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Abstract

Pretrained language models like BERT have
advanced the state of the art for many NLP
tasks. For resource-rich languages, one has the
choice between a number of language-specific
models, while multilingual models are also
worth considering. These models are well
known for their crosslingual performance, but
have also shown competitive in-language per-
formance on some tasks. We consider mono-
lingual and multilingual models from the per-
spective of historical texts, and in particular for
texts enriched with editorial notes: how do lan-
guage models deal with the historical and edi-
torial content in these texts? We present a new
Named Entity Recognition dataset for Dutch
based on 17th and 18th century United East
India Company (VOC) reports extended with
modern editorial notes. Our experiments with
multilingual and Dutch pretrained language
models confirm the crosslingual abilities of
multilingual models while showing that all lan-
guage models can leverage mixed-variant data.
In particular, language models successfully in-
corporate notes for the prediction of entities
in historical texts. We also find that multilin-
gual models outperform monolingual models
on our data, but that this superiority is linked
to the task at hand: multilingual models lose
their advantage when confronted with more se-
mantical tasks.

1 Introduction

Pretrained language models (Peters et al., 2018;
Radford et al., 2018; Devlin et al., 2019) have re-
cently advanced the state-of-the-art in many NLP
tasks, providing deep contextual language repre-
sentations and ease of deployment. BERT (De-
vlin et al., 2019) has proven particularly successful,
combining the attention-based contextual represen-
tations of Transformers (Vaswani et al., 2017) with
a simple fine-tuning procedure, allowing to deploy
quickly to any sequence or document classification
task.

BERT has given birth to a myriad of variants,
differing by their training procedure, model size
or language. Resource-rich languages in particu-
lar are spoilt for choice. Dutch for instance has
two main monolingual models: the BERT-based
BERTje (de Vries et al., 2019) and RobBERT (De-
lobelle et al., 2020), itself based on RoBERTa (Liu
et al., 2019), a revision of BERT’s training proce-
dure. But multilingual models like mBERT (De-
vlin, 2018) and XLM-R (Conneau et al., 2020) are
also applicable. These models, which are trained on
104, respectively 100 languages at once, perform
well on crosslingual transfer (Pires et al., 2019; Wu
and Dredze, 2019; Conneau et al., 2020). Pires et al.
(2019) notably show that mBERT learns generic
representations over different input languages and
scripts. This makes multilingual models partic-
ularly interesting for historical texts, not only be-
cause these contain noncontemporary language, but
also because they exhibit language variation due
to language change over long periods of time or
unstandardized spelling. But what when historical
texts are accompanied by modern notes? How do
monolingual and multilingual models compare on
the historical and editorial parts of such texts, and
on their combination?

If we only consider modern notes, it is not given
that monolingual models outperform multilingual
models on their training language. Notwithstand-
ing possible differences in genre, the nature of
the linguistic task at hand is an important factor
in determining whether a monolingual or mul-
tilingual model is more appropriate. de Vries
et al. (2019) and Delobelle et al. (2020) show for
Dutch that mBERT is competitive with monolin-
gual models on POS tagging (on Universal Depen-
dencies POS), while Dutch models perform bet-
ter at semantic tasks like Semantic Role Labelling
or language-specific tasks like agreement resolu-
tion. For Named Entity Recognition (NER), re-
sults appear mixed, as both BERTje and RobBERT
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perform in-between mBERT and a version opti-
mized by Wu and Dredze (2019). How semantic or
language-specific does a task need to be for mono-
lingual models to perform better than multilingual
models in historical texts with editorial notes?

In this article, we consider these questions in the
context of NER in 17th and 18th century Dutch
texts. We introduce a new NER dataset based on
the General Letters of the United East India Com-
pany (VOC)1. These official letters were written
to the board of the VOC between 1610 and 1795.
They report on the activities of the VOC (trade, con-
flicts, intelligence) in and around Indonesia and up
to Japan and South Africa. Between 1960 and 2017,
a selection of this corpus, spanning the time period
1610-1767, was transcribed and edited by the Huy-
gens Institute for the History of the Netherlands
(Huygens ING) and its predecessors. Annotating
entities in these letters is part of a larger effort to
facilitate historical research on these texts.

Our dataset2 consists of 24.5k entities, with a
repartition of 40%/60% between historical text and
editorial notes, where the historical text covers the
period 1621 to 1760. We introduce a semantic com-
ponent in this dataset by distinguishing metonymi-
cal uses of locations (which represent almost half
of all entities). This allows us to compare two NER
variants: a standard one, where locations form a
single entity type; and a more semantic one, where
models additionally must distinguish locations in
agent-like roles, as in for instance, Batavia asked
for advice.

We compare the performance of monolingual
and multilingual models on both NER variants
through BERTje (de Vries et al., 2019), Rob-
BERT (Delobelle et al., 2020), mBERT (Devlin,
2018) and XLM-R (Conneau et al., 2020). On
standard NER, we find that multilingual models
outperform monolingual models on both histori-
cal text and modern notes. In crosstext finetuning
and evaluation, we confirm the strong crosslingual
transfer ability of multilingual models in the con-
text of historical language variation. We also show
that notes and historical text are complementary
for NER, as all pretrained models, multilingual and
monolingual, benefit from their combination. On
the more semantic-oriented NER task, we find that
monolingual and multilingual models perform com-

1http://resources.huygens.knaw.nl/
vocgeneralemissiven/index_html_en

2Dataset and code are available at https://github.
com/cltl/voc-missives

petitively, with RobBERT and mBERT performing
best. This confirms the importance of the semantic
nature of a task as a factor in choosing between
monolingual and multilingual models.

2 Annotations

The labelset consists of five base labels—LOC,
ORG, PER, REL and SHP—for the entity types lo-
cations, organisations, persons, religions and ships.
Following (Benikova et al., 2014), this labelset is
extended with secondary labels of the form Xderiv

or Xpart for expressions derived from entity names
by grammatical derivation (as with for instance, the
location Banda and the derived Bandanezen3) or
composition (as with Java and Javakoffie4). The
labelset is extended with a GPE label (geopolitical
entities) to distinguish metonymical use of location
names.

2.1 Data selection
The data selected for annotations consist of letters
spread out through the General Letters corpus5.
In editing these letters, Huygens ING transcribed
parts of the letters, and summarized other parts,
which appear as in-text paragraph notes in the dig-
ital version of the corpus6. Editorial comments
appear as footnotes.

We use the post-OCR version of the corpus7

made available in Text-Fabric (Roorda, 2016,
2019). This is a clean text overall, with some er-
rors in character recognition (e.g., Ib instead of lb,
S* Malo instead of St Malo), page-to-text format-
ting (Chris -toffel for Christoffel) or tokenization
(Schippers , instead of Schippers,).

We selected 25 letters for annotation, keeping
the historical text and editorial notes of these let-
ters apart to facilitate their separate use. Our final
dataset consists of 43 documents: 22 historical text
documents and 21 editorial notes documents8.

3Bandanese
4Java coffee
5The original corpus contains fourteen volumes, the first

thirteen of which were available for annotations.
6http://resources.huygens.knaw.nl/

retroboeken/generalemissiven/#page=0&
accessor=toc&view=homePane

7https://github.com/annotation/
app-missieven, version 0.8.1

8A number of documents were unfortunately lost because
of server errors. From the 25 letters, 18 are annoted for both
text and notes, 4 for text only, and 3 for notes only.

http://resources.huygens.knaw.nl/vocgeneralemissiven/index_html_en
http://resources.huygens.knaw.nl/vocgeneralemissiven/index_html_en
https://github.com/cltl/voc-missives
https://github.com/cltl/voc-missives
http://resources.huygens.knaw.nl/retroboeken/generalemissiven/#page=0&accessor=toc&view=homePane
http://resources.huygens.knaw.nl/retroboeken/generalemissiven/#page=0&accessor=toc&view=homePane
http://resources.huygens.knaw.nl/retroboeken/generalemissiven/#page=0&accessor=toc&view=homePane
https://github.com/annotation/app-missieven
https://github.com/annotation/app-missieven
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text notes total

tokens 233k 201k 434k
entities 9.57k 14.9k 24.5k
density (%) 4.1 7.4 5.6

entity types
LOC 3927 6525 10.5k
LOCderiv 2227 1414 3641
LOCpart 14 21 35
GPE 43 854 897
ORG 994 995 1989
ORGpart 8 41 49
PER 1665 3337 5002
REL 10 4 14
RELderiv 159 73 232
RELpart 7 10 17
SHP 520 1652 2172

Table 1: Annotation counts

2.2 Annotation counts
Summary statistics are provided in Table 1. Com-
pared to the historical text, the editorial notes show
a higher density of entities per token, and they refer
less to peoples (through derived forms of locations
and religions), and more to locations, persons and
ships. This agrees with notes commenting on pri-
mary named entities. In contrast, the skewed dis-
tribution of geopolitical entities between text and
notes appears to be a stylistic artefact: metonymi-
cal use of locations is in fact concentrated in three
notes documents (from volumes 11 and 12), which
contain 88.0% of all geopolitical entities (for 14.8%
of all entities and 11.3% of all tokens). While we
consider here the editorial notes as being linguis-
tically homogeneous, their writing spanned more
than fifty years and they are at least stylistically
varied.

2.3 Guidelines
Our annotations focus on named entities and their
derived forms, aiming at annotations that are both
consistent for NER and adaptable for extensions.
We present here the main considerations in anno-
tating different types of entities.

Locations Only the named entity is marked as
an entity in compositional location names (rif van
[Luang]LOC), except when the full expression is

treated as a given name. This is in particular the
case with coastal areas, which were often the only
known part of an island for the VOC:

(1) [Java’s Oostkust]LOC , [Sumatra’s
Westkust]LOC , [Malabar]LOC en
[Ceylon]LOC

9

The Coast then refers to a specific coastal area, like
in this note:

(2) de [Custe]LOC is hier en elders de [Kust van
Coromandel]LOC

10

Practically, we annotate compositional location
names as entities when their constituents are capi-
talized:

(3) expeditie ter [Oostkust van Java]LOC
11

(4) nabij de noordkust van [Java]LOC
12

Derived (adjectival) forms of locations are an-
notated with LOCderiv and composed names with
LOCpart:

(5) de [Bandanezen]LOCderiv

(6) Sijn [Portugeesche]LOCderiv
Majesteyt

(7) [Javakoffie]LOCpart

Location names with a semantic role of agent,
theme, experiencer, benefactive, or of trading or
political actor are marked with a distinct GPE label
(we use this label for our semantic-oriented NER
experiments; GPE entities are relabelled as LOC
for standard NER experiments).

(8) [Batavia]GPE heeft advies gevraagd13

(9) er is aan [Coromandel]GPE opgedragen14

(10) de inkomsten van [Malakka]GPE
15

(11) de vrede met [Frankrijk]GPE
16

9Java’s Eastcoast, Sumatra’s Westcoast, [. . . ]
10The Coast refers here and elsewhere to the Coast of Coro-

mandel
11expedition to the Eastcoast of Java
12near the north coast of Java
13Batavia has asked for advice
14Coromandel has been ordered to
15the revenues of Malakka
16peace with France
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Organisations Compositional organisation
names are annotated as a whole in principle (Rade
van India, College van Schepenen). An exception
is made for Kamer and Compagnie which are used
productively in the context of the VOC:

(12) de [kamers]ORG [Delft]LOC ,
[Rotterdam]LOC en [Hoorn]LOC

(13) de respective [Comp.en]ORG van
[Engelant]LOC ende [Nederlant]LOC

(14) wegen d’[Engelse]LOCderiv en de
[Nederlantse]LOCderiv [Comp.en]ORG

(15) de [France]LOCderiv [Comp.ie]ORG van [S*
Malo]LOC

Common nouns denoting organisations are not an-
notated17:

(16) het [Siamse]LOCderiv hoff18

Persons Person names are annotated without
qualifiers or titles19:

(17) ingenieur [Albert Legrand]PER

(18) Radja [Simorang]PER

Religions Religion names and derived forms are
a small but relevant group of entities in the context
of the VOC:

(19) concurrentie van [Engelsen]LOCderiv en
[Moren]RELderiv

20

We systematize the annotation of religious groups
by including non-capitalized names:

(20) De [heidense]RELderiv bewoners [. . . ] de
[Moslimse]RELderiv kustbewoners21

Ships Ships form a considerable part of the an-
notations. They are annotated without determiners
or qualifiers:

(21) de [Loenderveen]SHP

17These are historically relevant while falling out of a lin-
guistic definition of named entities. We might extend organi-
sations to terms like hof, gouvernement or comptoir in a future
version of the dataset.

18the Siamese court
19Following (Benikova et al., 2014). The time and space

covered by the General Letters corpus entails however a great
variety of personal titles, that can be hard to tell from person
names. We might extend our labelset with titles in the future.

20competition from Englishmen and Moors
21the pagan inhabitants [. . . ] the Moslim coastal inhabi-

tants

2.4 Annotation process
Annotations were performed with Inception (Klie
et al., 2018) by two annotators, following guide-
lines inspired from (Benikova et al., 2014). To
disambiguate difficult cases, the annotators could
rely on the indices of persons, locations and ships
accompanying each volume of the corpus, as well
as on a glossarium22. Annotations were performed
for the most part on raw text23 with the help of a
gazetteer compiled from the indices; a few docu-
ments were preannotated with either string match-
ing from the gazetteer or with a preliminary NER
system.

Agreement was measured halfway through the
annotation process, on three documents (two with
historical text and one with editorial notes). We
measure inter-annotator agreement with F score:
like Brandsen et al. (2020) and Deleger et al.
(2012), we question the use of Cohen’s kappa for
NER, as it is unclear how chance agreement should
be defined for NER.

Table 2 provides F scores for the text and notes
and details cases of agreement and disagreement
between both annotators. To this end, we first pair
up annotations with a same span to isolate cases
of agreement and cases of label disagreement. We
then attempt to pair remaining annotations, and
count annotations that overlap with annotations
of the other annotator; those that do are cases of
span disagreement, while the remaining cases are
mentions that only one of the annotators identifies
as entities.

The analysis of disagreements presented next
revealed some inherent difficulties with annotating
historical texts, errors in the annotations, but also
unclarities in the guidelines. We used this analysis
to streamline guidelines and correct annotations24.

Disagreement analysis Most cases of label dis-
agreement result from the confusion between per-
son names and location or ship names, or between
location names and derived forms thereof. Person
names cannot always be distinguished from loca-
tion or ship names by the linguistic context alone,
especially with earlier language variants. In this
example for instance:

22http://resources.huygens.knaw.nl/
vocglossarium/VocGlossarium/zoekvoc

23Extracted from TEI post-OCR files. Annotations on this
text were later ported to the Text-Fabric release of the corpus.

24Corrections were performed by one of the authors, after
annotations were gathered.

http://resources.huygens.knaw.nl/vocglossarium/VocGlossarium/zoekvoc
http://resources.huygens.knaw.nl/vocglossarium/VocGlossarium/zoekvoc


25

text notes total

F1 88.5 92.1 90.8

entities 492/484 910/877 1402/1361
agreeing 432 823 1255
disagreeing
- label 10 24 34
- span 39/39 24/25 63/64
- entity 11/3 39/5 50/8

Table 2: Inter-annotator agreement. Pairs of counts cor-
respond to the respective annotation counts of each an-
notator.

(22) vroeg de sengadji van Lamakera
Mauwadasje25

the indices tell us that Lamakera refers to a location
and Mauwadasje to a person (and the glossarium
that sengadji denotes the head of a village or dis-
trict). Linguistic context alone is not enough to
distinguish person from location, and the form of
the apposition of Mauwadasje is also unusual for
contemporary Dutch.

Most cases of span disagreement26 concern in-
fix abbreviations like Comp.e for Compagnie and
qualifiers like Edele (noble) for Compagnie, person
titles like Khan or Radja and location qualifiers as
in engte van Pambenaar27 or Noord-Celebes.

Most cases of entity disagreement are due to
omissions. Other cases concern whether or not to
annotate: political actors in general like gouverne-
ment; derived forms of location names not denoting
peoples, as in het Engels schip; compositional lo-
cation names like Oostkust; metonymical uses of
locations28.

3 Experimental Setup

3.1 Models
BERTje (de Vries et al., 2019) is a Dutch model
trained on 12GB of data from mixed, mainly
contemporary sources. The model is structurally

25asked the sengadji of Lamakera Mauwadasje
26Annotation counts differ for the notes because one entity

(Castor en Pollux) was marked as two entities by the second
annotator.

27Pambenaar’s strait
28These were first marked by double LOC/ORG labels. In

these cases, the annotators would disagree on adding an ORG
label.

equivalent to BERTbase, with 12 Transformer
layers of size H = 768 and 12 attention heads.
The tokenizer is based on Sentence-Piece (Kudo
and Richardson, 2018), and has a vocabulary
size of 30k. Unlike BERT, BERTje is trained on
a Sentence-Order Prediction objective next to
Masked Language Modelling (MLM).

RobBERT (Delobelle et al., 2020) is a Dutch
model trained on 39GB of data from the OS-
CAR corpus (Ortiz Suárez et al., 2019). The
model is structurally equivalent to BERTbase

while following the training procedure of
RoBERTa (Liu et al., 2019), with a dynamic MLM
objective, and a tokenizer based on byte-level
BPE following (Radford et al., 2019), with a
vocabulary size of 40k (we consider RobBERT v2).

mBERT (Devlin, 2018) is a multilingual model
trained on Wikipedia dumps of the 104 languages
best represented on Wikipedia (we consider the
cased version); the model is trained without
knowledge of which languages are input, while
data are sampled to compensate for less repre-
sented languages. The vocabulary is shared across
languages and built with Word-Piece (Wu et al.,
2016) and has a size of 110k. The model is
structurally equivalent to BERTbase, and is trained
with an MLM and Next Sentence Prediction
objective.

XLM-R (Conneau et al., 2020) is a multilingual
model trained on a CommonCrawl corpus of 2.5TB,
with a vocabulary of 250k tokens built with the
Sentence-Piece tokenizer. Like RoBERTa (and
RobBERT), XLM-R is trained with an MLM ob-
jective, taking sequences of tokens of fixed length
as input instead of sentences. We use XLM-Rbase,
which is structurally equivalent to BERTbase.

3.2 Data
The data are split in train/dev/test sets so as to
obtain comparable splits for the notes and historical
text while keeping the notes and text of a same
letter together. Besides, we selected the test set
for the historical text from the earliest part of the
corpus, so as to make it more challenging for a
model trained and validated on later text; as the
earlier letters contain little notes, the test set for
the notes is complemented with a letter for which
only the notes were annotated. Data selection for
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training 1658-1730, 1743-44, 1759-60
validation 1731-40, 1741t, 1750n

test 1621-43, 1647n, 1752n

Table 3: Year ranges of selected letters for each data
subset. t: text only; n: notes only

text notes all

training
tokens 170k 160k 330k
entities 7192 11.5k 18.7k
avg. length 56.6 89.4 68.9

validation
tokens 30.3k 24.4k 54.7k
entities 981 1991 2972
avg. length 106.8 71.9 87.8

test
tokens 32.3k 16.7k 49.0k
entities 1401 1436 2837
avg. length 142.9 32.5 66.3

Table 4: Data split. Average sequence lengths are in
tokens, before subword tokenization.

the notes also accommodates for GPE labels being
concentrated in three letters (from 1744, 1750 and
1752). Data selection is summarized in Table 3.

The data are tokenized with the IXA-pipe tok-
enizer (Agerri et al., 2014). We do not segment
sentences with the tokenizer, but take paragraphs
and separate notes as text units, splitting sequences
longer than 256 subword units for each language
model. This is motivated practically by the to-
kenizer being to greedy (the letters abound with
abbreviations), but we also believe that working
at the paragraph level may be beneficial as it pro-
vides more context for NER. Summary statistics
are provided in Table 4.

For both standard and semantic-oriented experi-
ments, rare labels are mapped to lexically-related
labels: REL and RELpart to RELderiv, LOCpart

to LOCderiv, ORGpart to ORG. Additionally, GPE
labels are remapped to LOC for standard NER.

3.3 Hyperparameter settings
All models are fine-tuned with the HuggingFace
Transformers library (Wolf et al., 2020). Adam
parameters are: β1 = 0.9; β2 = 0.999, ε = 10−8.

We used training batch sizes of 16, a learning rate
of 5 · 10−5 and no weight decay. We did not per-
form hyperparameter search, but we fine-tuned all
models with three different seeds (1, 10 and 100),
and we report average values with standard devia-
tion across the three runs. For each run, we selected
the best model within 4 epochs, taking loss on the
validation set as a criterion and keeping checkpoint
models every 100 steps when fine-tuning on the
text or notes only, and every 200 steps when fine-
tuning on all the data29. All experiments were run
on a single Tesla P100 GPU. Fine-tuning on all
the data takes around 15 minutes per run for all
models.

4 Results

We first present results on standard NER, compar-
ing the in-text (text or notes) and crosstext per-
formance of monolingual and multilingual models,
and assessing the reciprocal contribution of text and
notes. We end with results on semantic-oriented
NER.

4.1 In-text performance
Table 5 presents results with fine-tuning and evalu-
ation on the same part of the dataset (text, notes or
both). Multilingual models perform better than
monolingual models on average, albeit with a
smaller margin for the notes and the entire dataset.
Results are higher for all models on the notes than
on the text; this may have to do with a more ho-
mogeneous language in the notes, but also with
differences in sequence lengths, which are long
on average in the text’s testset and short in the
notes30. The length of text sequences coupled with
our working at the paragraph level may also ex-
plain the higher unstability of results of BERTje
and mBERT, as these were trained on the sentence
level.

4.2 Crosstext performance
Crosstext results are presented in Table 6. These
confirm the superiority of multilingual models in
crosslingual transfer: while all models fine-tuned
on text loose a few points when predicting on notes,

29Fine-tuning takes about 550 steps for the notes, 850 for
the text and 1400 for all the data.

30This resulted by chance from our data split. While it
might be interesting to try another split resulting in more even
sequence lengths, the other constraints we followed, combined
with the limited number of letters, limit possibilities in that
direction.
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text notes all

BERTje 84.4 (2.5) 91.8 (0.4) 90.4 (0.5)

RobBERT 86.1 (0.8) 92.7 (0.5) 91.1 (0.9)

mBERT 88.7 (3.2) 93.4 (0.7) 92.2 (0.6)

XLM-Rbase 88.2 (0.6) 93.4 (0.4) 92.3 (0.3)

Table 5: In-text fine-tuning and evaluation (F1 scores
and standard deviation)

text notes

BERTje
text 84.4 (2.5) 82.8 (2.9)

notes 68.7 (3.3) 91.8 (0.4)

RobBERT
text 86.1 (0.8) 84.1 (1.5)

notes 71.9 (1.8) 92.7 (0.5)

mBERT
text 88.7 (3.2) 86.8 (3.6)

notes 79.5 (1.2) 93.4 (0.7)

XLM-Rbase
text 88.2 (0.6) 84.7 (0.6)

notes 77.9 (2.9) 93.4 (0.4)

Table 6: Crosstext fine-tuning and evaluation. Models
fine-tuned on the text or notes (rows) and evaluated on
text and notes (columns).

multilingual models fine-tuned on notes are more
robust when predicting on text, their performance
dropping then by about 15 points compared to 20
points or more for monolingual models.

4.3 Reciprocal contribution of notes and text
Table 7 shows the effect of adding out-of-text data
for fine-tuning. We see that notes are informative
for NER in historical text, as performance on the
text increases by 2 to 3 points when fine-tuning on
all data. The reverse does not hold: performance
on the notes also increases when fine-tuning on
all data, but only minimally (by 0.2 point for all
models except BERTje, for which scores improve
by 1.1 point). These trends hold for all models,
monolingual or multilingual, pointing to the gen-
eral contextual value of notes for named entities
combined with a general ability of pretrained lan-
guage models to exploit context—while monolin-
gual models are trained on a single language, they
retain the ability to adapt to a variety of language
variants in fine-tuning.

Table 8 details the contribution of notes and text
per label for XLM-R. Notes are informative for all

in-text all

BERTje
text 84.4 (2.5) 87.8 (0.8)

notes 91.8 (0.4) 92.9 (0.6)

RobBERT
text 86.1 (0.8) 89.3 (1.1)

notes 92.7 (0.5) 92.9 (0.7)

mBERT
text 88.7 (3.2) 90.8 (0.7)

notes 93.4 (0.7) 93.6 (0.6)

XLM-Rbase
text 88.2 (0.6) 91.0 (0.5)

notes 93.4 (0.4) 93.6 (0.1)

Table 7: Reciprocal contribution of notes and text: fine-
tuning on in-text data (text or notes) or on all data, and
predicting on text or notes (rows).

text notes
in-text all in-text all

LOC 93.0 (0.6) 94.4 (0.4) 96.7 (0.3) 96.7 (0.1)

LOCd 92.0 (0.3) 93.1 (0.1) 89.6 (0.4) 92.5 (1.0)

ORG 87.5 (1.9) 90.2 (1.6) 89.8 (1.3) 90.9 (2.2)

PER 74.1 (4.2) 79.3 (2.2) 89.4 (1.2) 88.4 (1.1)

RELd 92.3 (1.9) 92.1 (2.3) 39.1 (36.7) 90.0 (5.8)

SHP 60.0 (5.0) 76.2 (1.0) 86.8 (0.4) 86.4 (1.5)

all 88.2 (0.6) 91.0 (0.5) 93.4 (0.4) 93.6 (0.1)

Table 8: Detailed contribution of notes and text fine-
tuning data to text and notes predictions, for XLM-
Rbase.

entities except religions and derived forms, which
are poorly represented in the notes (results for the
RELderiv label are also very unstable in the notes,
as witnessed by the high standard deviation). The
highest gains are obtained for persons and ships,
which are also much better represented in the notes
than the text. But notes are also informative for en-
tities that are well represented in the text (locations,
derived forms thereof and organisations). Recip-
rocally, the text is informative for entities that are
comparatively better represented: derived forms of
locations, organisations and religions.

4.4 Locations as political actors
We end with a semantic oriented NER experi-
ment, where models additionally must distinguish
between metonymical (GPE) and standard uses
(LOC) of locations. Results are presented in Ta-
ble 9. Adding this semantic orientation makes it



28

-GPE +GPE

BERTje 90.4 (0.5) 88.4 (0.5)

RobBERT 91.1 (0.9) 89.0 (0.5)

mBERT 92.2 (0.6) 89.1 (1.2)

XLM-Rbase 92.3 (0.3) 88.4 (2.2)

Table 9: Distinguishing metonymical uses of locations.
-GPE: no distinction; +GPE: distinction between LOC
and GPE labels. Models fine-tuned and evaluated on
all the data. Boldface marks the two best performing
models per case.

mBERT RobBERT
-GPE +GPE -GPE +GPE

GPE - 82.0 (0.3) - 84.0 (1.5)

LOC 95.7 (0.6) 93.0 (0.8) 94.8 (0.5) 92.2 (0.7)

LOCd 92.7 (0.4) 91.0 (1.3) 92.2 (0.4) 91.1 (1.1)

ORG 90.6 (3.4) 90.5 (1.5) 88.6 (1.7) 88.7 (1.8)

PER 84.7 (0.6) 84.0 (1.6) 83.8 (0.4) 82.7 (1.4)

RELd 93.4 (3.9) 78.1 (23.8) 91.3 (4.1) 92.8 (1.9)

SHP 82.1 (1.9) 77.0 (1.6) 79.6 (4.4) 80.6 (0.3)

all 92.2 (0.6) 89.1 (1.2) 91.1 (0.9) 89.0 (0.5)

Table 10: Distinguishing metonymical uses of loca-
tions: detailed label scores.

a harder task for all models. Monolingual models
however perform relatively better, with RobBERT
almost equalling mBERT as best performing model.
Multilingual models suffer a larger drop in per-
formance than monolingual models, coupled with
more instable results.

We compare detailed label scores for RobBERT
and mBERT in Table 10. GPE-label distinction
negatively affects prediction of all entity types for
mBERT. In contrast, RobBERT performs better
than mBERT on GPE prediction, and benefits from
the GPE/LOC distinction for the prediction of a few
entity types (derived forms of religions and ships).
We observe similar trends with XLM-Rbase and
BERTje, respectively (for BERTje, scores improve
for RELderiv and LOCderiv by 1 point).

5 Conclusion

We have introduced a new Dutch dataset for
Named Entity Recognition, consisting of Early
Modern Dutch VOC letters and modern edito-

rial notes. Comparing monolingual and multilin-
gual pretrained language models, we confirm the
stronger crosslingual abilities of multilingual mod-
els, while showing that both monolingual and mul-
tilingual models can leverage on mixed language
variants at fine-tuning. For Named Entity Recogni-
tion, pretrained language models are notably able
to leverage on notes to improve text predictions.
We have further shown that multilingual pretrained
language models not only perform better on the
historical part of this dataset, but also on modern
Dutch notes. However, the superiority of multilin-
gual models on modern Dutch is very much linked
to the task at hand, as orienting the data to more
semantic distinctions can turn the tables for mono-
lingual models.
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