ¢, the
model tends to sample stanzas containing positively
connotated words like ‘himmels’ (heaven), ‘liebe’
(love), and ‘kuesst’ (kisses), while a negative ¢,
increases the selection of negatively connotated
words like ‘schwache’ (weak), ‘angst’ (fear), and
‘heuchler’ (hypocrite). Apparently, the model has
understood the semantics of positive and negative
sentiment on the sole basis of examples.

Alliteration. In order to control the alliteration
level in the generated quatrains, we count how many
alliterating sequences there are in a quatrain, as de-
scribed in Section 3. To normalize these values, we
divide them by the maximum number of alliterating
sequences in the quatrains of the corpus and add the
normalized values as conditional information c,.
We then generate 100 quatrains for each ¢, ranging
from O to 1 in steps of 1/10. Figure 4 (left) shows
that the alliteration level in the test data indeed
increases as ¢, increases. However, Figure 4 (right)
shows that increasing ¢, for the test poems has
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Figure 3: Conditioning on length (c;, top) and polar
sentiment (c,, bottom). The input condition (a real
number) is shown on the x axis and the average value
measured in the generated output is on the y axis.

the effect that the model generates longer stanzas;
when we further normalize the degree of alliteration
measured in the output by the number of tokens in
the output, then the correlation between the input
condition and the measured normalized alliteration
degree in the output disappears. Thus, the model
apparently does not understand the phenomenon
of alliteration, but instead increases the number
of words generated: the longer a poem, the more
likely it is to (coincidentally) contain instances of
alliteration. We also experimented with the input
condition ¢, Wwhich measures the degree of al-
literation per token in a poem, to see if the models
would understand the phenomenon of alliteration
when they cannot rely on length. Figure 5 (left)
shows that this is not the case. There is no clearly
visible effect of the input condition on the measured
normalized alliteration degree in the generated test
data.

Rhyme. We similarly experiment with internal
rhymes within a verse and end rhymes within a
quatrain. We consider all possible pairs of distinct



ein zeuge o der schoenen du

fuer die schuldlos buch bluehend

dein schoenstes und noch sieht ein licht
jedwedes blatt zum joche ein tor

schwerer streit und weinend flehn
vom letzten wort mit farb ergeben hirn
und bluete in die der natur

ist freude ist des ihm thut

in liebe die streng umgekehret
eins sei mein ewig zugethan
erfuelle des himmels wieder
dass das mit kuesst den lauf

komm doch er sey der heuchler
sei nicht dann im spott

du solltest eh mir geschrieben
die schwache angst

Table 1: Examples of automatically generated sentiment-conditioned quatrains using the sentiment conditions

co = +1 (left) and ¢, = —1 (right).

words in a verse and feed them into the rhyme
classifier described in Section 3, which returns a
cosine distance for each pair. If the distance is
smaller than a threshold of 0.2, the pair is classified
as thyming. The number of rhyming word pairs in a
quatrain is normalized by division by the maximum
number of thyming word pairs found in the quatrains
of the corpus. The results are values between 0 (for
no rhyming word pair) and 1 (for quatrains with the
most rhyming word pairs). Since also the degree of
rhyming is positively correlated with the number of
tokens in a stanza, we further divide these values
by the number of tokens of the respective quatrain,
then scale them again to a range between 0 and 1.
We denote this rthyme level as ¢, .. As before,
we let ¢, range from O to 1 in steps of 1/10 and
generate 100 quatrains for each value. Figure 5
(right) shows the fraction of rhyming words among
all generated words in the output as a function of
Conorm-  Similar to the results of conditioning on
alliterations, there is no positive correlation of the
measured output rhyme level and the input rhyme
degree condition when stanza length is accounted
for.

4.3 Discussion

In our experiments, we found that end-to-end learn-
ing of word-level properties such as sentiment and
poem length works — the models successfully learn
to generate longer or shorter, and more positive or
negative poems, when we condition them on these
variables. This means that they have understood
the semantics of these conditions on the sole basis
of examples — i.e., without the need to explicitly
encode the conditions into the model architecture.
In contrast, conditioning on sublexical phenomena
such as rhyming and alliteration was not successful.
Instead, we found that the models learned dataset
artifacts and biases — in particular, they learned to

62

generate longer stanzas, which coincidentally have
higher degrees of rhyming and alliteration. When
controlling for this factor, we could not find evid-
ence that the models learn rhyming or alliteration
from examples alone. There are several possible
explanations for this finding:

Dataset size. All our datasets were relatively
small in size. It is unclear how model results
depend on dataset size in terms of the conditioning
variables considered here. In terms of the fluency,
coherence, etc. of the generated texts, there is clear
evidence that size improves model output — see our
discussion of GPT-2 in Section 4.4.

Frequency of phenomena. On a per-token level,
very few words rhyme or alliterate: for example,
less than 3% of tokens in our datasets are part of
an alliteration. This makes it harder to detect the
meaning of these phenomena from examples alone.
Also, very few stanzas have alliteration or rhyming
levels that exceed (0.5, meaning that the model is in
‘extrapolation mode’ for most of them. A possible
remedy for this would be to artificially augment the
training data with stanzas having large degrees of
alliteration or rhyming.

Word-level vs. sublexical phenomena. We note
that sentiment is mostly expressed on the word level
and rhyme and alliteration are expressed sublexic-
ally (i.e., on the sub-word-level). As RNNs (and
other text generation models) produce lexical tokens
(one after the other), they may be more naturally
suited for the former types of phenomena.

Size of character-level representation. For
computational reasons, we kept our RNN language
models small, with few hidden units (64) and a
small dimensionality of character-level representa-
tions for words (25). It is possible that the model
simply did not have enough capacity to store the
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leads to an increase in the length of the generated poems.

relevant information about the sublexical phenom-
ena of interest. However, it must also be said that
increasing model capacity runs the risk of severe
overfitting when the training data size is small, as
is the case for our datasets.

Heterogeneity of poetry data. It is possible that
the heterogeneity of the poetry data (with some
stanzas having high and others very low degrees
of rhyming and alliteration) confuses the models
(Hopkins and Kiela, 2017), particularly when some
of these phenomena are very infrequent.

While the explanations above are specific to our
task of style-conditioned poetry generation, the
more general problem of deep models learning
dataset artifacts or shortcuts that exploit low-level
statistical regularities has often been remarked upon
in recent years: Such observations have been made
for natural language inference (Poliak et al., 2018)
and argumentation mining (Niven and Kao, 2019),
among many other tasks.
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In the following subsection, we re-evaluate our
findings using a different model architecture trained
on more data.

4.4 Using GPT-2 instead of an RNN

In order to explore the capabilities of a transformer
model over a generic RNN, we also tuned style-
conditioned GPT-2 models on poetry. The main
advantage of GPT-2 (based on transformer net-
works) over standardly trained RNNss is their trans-
fer learning ability: While a standardly trained
RNN needs to learn language modelling capabilit-
ies only from small amounts of poetry data, GPT-2
is already equipped with general language model-
ling abilities, obtained from having seen billions
of tokens of written English. This makes the out-
put of GPT-2 much more semantically coherent,
fluent, and grammatically correct. Nevertheless,
we believe that even GPT-2 may have the same
problems learning poetry-specific characteristics
such as rhyme, metre, and alliteration that our RNN



And much, in fact, this lesser world can show

Of grief and crime that in the greater grow

“You saw,” said George, “in that still-hated school
How the meek suffer, how the haughty rule

Table 2: Example pseudo-quatrain in our data for GPT-
2, with (predicted) rhyme scheme ‘aabb’, negative sen-
timent, and 18th-century time period.

had, presumably because these characteristics have
low statistical support in the pre-trained data (e.g.,
Wikipedia) and for the other reasons named above.
We therefore conducted two sets of experiments
concerning the generation of style-conditioned po-
etry where the conditions include rhyme, sentiment,
and the time epoch of the poetry to be produced, in
English poetry.

Rhyme, sentiment, time epoch. We used a
GPT-2 model® trained on a larger English poetry
corpus’ that additionally contains information about
the time period in which the poems were written; we
used pseudo-quatrains (any consecutive sequence
of four lines), amounting to over 770K unique ex-
amples.® A sample pseudo-quatrain from the data
is shown in Table 2.

Since GPT-2 can more naturally be run with
discrete input text, we trained the model on the
24 different rhyming patterns (‘abab’, ‘abcd’, etc.)
that we found in the corpus, three sentiment values
(positive, negative, neutral), and five different time
periods (16th to 20th centuries). We determine
the sentiment of a newly generated poem as above
but using thresholding (e.g., a poem has a posit-
ive sentiment if it has more positive than negative
terms), rhyming is predicted as for the RNN, and
the time period is learned on the annotated data
using a multi-layer perceptron. We tested vari-
ous hyperparameter configurations and in all cases
observed the same result: the model has great diffi-
culty learning rhyming, but can capture the other
two stylistic features. The last two phenomena are
informed largely by lexical choice while rhyming is
informed by sublexical information. To illustrate,
with the default configuration, we see accuracy of
7.5% for rhyming (with a random baseline perform-
ance of 4.2%), 63% for sentiment (random baseline

Shttps://huggingface.co/gpt2

"https://github.com/tnhaider/
english-gutenberg-poetry

80Qur model is available at https://github.com/
thekhangnguyen/poetry-gen.
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of 33%) and 63% for time period (random perform-
ance of 20%) when generating about 5,000 poems
with the desired styles. Even though the model is
not entirely at the random guessing baseline for
rhyming, it does not perform much above it and is
considerably below the majority baseline of 22%
(always producing a poem with ‘aabb’ rhyme style).
Also, the rhyme scheme predicted best by far is
‘abcd’ involving no rhyming. This requires the
model not to rhyme, which the model then also
satisfies. Here, the model satisfies 53% of all such
user constraints, while it satisfies only 0.4% of more
complex constraints such as ‘aabb’.

5 Concluding remarks

Traditional, ‘formal’ poetry is characterized by in-
tricate form that often expresses itself on the sound
level: among the key features are rhyme, metre,
and alliteration. Computational treatments typic-
ally handle these phenomena by hard-coding them
as in purely symbolic Al, by exploiting dataset-
specific properties (Lau et al., 2018), or by having
models pay special attention to the phenomena in
question (e.g., making the models concentrate on
the character-level structure of line-ending words)
(Jhamtani et al., 2019). However, as we show, cur-
rent models still seem unable to learn sound-level
stylistic aspects from examples alone, without prim-
ing them, and even when we specifically condition
on such features. This raises the question of where
this discrepancy between human and machine text
processing (Eger et al., 2019) comes from and how
it can be addressed in the general case. We envision
several solutions for future work: It is possible that
end-to-end modelling of phonetic stylistic features
is an emergent phenomenon that appears once data-
set sizes are large enough; it is also possible that
datasets need to be sufficiently clean (e.g., contain-
ing only very few different rhyming schemes); or
that new model architectures, which do not operate
on words or sublexical units, are required (Xue
et al., 2021).
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