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Abstract

We present the results of an evaluation study in
the context of lexicon-based sentiment analy-
sis resources for German texts. We have set up
a comprehensive compilation of 19 sentiment
lexicon resources and 20 sentiment-annotated
corpora available for German across multiple
domains. In addition to the evaluation of the
sentiment lexicons we also investigate the in-
fluence of the following preprocessing steps
and modifiers: stemming and lemmatization,
part-of-speech-tagging, usage of emoticons,
stop words removal, usage of valence shifters,
intensifiers, and diminishers. We report the
best performing lexicons as well as the influ-
ence of preprocessing steps and other modifi-
cations on average performance across all cor-
pora. We show that larger lexicons with contin-
uous values like SentiWS$ and SentiMerge per-
form best across the domains. The best per-
forming configuration of lexicon and modifi-
cations considering the f1-value and accuracy
averages across all corpora achieves around
67%. Preprocessing, especially stemming or
lemmatization increases the performance con-
sistently on average around 6% and for certain
lexicons and configurations up to 16.5% while
methods like the usage of valence shifters, in-
tensifiers or diminishers rarely influence over-
all performance. We discuss domain-specific
differences and give recommendations for the
selection of lexicons, preprocessing and modi-
fications.

1 Introduction

Sentiment analysis (also often referred to as opin-
ion mining) is a sub-field of affective computing,
which deals with the detection and analysis of hu-
man sentiment and emotions in various application
areas like game design (Halbhuber et al., 2019),
health (Hartl et al., 2019) and human-computer
interaction (Ortloff et al., 2019). Sentiment anal-
ysis focuses on text as modality and refers to the
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task of classifying texts of various lengths con-
cerning polarity (or valence) expressed in the text,
meaning whether the sentiment of a text is rather
positive or negative (Liu, 2015). Application ar-
eas for sentiment analysis in natural language pro-
cessing (NLP) are social media content (Méntyld
etal., 2018), social sciences (Schmidt et al., 2020b),
health (MoSBburger et al., 2020), user-generated
content (Schmidt et al., 2020a) , digital humanities
(Kim and Klinger, 2018a), and human-computer
interaction (Schmidt et al., 2020c) to name just a
few examples.

Methods for performing sentiment analysis can
be divided into two major branches: lexicon-based
(also often referred to as rule-based or dictionary-
based methods; Taboada et al., 2011) and ma-
chine learning (ML)-based approaches. Lexicon-
based sentiment analysis uses lexicons consisting
of words that are pre-annotated concerning their
sentiment expression, which we refer to as senti-
ment bearing words (SBWs). There are multiple
ways to create and acquire such lexicons like crowd-
sourcing, expert annotations or semi-automatic ap-
proaches (cf. Ribeiro et al., 2016). Values of SBWs
can either be binary, e.g. +1 (positive) and -1 (neg-
ative) (Waltinger, 2010; Mohammad and Turney,
2013) or continuous (e.g. between -3 and + 3) (Re-
mus et al., 2010; Vo et al., 2009; Emerson and De-
clerck, 2014) to represent differences in sentiment
expression across words more precisely. A text can
be assigned with an overall polarity by summing up
the values of the positively assigned words and sub-
tracting the values of the negative ones. A negative
end result points towards a negative and a positive
result towards a positive sentiment; a value of 0 is
interpreted as neutral (Taboada et al., 2011).

However, developments in ML in the last decade
and especially in recent years have led to a domi-
nance of ML-based methods for most NLP-tasks.
Current state-of-the-art sentiment analysis regards



sentiment analysis oftentimes as text sequence clas-
sification task with three classes (neutral, positive,
negative). Current approaches are based on large
transformer-based models like BERT and achieve
accuracies up to 95% in standardized evaluation
settings for English (Nazir et al., 2020; Jindal and
Aron, 2021; Dang et al., 2020; Gonzalez-Carvajal
and Garrido-Merchan, 2021) and around 80-90%
in German (Wojatzki et al., 2017; Struf3 et al., 2019;
Chan et al., 2020). ML-based methods are depen-
dant of sentiment-annotated corpora and especially
for English, an increasing number of sentiment-
annotated data-sets that can be used to train algo-
rithms can be found for various domains (Ribeiro
et al., 2016; Balazs and Veldsquez, 2016; Singh
et al., 2020). When compared to each other, mod-
ern ML-based methods usually outperform lexicon-
based methods, which more recently only serve
as baseline for performance comparisons (Dhaoui
et al., 2017; Kim and Klinger, 2018b; Khoo and
Johnkhan, 2018; Khan et al., 2017; Kharde et al.,
2016). Nevertheless, many languages and also spe-
cial domains lack large annotated corpora neces-
sary for state-of-the art ML-based sentiment analy-
sis. Since lexicon-based methods are not bound to
quality and quantity of training data, they are still
a common approach for languages (Mukhtar et al.,
2018; Al-Ayyoub et al., 2019) and areas (Aung
and Myo, 2017) with fewer resources. Further-
more, lexicon-based methods are fast to apply and
easy to comprehend which has also led to their
popularity in research areas like digital humanities
(Kim and Klinger, 2018a; Schmidt et al., 2018b)
and especially the sub-field of computational liter-
ary studies (Alm and Sproat, 2005; Reagan et al.,
2016; Schmidt and Burghardt, 2018a,b; Schmidt,
2019; Schmidt et al., 2019b,c, 2021). For the En-
glish language, various research exists evaluating
the performance of sentiment lexicons and modi-
fications on multiple corpora (Khan et al., 2017;
Ribeiro et al., 2016) or evaluating and surveying
lexicons in a context of larger studies including
ML-methods (Tsytsarau and Palpanas, 2012; Med-
hat et al., 2014; Kharde et al., 2016; Singh et al.,
2020). Thus, researchers can build upon recommen-
dations and best practices based on this research
when selecting sentiment lexicons, preprocessing
steps and other modifications. However, to the best
of our knowledge, there are no similar resources
that provide an exhaustive and systematic listing
and evaluation of lexicon-based methods across var-

ious sentiment-annotated corpora for the German
language. In the following paper we want to ad-
dress this gap and systematically evaluate lexicon-
based techniques for sentiment analysis for German
to provide recommendations for the selection of
lexicons, preprocessing steps and further configura-
tions. The contributions of this paper are as follows:
(1) a comprehensive listing of datasets of sentiment
lexicons and sentiment-annotated corpora in Ger-
man, (2) an in-depth evaluation of resources and
methods of lexicon-based sentiment analysis for
German, and (3) a discussion of validated recom-
mendations concerning the selection of sentiment
lexicons, preprocessing steps and other modifica-
tions.

2 Resources

To acquire an exhaustive list of relevant corpora
and lexicons for German sentiment analysis we
searched in various digital libraries and search en-
gines with appropriate search terms. The most im-
portant platforms we investigated are the ACM Dig-
ital Library!, ACL Anthology?, IEEE?, Springer
Verlag* and, on the other hand, more specific plat-
forms such as the Conference on Natural Language
Processing5 (KONVENS). Other sources we re-
ferred to are the publications related to the regu-
larly held GermEval® competitions or publications
of the Interest Group on German Sentiment Analy-
sis’ (IGGSA). Please note that we do not include
resources in the context of German-based emotion
analysis. While this research area certainly neigh-
bours sentiment analysis, it is out of scope of this
paper. Before discussing the different preprocess-
ing and modification steps, we present an overview
of corpora as well as lexicons that we have found
for German sentinment analysis.

2.1 Corpora

First, we present all German sentiment annotated
corpora we managed to find and that were publicly
available or accessible per request (see Table 1).
The corpora are of varying quantity and quality.
Major differences concern, among other things, the
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Abbrevation Corpus name (if reported) | Reference #Pos #Neg
LTO01-Zehe German Novel Dataset Zehe et al., 2017 75 89
LT02-Schmidt Schmidt et al., 2019a 202 370
LTO03-Schmidt Schmidt et al., 2018a 61 139
MIO1-Clematide MLSA Clematide et al., 2012 69 110
MI02-Wojatzki GermEval 2017 Wojatzki et al., 2017 1,537 6,887
MI03-Rauh Rauh, 2018 333 475
NAO1-Butow GerSEN Biitow et al., 2016 372 485
NAO2-Ploch GerOM Ploch, 2015 71 38
NAO3-Schabus One Million Posts Corpus | Schabus et al., 2017 43 1,606
REO1-Klinger USAGE Klinger and Cimiano, 2014 506 50
REO02-Sanger SCARE Sanger et al., 2016 4189k | 185,7k
REO3-Du SentiLitKrit Du and Mellmann, 2019 718 290
REO04-Guhr Gubhr et al., 2020 39.6k | 154k
REOS5-Prettenhofer Prettenhofer and Stein, 2010 | 159,3k | 136,8k
SMO1-Cieliebak SB10k Cieliebak et al., 2017 1.717 1.130
SMO02-Sidarenka PotTS Sidarenka, 2016 3,349 1,510
SMO03-Narr Narr et al., 2012 350 237
SM04-Mozetic Mozeti€ et al., 2016 16,5k 11,7k
SMO05-Siegel German Irony Corpus Siegel et al., 2017 49 107
SMO06-Momtazi Momtazi, 2012 278 191

Table 1: Listing of all corpora included in the evaluation. Pos and Neg mark the number of respective annotated
text units, acronyms are explained in the text. More information can be found in the appendix (Table 4).

size of the corpora, the granularity of the annotated
polarity, the text domain, and also the quality of
the annotations. The corpora were classified into
five different domains based on the text units they
contained: literary and historical texts, texts from
or related to news articles, product reviews, social
media, and mixed corpora with text units from dif-
ferent domains. For more details about the corpora
please refer to Table 4 in the appendix or the spe-
cific papers of the corpora. The corpora are further
referenced with abbreviations, which are composed
of a domain assignment and the primary author of
the respective publication (see Table 1). We include
three corpora containing literary texts (LT01-LT03),
three with mixed types (MI01-MI03), three con-
taining news articles (NAO1-NAO3), five reviews
(REO1-REO05) and six social media content (SMO1-
SMO06). Some of the most well-known corpora
of our list are SB10k (SMO1-Cieliebak), PotTS
(SMO02-Sidarenka), USAGE (REO1-Klinger), and
the GermEval 2017 corpus (MI02-Wojatzki).

2.2 Lexicons

Table 2 illustrates all lexicons we gathered for this
evaluation study. For more details concerning the
lexicons please refer to the appendix (Table 5).

Please note that some of the lexicons share com-
mon word entries or are based in part on other re-
sources. The lexicons are referenced with abbrevia-
tions, which are composed of a numeration and the
primary author of the respective publication since
many lexicons have no explicit names given by
the authors. The order of numbers has no specific
meaning. There are different versions for some lexi-
cons: 05-Siegel-p and 06-Siegel-m, which focus on
words from the Pressrelations (Scholz et al., 2012)
and MLSA (Clematide et al., 2012) datasets, and
08-Takamura-c and 09-Takamura-d, respectively,
for continuous and dichotomous sentiment values.
Several well-known and often used lexicons are
also included, such as SentiWs (01-Remus), BAWL-
R (03-V0), GermanPolarityClues (13-Waltinger),
and LIWC-De (14-Wolf). Our general calculation
of sentiment values is as follows: For a text unit,
we count the positive and negative matches and
subtract the sum of positive words by the negative
ones. A positive end result is counted as positive
polarity, a negative as a negative one. Across chap-
ter 3 we detail some further methods to adjust this
calculation.



Abbrevation Lexicon name (if reported) Reference Tokens
01-Remus Sentiws Remus et al., 2010 34,238
02-Clematide Clematide et al., 2010 9,239
03-Vo BAWL-R Vo et al., 2009 2,902
04-Emerson SentiMerge Emerson and Declerck, 2014 96,420
05-Siegel-p Siegel and Diwisch, 2014 2917
06-Siegel-m Siegel and Diwisch, 2014 2917
07-Rill SePL. Rill et al., 2012 14,395
08-Takamura-c GermanSentiSpin Takamura et al., 2005 105,560
09-Takamura-d GermanSentiSpin Takamura et al., 2005 88,925
10-Rauh Rauh, 2018 37,080
11-Du SentiLitKrit Du and Mellmann, 2019 3,620
12-Asgari UniSent Asgari et al., 2019 1,384
13-Waltinger GermanPolarityClues Waltinger, 2010 38,901
14-Wolf LIWC-De Wolf et al., 2008 4,894
15-Klinger USAGE Sentiment Lexicon Klinger and Cimiano, 2014 4,743
16-Wilson GermanSubjectivityClues Wilson et al., 2009 9,827
17-Mohammad NRC Emotion Lexicon Mohammad and Turney, 2013 10,617
18-Ruppenhofer Ruppenhofer et al., 2017 9,544
19-Chen Multilingual Sentiment Lexicon Chen and Skiena, 2014 3,973

Table 2: Listing of all lexicons included in our evaluation. Lexicons 1-8 include two versions: dichotomous and
continuous sentiment values. The rest is solely dichotomous. More information can be found in the appendix

(Table 5).

3 Methods

3.1 General Data Cleaning

We perform the following steps to clean the texts
of all corpora before evaluation:

* Removing non-alphabetic characters (num-
bers, special characters, etc.) as well as lead-
ing, trailing and multiple spaces (Haddi et al.,
2013).

* The removal of URL links, Twitter usernames,
and Twitter-specific words such as “RT” (Pak
and Paroubek, 2010).

All of the above steps showed no relevant influ-
ence on SBWs or lexicon-based sentiment analysis
and serve only normalization purposes.

3.2 Preprocessing and other Modifications

In addition to the evaluation of lexicon resources,
we also investigate the influence on performance
by various preprocessing steps and other configu-
rations which are frequently used when preparing
the application of sentiment lexicons. The follow-
ing techniques are evaluated: The assignment and
use of part-of-speech (POS) information, lemma-
tization and stemming, emoticon processing, stop

words removal, lowercasing and the application of
valence-changing words. We will refer to these
techniques in the following as modifiers or modifi-
cations. Most modifiers are either on or off, mean-
ing they are performed or not, except for POS-
tagging, stemming and lemmatization for which
multiple approaches are evaluated as well as on
and off. In order to identify the best combination
of modifiers in the context of the chosen lexicon,
the different methods are cross-evaluated and com-
pared based on classification metrics.

3.2.1 Part-of-Speech-Tagging

In sentiment analysis, POS information can be
used to solve the problem of word ambiguity since
words with the same spelling can have a differ-
ent valence dependent of the POS (Taboada et al.,
2011). Knowledge of the correct POS can support
the resolving of this kind of ambiguity. It is nec-
essary to perform POS-tagging on the text and on
the lexicon (few of our lexicons already do con-
tain POS information). We evaluate and use two
of the most well-known POS-taggers for German:
TreeTagger (Schmid, 2013) which has shown good
performance in evaluation studies (Gleim et al.,
2019; Horsmann et al., 2015) and Stanza (Qi et al.,
2020), a novel POS-tagger for German. Sentiment



lexicons consist almost exclusively of nouns, ad-
jectives, verbs and adverbs, which are mainly re-
sponsible for the polarity of a text unit (Pak and
Paroubek, 2010). Therefore, all POS information
was normalized to these four categories. When
we apply POS-tagging in our sentiment analysis
pipeline, after finding matching words between
text and lexicon, we also test if the POS matches
or refers to the word with the correct POS before
including it in the calculation.

3.2.2 Stemming or Lemmatization

While some sentiment lexicons contain various in-
flections of words (Remus et al., 2010), the vo-
cabulary of these lexicons mostly consist of base
forms. To enable the mapping of words in texts and
in the lexicon, base form reduction via lemmatiza-
tion or stemming is often applied (Taboada et al.,
2011). Stemming refers to algorithms that attempt
to reduce the word to the base form by truncat-
ing suffixes and affixes based on predefined rules.
Lemmatization, on the other hand, often takes sen-
tence order and surrounding words into account
or works with large dictionaries to reduce a word
to its true base form, the lemma, which is neces-
sary for languages with complex morphology like
German. In this study, we evaluate the usage of
the following two lemmatizers for German: Tree-
Tagger (Schmid, 2013), and Inverse Wiktionary for
Natural Language Processing IWNLP) (Liebeck
and Conrad, 2015). In terms of stemming, two es-
tablished stemming algorithms are evaluated: Cis-
tem (Weissweiler and Fraser, 2017) and Snowball
Porter (Porter, 1980). Please note that we do not
evaluate the lemmatizers or stemming approaches
for their intended task but only with respect to the
influence on sentiment analysis (the same holds
true for POS-tagging). For a review of base form
reduction in German we recommend Gleim et al.
(2019). We evaluate these methods by applying
stemming/lemmatization to the text and lexicon
before looking for the matches.

3.2.3 Lowercasing

Unlike English, German does not only capitalize
the beginning of sentences and proper names, but
also nouns or nominalizations. Thus, for certain
cases, it is important to differ between cased and
uncased versions of words in German to disam-
biguate sentiment (e.g. “wiirde” (would, auxiliary
verb) has no sentiment, “Wiirde” (dignity, noun) is
positive in some lexicons). However, written text

in general and in social media in particular includes
a lot of spelling errors and incorrect capitalization
hindering correct sentiment calculations. There-
fore, we evaluate how lowercasing of the lexicon
and the texts influences performance.

3.2.4 Emoticons

Emoticons are representations of body language in
text, very frequently connected to sentiment expres-
sions (Ptaszynski et al., 2011). Since emoticons are
common on the social web, several papers show the
benefits of including emoticons in the calculation of
the sentiment value of a text unit (Hogenboom et al.,
2015; Gongalves et al., 2013). To translate emoti-
cons to sentiment values, we used a 232-entry list
of emoticons from the SCARE dataset by Singer
et al. (2016). Positive or negative emoticons are
treated as additional entries to the lexicon vocabu-
lary (positive as +1, negative as -1).

3.2.5 Stop Words Removal

The removal of stop words, i.e. common words
(like function words) that occur with high fre-
quency in a language, is a common practice in NLP
pipelines, predominantly to improve computation
performance. In this process, the individual words
of a text unit are matched against a list of words
and removed from the text unit if they match any
of the entries. Common stop words in language are
articles, prepositions, conjunctions, and pronouns
and they usually bear no sentiment. While stop
words usually have no influence on calculations via
lexicon-based methods, sentiment lexicons that are
created automatically or semi-automatically can
contain stop words which can skew sentiment cal-
culations, e.g. “dieser, jetzt, ihnen, ihrer, ihm” in
the lexicon 08-Takamura-d. Such entries are not
considered further by removing stop words. Indeed,
in some settings the removal of stop words has been
shown to be beneficial for sentiment analysis (Saif
et al., 2014). We evaluate the application of the
German stop words list provided by the informa-
tion retrieval framework Solr.%. The list is rather
conservative with a length of 231 entries. If we use
the modification stop words list, words of this list
are ignored in the text as well as in the lexicon that
is used.

3.2.6 Valence Shifters

Depending on the surrounding of a SBW, the senti-
ment value of a word can be influenced, for exam-

$https://solr.apache.org/
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ple the word “gliicklich” (happy), usually positive,
turns negative with the negation “nicht” (not) right
before. Such words and phrases are referred to as
valence shifters (Mohammad, 2016). It is recom-
mended to include valence shifters into the calcula-
tion process for lexicon-based sentiment analysis
(Prollochs et al., 2015). The following parame-
ters are important for dealing with valence shifters:
(1) the window size, meaning how close a valence
shifter has to be to a SBW to influence calcula-
tions and (2) the position, meaning if the valence
shifter is left or right of the SBW (Pang et al., 2002;
Kennedy and Inkpen, 2006). For this work, we
used a two-sided window with a fixed length of 4
words, which achieved the best results in a wider
comparison of methods on German-language data-
sets by Prollochs et al. (2015). If a valence shifter
occurs in the text, the sentiment values of all words
within the context window are reversed. We use a
list of 22 German negations collected by various
lists (Clematide et al., 2010; Ruppenhofer et al.,
2017; Tymann et al., 2019).

3.2.7 Valence Intensifiers and Diminishers

Similar to valence shifters, words can also act as va-
lence intensifiers or diminishers e.g. “sehr” (very)
or “wenig” (little). As with valence shifters, a va-
riety of possible implementation approaches exist
regarding the context window and position of these
words (Taboada et al., 2011; Klenner et al., 2009.
We chose to use the approach of Taboada et al.
(2011): given a context window of 2 words be-
fore the SBW, the sentiment values of all SBWs
within the window are multiplied by the value of
the diminishers or intensifier. We use a list of 78
German intensifiers and diminishers by Clematide
et al. (2010) and Ruppenhofer et al. (2017).

3.2.8 Usage of Lexicon-specific continuous
Sentiment Values

While most lexicons have sentiment values in di-
chotomous (positive, negative) or trichotomous
(positive, negative, neutral) expressions, some lexi-
cons contain sentiment values with continuous val-
ues, for example between +3 and -3. Thus, if a
lexicon offers continuous metrics, we evaluate both
approaches: the usage of these continuous values
in the calculation and the binary representation via
+1 and -1. This is the case for the lexicons 1-8.

4 Results

We evaluate the lexicons and modifiers regarding
sentiment analysis as binary classification tasks
with positive and negative values, ignoring all neu-
tral information. If a calculation produces O (neu-
tral) as output, this is counted as false prediction.
In chapter 4.1 we first present the lexicon perfor-
mance without using modifiers to investigate the
general performance of lexicons, corpora and do-
mains. In chapter 4.2 we present modifier-based
results before we take a closer look at the best
lexicon-modifier combinations in chapter 4.3.

Due to the high class imbalances of certain cor-
pora, we primarily report macro f1 measure. When
we report averages across corpora we do not ac-
count for size imbalances of the corpora. Instead
we calculate the mean average of f1 measures over
all corpora.’

4.1 Lexicon Performance without modifiers

First, we present the results of cross-evaluations
when using the sentiment lexicons on the corpora
without any modifiers via a heatmap (see Fig. 1).
Please note that the random and majority baselines
of the corpora fluctuate around 50-70% for most
corpora (see 4 in the appendix). The average f1
measure of all lexicons across all corpora is 45%. A
few lexicons achieve an average fl1 measure above
50% across all corpora. The best performing lexi-
cons are, on average, 13-Waltinger with 60%, 10-
Rauh with 57%, 19-Chen with 53%, 01-Remus
with 52% and 04-Emerson with 51%. However,
multiple lexicons do perform way below 50%. Con-
sidering differences on the corpora of various do-
mains, we have identified the following findings:
On average, the lexicons perform best on corpora
from the product review domain with f1 scores
between 46 to 58%. Corpora based on social me-
dia content lead to rather low f1 values between
36-46%. The f1 scores do however vary a lot, for
certain lexicons around 10-20% showing that the
selection of the corpus-lexicon combination is im-
portant. The best result is achieved by lexicons
designed specifically for the task on certain cor-
pora e.g. 15-Klinger on corpus REO1-Klinger with

“We limit the result report to the most important results.
However, we publish a GitHub repository including all results
for all lexicon-modifier combination across all corpora for
multiple performance metrics and further overview data like
heat maps and domain specific result tables. The repository
can be found at https://github.com/JakobFehle/
Lexicon-based-SentA-German


https://github.com/JakobFehle/Lexicon-based-SentA-German
https://github.com/JakobFehle/Lexicon-based-SentA-German

SMOlCieliebak 47 38 26 46 31 29 36 47 42 48
SMoz-Sidarenka 45 33 25 48 23 25 26 50 50 45
SMO3-Narr 56 42 30 53 34 37 38 57 50 6l
SM04-Mozetic 50 38 26 50 28 29 32 51 48 53
SMOS-Siegel 36 35 17 48 39 38 28 40 38 43
SMO6-Momtazi 56 41 35 51 36 39 48 54 47 6l
NAOl-Batow 62 50 28 52 32 36 34 53 50 64
NAODZPloch | #1| 56 42 58 44 45 54 47 49
MAD3-Schabus 25 26 14 38 33 28 21 24 21 37
REOlKlinger 62 58 49 53 51 56 53 58 55 |70
REQ2.Sanger 57 50 33 54 45 47 53 53 42 | B4
REO3-DU 56 48 32 42 38 40 42 51 49 55
REO4-Guhr |61 B0 46 53 48 53 62 55 49 65
REOS-Prettenhofer 56 61 44 55 54 56 61 49 42 [ 6B
LTol-Zehe 65 61 28 53 35 30 40 59 48 60
LTo2-Schmidt 47 43 32 50 31 28 26 46 41 52
LT03-Schmidt 45 46 30 52 42 36 40 46 40 52
MIO1-Clematide 59 62 25 51 44 57 39 56 54 51
MIOZ-Wojatzki 42 35 23 48 36 35 31 44 37 50
MIO3-Rauh 42 37 39 61 38 38 33 49 45 B2
Mg 52 46 31 51 38 39 40 50 45 57
g E° £ F § 5 £ E 2
g 8 Y 3 9 '

~ s = 7 [

= 2 5

100

26 30 48 43 38 42 32 35 46 38
22 30 50 32 31 44 33 31 42 36

29 30 62 46 42 46 40 50 44

25 30 57 38 38 47 34 36 49 40 90
24 26 48 28 33 47 32 32 49 36

35 40 62 50 48 42 40 38 54 46

35 31| B 41 39 49 42 47 51 46

37 a7 54 59 6 s0 5285 55 a0
17 14 37 19 28 35 24 25 43 27

sa 51l 573 1 s0o e0 58 s

31 39 66 49 B4 44 37 44 63 49 -0
58 42 57 44 41 44 45 47 4B 46

58 45 66 57 62 48 54 58 55 56

59 41 67 53 B4 55 55 58 59 56

56 32 B9 39 38 55 60 61 B4 50 -0
34 34 56 37 42 48 42 42 48 41

37 35 59 38 41 56 45 44 54 44

45 36 | 86 42 43 Bl 46 62 59 50 -50
22 26 52 30 40 50 35 34 53 38

21 35 57 41 38 47 28 35 48 42

3 35 B0 42 46 48 41 44 53 45 “
-3 f 3 % %2 E % o9

— : g

Figure 1: Heatmap for the cross-evaluation of lexicons and corpora including overall averages with no modifica-
tions. Values are given as f1 measure and rounded. X-axis are the lexicons, y-axis the corpora.

84%. Other good performances are found with 13-
Waltinger and 10-Rauh on NA02-Ploch with 82%
and 79%, respectively.

4.2 Modifications

To evaluate the effects of the respective modifiers,
they are examined in two ways: (1) We regard
the average performance of all lexicons and cor-
pora without modifiers as baseline (f1 measure of
44.8%) and compare it with the average of the iso-
lated use of a single modifier turned on (all other
modifiers off) across all corpora and lexicons. We
refer to the difference of the baseline f1 measure
(44.8%) and the average across all corpora and
lexicons with just this modifier turned on as fI-
raw-delta. A positive value shows an improvement,
a negative value a decrease of performance. (2)
We measure every possible on/off configuration for
all modifiers across all corpora and lexicons once
with the specific examined modifier on and once
off. We then take the multiple differences between
modifier on and off for all of this runs and build an
average. We refer to this value as fI-combination-
delta. Please refer to Table 6 in the appendix for a
detailed overview of the results.

Concerning POS-tagging, stemming and lemma-

tization, the different tools show very low differ-
ences. Therefore, we always refer to the best-
performing tool as representative of the method.
POS-tagging leads to a small decrease of the fl
measure compared to not applying it (f1-raw-delta
=-1.7%) and also on average combined with other
modifiers (f1-combination-delta = -1.5%). Stem-
ming and lemmatization however improves f1 mea-
sures and is the most consistent and strongest im-
provement. Fl-raw-delta shows an improvement
by 6.3% for the best stemming-method and 5.6%
for the best lemmatizer. This result stays consis-
tent for f1-combination-delta with 5% and 5.1%
respectively.

Lowercasing shows a smaller positive influence
(f1-raw-delta = 2.8; f1-combination-delta = 0.2).
Including emoticons in the calculation process im-
proves the performance similarly but also consis-
tent in combination with other modifiers (f1-raw-
delta = 2.9; f1-combination-delta = 1.7). The in-
crease of the fl measure is connected to the cor-
pora of the social media domain. The processing
of emoticons improves the f1 measure actually by
8.8% points when we reduce the results on the so-
cial media corpora. The removal of stop words be-



fore performing calculation does actually decrease
the average fl1 measure by 0.3% when no other
methods are applied. Intertwined with other meth-
ods, this decrease is also marginal (f1-combination-
delta = -0.2). Integrating valence shifters into cal-
culation does actually barely show an influence
on performance according to our evaluations (f1-
raw-delta = 0.0; f1-combination-delta = -0.2). The
same holds true for intensifiers and diminushers
(f1-raw-delta = 0.5; f1-combination-delta = 0.4).

For the modifier of continuous sentiment values,
we limit the calculation of fl-raw-delta to the 8
lexicons containing such values, thus the baseline
is 43.3%. The application of continuous values
improves the f1-score by 3.4%. Indeed an improve-
ment can be found for every lexicon compared to
their dichotomous equivalent.

Please note however that the values given above
are averaged overall results. Several methods do ac-
tually have much higher positive influence depend-
ing on the specific corpus-lexicon combination.
The following sub-chapter will highlight some of
these interaction effects.

4.3 Lexicon Performance with Modifications

In the following chapter, we present the best result
achieved with various modifier combinations for
each lexicon (see Table 3). Next to the highest f1
measure, we also report the average performance
(averaging the result of all method combinations).
For the lexicons 1-8 we differ between the continu-
ous and the dichotomous calculation (the latter in
brackets in Table 3). More information about the
precise combination of methods can be found in
the appendix in Table 7.

Lexicon 04-Emerson achieves both the highest
average performance with an f1 measure of 62.0%
over all method combinations and the best specific
combination with 67.3% in regards to all lexicons
and all method combinations. The modifiers are
lemmatization IWNLP lemmatizer), lowercasing,
removing stop words, using emoticons as well as
continuous sentiment values; all other modifiers
are turned off. This value is 16.5% higher than the
baseline of 04-Emerson using no modifier showing
that in contrast to the overall results in chapter
4.1, certain modifier combinations can highly boost
performance.

The f1 values for all lexicons range between 52
and 67% for the best methods. Overall, the best per-
forming lexicons with no modifications are mostly

Lexicon Performance
Lexicon Average-f1 | Best-Method-f1
04-Emerson 62.0 (55.1) 67.3
01-Remus 60.1 (55.1) 63.6
10-Rauh 58.5 63.6
02-Clematide 56.5 (54.6) 61.9
08-Takamura-c | 56.3 (52.3) 60.6
19-Chen 55.8 60.5
13-Waltinger 55.2 63.4
18-Ruppenhofer 53.5 59.2
16-Wilson 52.2 56.0
07-Rill 51.4 (48.7) 56.2
03-Vo 49.3 (45.0) 54.9
09-Takamura-d 48.8 52.7
14-Wolf 48.6 53.9
06-Siegel_m 47.7 (45.9) 53.8
17-Mohammad 47.4 51.6
15-Klinger 46.8 534
05-Siegel p 46.8 (45.9) 54.3
11-Du 46.7 53.2
12-Asgari 43.9 52.0

Table 3: Lexicon performance in combination with
modifiers. Best method is the value for the best modi-
fier combination for each lexicon. Average is the over-
all average for all modifier combinations of this lexicon.
Values in brackets are results for dichotomous equiva-
lents for lexicons 1-8.

the same as with modifications (see chapter 4.1, 4.3
and Fig. 1) but modifiers increase the performance
by 5-17%. The best combination for each lexi-
con consistently includes emoticons and stemming
or lemmatizing. Four of the best five performing
lexicons work with continuous values. Consid-
ering lowercasing, stop words removal, valence
shifters, intensifier and diminushers, the usage is
rather inconsistent among the best lexicon-modifier
combinations. POS-tags are only part of the best
combination for 10-Rauh (see Table 7 in the ap-
pendix).

5 Discussion

In the following chapter, we summarize the results
and formulate recommendations and best practices
for the usage of German general purpose sentiment
lexicons. We have evaluated, to our knowledge,
all relevant and publicly available corpora and lex-
icons for the German language. The six best per-
forming lexicons without preprocessing and modifi-
cations but also with such methods are: SentiMerge
(04-Emerson) (Emerson and Declerck, 2014), Sen-



tiws (01-Remus) (Remus et al., 2010), 10-Rauh
(Rauh, 2018), the Multilinguial Sentiment Lexicon
(19-Chen) (Chen and Skiena, 2014), 02-Clematide
(Clematide et al., 2010) and GermanSentiSpin (08-
Takamura-c) (Takamura et al., 2005). Performance
can vary a lot depending of domain and corpus,
however these lexicons perform, on average, well
on all domains compared to the other evaluated lex-
icons. Therefore, we recommend the usage of these
lexicons. SentiMerge (04-Emerson) achieves the
best result with a specific modifier setting (f1 mea-
sure = 67.3%), thus we especially encourage the
usage of this lexicon. On average, larger lexicons
(that consist of more entries) perform better. In-
deed, 04-Emerson is the second largest resource in
our evaluation, although there are exceptions. Lex-
icons performing rather good but which are small:
e.g. 02-Clematide and 19-Chen. It is striking that
04-Emerson is actually a lexicon derived by fus-
ing multiple other lexicons to increase items size
(Emerson and Declerck, 2014). We recommend
exploring this idea further in future work. Another
pattern that emerges is that on average lexicons
with continuous sentiment values outperform di-
chotomous annotations, which has also been shown
in other studies for English (Taboada et al., 2011).
Based on these result we conclude that continuous
representations of sentiment expressions fit human
language more.

Considering modifications and preprocessing,
we have identified that the application of one sin-
gle modifier rarely helps, and we recommend the
combination of multiple modifications and prepro-
cessing steps. The most consistent and supportive
modifier is the application of stemming or lemmati-
zation of lexicon and text which solves the problem
of complex inflections matching in the sentiment
analysis pipeline. We did not identify a large differ-
ence between these two methods or between spe-
cific tools implementing them. POS-tagging, on
the other hand showed no significant improvement.

Another consistent boost is the integration of
emoticons into the calculation, especially for tasks
in the social media area (Hogenboom et al., 2013;
Pozzi et al., 2013). The removal of stop words and
lowercasing produced inconsistent results. Over-
all, the modifications are not necessary or benefi-
cial based on our results. In contrast to previous
research on German (Prollochs et al., 2015), we
could not identify an improvement by integrating
valence shifters, intensifiers and diminishers into

our calculation. This result is counter-intuitive; we
assume that the specific selection of a larger win-
dow size and position (see chapter 3.2.6) might be
a reason for this. We plan to investigate this phe-
nomenon in future work in more detail, but cannot
recommend the application of these modifiers the
way we did in this evaluation.

With regard to corpora and domains, we identi-
fied that, as expected, lexicons that are designed
for specific corpora or domains perform best on
these corpora. Overall, the evaluated lexicons per-
form best on product reviews while social media
corpora are more challenging. We encourage to
address these problems in future work in sentiment
analysis.

Summing up, we must note that compared to
English lexicon-based resources which can achieve
f1 measures above 70% (Khan et al., 2017; Ribeiro
et al., 2016) the German resources perform rather
poorly. German resources often lack size and suf-
fer from strong class imbalances resulting in the
sometimes fairly poor results reported here. This
accounts for lexicons as well as for corpora and
influences performance negatively. The rise of ML-
based methods and their better performance com-
pared to lexicon-based methods will certainly hin-
der the further development and improvement of
sentiment lexicons. However, as the popularity of
resources like VADER (Hutto and Gilbert, 2014)
for English language shows, there is still an inter-
est by certain communities for fast and easy-to-use
sentiment lexicons to perform sentiment analysis.
Thus, we not just want to support decision-making
for German resources with the presented evaluation
study, but give impulses for future developments
for German sentiment analysis resources.
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Modifier Baseline | f1 fl-delta | fl-combination-delta
POS with Treetagger 44.8 | 43.1 -1.7 -1.5
POS with Stanza 44.8 | 43.1 -1.8 -1.8
Stemming with Cistem 44.8 | 51.2 6.3 5.0
Stemming with Snowball 44.8 | 50.8 6.0 4.7
Lemmatization with Treetagger 44.8 | 50.4 5.5 5.1
Lemmatization with IWNLP 44.8 | 50.5 5.6 5.0
Lowercasing 44.8 | 47.6 2.8 0.2
Emoticons 448 | 47.8 2.9 1.7
Stop Words List 44.8 | 44.5 -0.3 -0.2
Valence Shifter 448 | 449 0.0 -0.2
Valence Intensifier and Diminusher 448 | 454 0.5 0.4

Table 6: Results of the modifier evaluation. Baseline is average f1 value without any modification across all corpora
and lexicons. F1 the new value when only the specific modifier is added. F1-delta the difference between f1 and
the baseline. F1-combination-delta is the average of all differences of all configuration with modifier turned on
and off.
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