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Abstract

Although sentiment is conceptualized as a con-
tinuous variable, most text-based sentiment
analyses categorize texts into discrete senti-
ment categories. Compared to discrete catego-
rizations, continuous sentiment estimates pro-
vide much more detailed information which
can be used for more fine-grained analyses by
researchers and practitioners alike. Yet, exist-
ing approaches that estimate continuous senti-
ments either require detailed knowledge about
context and compositionality effects or require
granular training labels, that are created in re-
source intensive annotation processes. Thus,
existing approaches are too costly to be ap-
plied for each potentially interesting applica-
tion. To overcome this problem, this work in-
troduces CBMM (standing for classifier-based
beta mixed modeling procedure). CBMM ag-
gregates the predicted probabilities of an en-
semble of binary classifiers via a beta mixed
model and thereby generates continuous, real-
valued output based on mere binary training in-
put. CBMM is evaluated on the Stanford Senti-
ment Treebank (SST) (Socher et al., 2013), the
V-reg data set (Mohammad et al., 2018), and
data from the 2008 American National Elec-
tion Studies (ANES) (The American National
Election Studies, 2015). The results show that
CBMM produces continuous sentiment esti-
mates that are acceptably close to the truth and
not far from what could be obtained if highly
fine-grained training data were available.

1 Introduction

In natural language processing and computer sci-
ence, the term sentiment typically refers to a loosely
defined, broad umbrella concept: Feeling, emotion,
judgement, evaluation, and opinion all fall under
the term sentiment or are used synonymously with
it (Pang and Lee, 2008; Liu, 2015). Interestingly,
the broad notion of sentiment is very well cap-
tured by the psychological concept of an attitude

(Liu, 2015). In psychology, scholars agree that an
attitude is a summary evaluation of an entity (Ba-
naji and Heiphetz, 2010; Albarracin et al., 2019).
An attitude is the aggregated evaluative response
resulting from a multitude of different (and po-
tentially conflicting) information bases relating to
the attitude entity (Fabringar et al., 2019). When
putting the definition of an attitude as an evaluative
summary into mathematical terms, an attitude is a
unidimensional, continuous variable ranging from
highly negative to highly positive (Cacioppo et al.,
1997). This notion that attitudes are continuous is
also mirrored in the sentiment analysis literature in
which sentiments are devised to vary in their levels
of intensity (Liu, 2015).

Despite this conceptualization, in an overwhelm-
ing majority of studies textual sentiment expres-
sions are measured as instances of discrete classes.
Sentiment analysis often implies a binary or multi-
class classification task in which texts are assigned
into two or three classes, thereby distinguishing
positive from negative sentiments and sometimes a
third neutral category (e.g. Pang et al., 2002; Tur-
ney, 2002; Maas et al., 2011). Other studies pursue
ordinal sentiment classification (e.g. Pang and Lee,
2005; Thelwall et al., 2010; Socher et al., 2013;
Kim, 2014; Zhang et al., 2015; Cheang et al., 2020).
Here, texts fall into one out of several discrete and
ordered categories.

If researchers would generate continuous—
rather than discrete—sentiment estimates, this
would not only align the theoretical conceptual-
ization of sentiment with the way it is measured
but also would provide much more detailed infor-
mation that in turn can be used by researchers and
practitioners for more fine-grained analyses and
more fine-tuned responses.

For example, in the plot on the right hand side
in Figure 1, the distribution of the binarized senti-
ment values of the tweets in the V-reg data set (Mo-



hammad et al., 2018) is shown. If researchers and
practitioners would operate only on this discrete
sentiment categorization, the shape of the under-
lying continuous sentiment distribution would be
unknown. In fact, all distributions shown on the
left hand side in Figure 1 produce the plot on the
right hand side in Figure 1 if the sentiment values
are binarized in such way that tweets with a sen-
timent value of ≥ 0.5 are assigned to the positive
class and otherwise are assigned to the negative
class. Imagine that a team of researchers would be
interested in the sentiments expressed toward a pol-
icy issue and they would only know the binarized
sentiment values on the right hand side in Figure
1. The researchers would not be able to conclude
whether the expressions toward the policy issue are
polarized into a supporting and an opposing side,
whether a large share of sentiment expressions is
positioned in the neutral middle, or whether the
sentiments are evenly spread out. Knowing the
continuous sentiment values, however, would al-
low them to differentiate between these scenarios.

As will be elaborated in Section 2, existing ap-
proaches that estimate continuous sentiment values
for texts rely on (1) the availability of a compre-
hensive, context-matching sentiment lexicon and
the researcher’s knowledge regarding how to accu-
rately model compositionality effects, or (2) highly
costly processes to create fine-grained training data.

Sentiment analysis thus would benefit from a
technique that generates continuous sentiment pre-
dictions for texts and is less demanding concerning
the required information or resources. To meet
this need, this work explores in how far the here
proposed classifier-based beta mixed modeling ap-
proach (CBMM) can produce valid continuous
(i.e. real-valued) sentiment estimates on the basis of
mere binary training data. The method comprises
three steps. First, for each training set document a
binary class label indicating whether the document
is closer to the negative or the positive extreme of
the sentiment variable has to be created or acquired.
Second, an ensemble of J classifiers is trained on
the binary class labels to produce for each ofN test
set documents J predicted probabilities to belong
to the positive class. Third, a beta mixed model
with N document random intercepts and J classi-
fier random intercepts is estimated on the predicted
probabilities. The N document random intercepts
are the documents’ continuous sentiment estimates.

In the following section, existing approaches
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Figure 1: Continuous and Discrete Sentiment Distribu-
tions. Right plot: Binarized sentiment values of the
tweets in the V-reg data set (Mohammad et al., 2018).
Left plots: Histograms and kernel density estimates for
three continuous distributions of sentiments that pro-
duce the plot on the right hand side if the continuous
sentiment values are binarized such that tweets with
values of ≥ 0.5 are assigned to the positive class and
otherwise are assigned to the negative class. The uni-
modal distribution at the top is the true distribution of
sentiment values but the other two distributions would
generate the same binary separation of tweets into pos-
itive and negative.

that generate continuous sentiments are reviewed
(Section 2). Then, CBMM is introduced in detail
(Section 3) before it is evaluated on the basis of
the Stanford Sentiment Treebank (SST) (Socher
et al., 2013), the V-reg data set (Mohammad et al.,
2018), and data from the 2008 American National
Election Studies (ANES) (The American National
Election Studies, 2015) (Section 4). A concluding
discussion follows in Section 5.

2 Related Work

This work is concerned with the estimation of con-
tinuous values for texts in applications in which
the underlying, unidimensional, continuous vari-
able (e.g. sentiment) is well defined and the re-
searcher seeks to position the texts along exactly
this variable. Hence, this work does not consider
unsupervised approaches (e.g. Slapin and Proksch,



2008) and only considers methods in which infor-
mation on the definition of the underlying variable
explicitly enters the estimation of the texts’ val-
ues. Among these methods, one can distinguish
two major approaches: lexicon-based procedures
and regression models that operate on fine-grained
training data.1

2.1 Lexicon-Based Approaches

An ideal sentiment lexicon covers all features in
the corpus of an application and precisely assigns
each feature to the sentiment value the feature has
in the thematic context of the application (Grim-
mer and Stewart, 2013; Gatti et al., 2016). A major
difficulty of lexicon-based approaches, however,
is that even such an ideal sentiment lexicon will
not guarantee highly accurate sentiment estimates.
The reason is that sentiment builds up through com-
plex compositional effects (Socher et al., 2013).
These compositional effects either can be mod-
eled via human-created rules or can be learned
by supervised machine learning algorithms. Ap-
proaches that try to model compositionality via
human-created rules range from simple formulas
(e.g. Paltoglou et al., 2013; Gatti et al., 2016) to
elaborate procedures (e.g. Moilanen and Pulman,
2007; Thet et al., 2010). Human-coded composi-
tionality rules, however, tend to be outperformed
by supervised machine learning algorithms (com-
pare e.g. Gatti et al., 2016, Table 12 and Socher
et al., 2013, Table 1). In the latter case, sentiment
lexicons serve the purpose of creating the feature
inputs to regression approaches—which are dis-
cussed next.

2.2 Regression Approaches

The second major set of approaches that gener-
ate real-valued sentiment estimates makes use of
highly granular training data (e.g. as in the SST
data set where each text is assigned to one out
of 25 distinct values (Socher et al., 2013)). In
these approaches, the fine-grained annotations are
treated as if they were continuous and a regression
model is applied.2 Typically, the mean squared er-

1Techniques for estimating continuous document positions
on an a priori defined unidimensional latent variable also have
been developed in political science. These methods either are
at their core lexicon-based approaches (Watanabe, 2021) or
require continuous values for the training documents (Laver
et al., 2003)—and thus have the same shortcomings as either
lexicon-based or regression approaches.

2Note that here, in correspondence with machine learn-
ing terminology, regression refers to statistical models and

ror (MSE) between the true granular labels and the
real-valued predictions from the regression model
is minimized. Regression approaches have shown
to be able to generate continuous sentiment predic-
tions that are quite close to the true fine-grained
labels (Mohammad et al., 2018; Wang et al., 2018).
Yet, the prerequisite for implementing such an ap-
proach is that fine-grained labels for the training
data are available. Generating such granular an-
notations, however, is difficult and costly: Catego-
rizing a training text into few ordinal categories is
arguably a more easy task than assigning a text into
one out of a large number of ordered values or even
rating a text on a real-valued scale. As the number
of distinct values increases, the number of inter-
and intra-rater disagreements is likely to increase
(Krippendorff, 2004). Hence, to produce reliable
text annotations, it is advantageous to have each
document rated several times by independent raters.
The independent ratings then can be aggregated by
taking the median or the mean of the ratings to
obtain the final value (see e.g. Kiritchenko and Mo-
hammad, 2017). The larger the number of raters
for a document, the more reliable the final value as-
signed to the document. For this reason, generating
reliable fine-grained labels for training documents
via rating scale annotations requires a resource in-
tensive annotation process.

The best-worst scaling (BWS) method in which
coders have to identify the most positive and the
most negative document among tuples of doc-
uments (typically 4-tuples), alleviates the prob-
lems of inter- and intra-rater inconsistencies (Kir-
itchenko and Mohammad, 2017). Yet, in order for
the rankings among document tuples to generate
valid real-valued ratings via the counting procedure
implemented in BWS, it is essential that each doc-
ument occurs in many different tuples such that
each document is compared to many different other
documents. This implies that a substantive number
of unique tuples have to be annotated—which, in
turn, demands respective human coding resources.

An alternative to the labeling of texts by human
coders is the usage of already available information
(e.g. if product reviews additionally come with nu-
merical star ratings). The problem here, however,
is that such information—if available at all—often
comes in the form of discrete variables with only
few distinct values (e.g. 5-star rating systems).

algorithms that model a real-valued response variable—which
typically is assumed to follow a normal distribution.



To conclude, it is difficult and resource intensive
to create or acquire fine-grained training data that
is so detailed that it can be treated as if it were
continuous. Not each team of researchers or prac-
titioners will have the resources to create detailed
training annotations and thus regression models
cannot be applied to each substantive application
of interest. Hence, the question that this work ad-
dresses is: Can one generate continuous sentiments
with fewer costs in a setting where inter- and intra-
rater inconsistencies are likely to be small? For
example based on a simple binary coding of the
training data?

3 Procedure

In the following, the three steps of the proposed
CBMM procedure—(1) generating binary class
labels, (2) training and applying an ensemble of
classifiers, as well as (3) estimating a beta mixed
model—are explicated. CBMM assumes that the
documents to be analyzed are positioned on a latent,
unidimensional, continuous sentiment variable.
The aim is to estimate the test set documents’ real-
valued sentiment positions. The test set documents
are indexed as i ∈ {1 . . . N} and their sentiment
positions are denoted as θ = [θ1 . . . θi . . . θN ]

>.

3.1 Generating Binary Class Labels

The CBMM procedure starts by generating binary
class labels for the training set documents, e.g. via
human coding. The coders classify the training
documents into two classes such that the binary
class label of each training set document indicates
whether the document is closer to the negative (0)
or the positive (1) extreme of the sentiment variable.
Alternatively to human coding, binarized external
information (such as star ratings associated with
texts) can be used as class label indicators.

3.2 Training and Applying an Ensemble of
Classifiers

In the second step, an ensemble of classification
algorithms, indexed as j ∈ {1 . . . J}, is trained on
the binary training data. The classifiers in the en-
semble may differ regarding the type of algorithm,
hyperparameter settings, or merely the seed values
initializing the optimization process. After training,
each classifier produces predictions for the N doc-
uments in the test set and each classifier’s predicted
probabilities for the test set documents to belong to
the positive class are extracted. Thus, for each doc-

ument i, a predicted probability to belong to class
1 is obtained from each classifier j, such that there
are J predicted probabilities for each document:
ŷi = [ŷi1 . . . ŷij . . . ŷiJ ]; whereby ŷij is classifier
j’s predicted probability for document i to belong
to class 1.

3.3 Estimating a Beta Mixed Model

In step three, the aim is to infer the unobserved doc-
uments’ continuous values on the latent sentiment
variable from the observed predicted probabilities
that have been generated by the set of classifiers.
The approach taken here is similar to item response
theory (IRT) in which unobserved subjects’ values
on a latent variable of interest (e.g. intelligence) are
inferred from the observed subjects’ responses to a
set of question items (Hambleton et al., 1991). Cen-
tral to IRT is the assumption that a subject’s value
on the latent variable of interest affects the subject’s
responses to the set of question items (Hambleton
et al., 1991). For example, a subject’s level of
intelligence is postulated to influence his/her an-
swers in an intelligence test. In correspondence
with this assumption, the consistent mathematical
element across all types of IRT models is that the
observed subjects’ responses are regressed on the
unobserved subjects’ latent levels of ability.

Here, there are documents rather than subjects
and classifiers rather than question items. Yet, the
aim is the same: to infer unobserved latent posi-
tions from what is observed. As in IRT, the idea
here is that a document’s value on the latent senti-
ment variable affects the predicted probabilities the
document obtains from the classifiers. For exam-
ple, a document with a highly positive sentiment is
assumed to get rather high predicted probabilities
from the classifiers. Consequently, the predicted
probabilities are regressed on the documents’ latent
sentiment positions.

In doing so, it has to be accounted for that the
predicted probabilities are grouped in a crossed
non-nested design: In step 2, for each of theN doc-
uments, J predicted probabilities (one from each
classifier) are produced such that there are N × J
predicted probabilities. These predicted probabili-
ties cannot be assumed to be independent. The J
predicted probabilities for one document are likely
to be correlated because they are repeated measure-
ments on the same document. Additionally, the N
predicted probabilities produced by one classifier
also are generated by a common source. They come



from the same classifier that might systematically
differ from the others, e.g. produce systematically
lower predicted probabilities.

Moreover, the data generating process is such
that the documents are drawn from a larger popula-
tion of documents. The population distribution of
the probability to belong to class 1 might inform
the probabilities obtained by individual documents.
Similarly, the classifiers are sampled from a popu-
lation of classifiers with a population distribution
in the generated predicted probabilities that may
inform an individual classifier’s predicted probabil-
ities. To account for this data generating process, a
mixed model with N document random intercepts
and J classifier random intercepts seems the ade-
quate model of choice. (On mixed models see for
example Fahrmeir et al. (2013, chapter 7)).

As the predicted probabilities, ŷij , are in the unit
interval [0,1], it is assumed that the ŷij are beta
distributed. Following the parameterization of the
beta density employed by Ferrari and Cribari-Neto
(2004) the beta mixed model is:

ŷij ∼ B(µij , φ) (1)

g(µij) = β0 + θi + γj (2)

θi ∼ N(0, τ2θ ) (3)

γj ∼ N(0, τ2γ ) (4)

In the model described here, ŷij (the probability
for document i to belong to class 1 as predicted by
classifier j) is assumed to be drawn from a beta dis-
tribution with conditional mean µij . µij assumes
values in the range (0,1) and φ > 0 is a precision
parameter (Cribari-Neto and Zeileis, 2010). µij is
determined by the fixed global population intercept
β0, the document-specific deviation θi from this
population intercept, and the classifier-specific de-
viation γj from the population intercept. As the
documents are assumed to be sampled from a larger
population, the document-specific θi are modeled
to be drawn from a shared distribution (see equa-
tion 3).3 The same is true for the classifier-specific
γj . To ensure that the results from the linear pre-
dictor in equation 2 are kept between 0 and 1, the
logit link is chosen as the link function g(·).4

Note that in the beta distribution V ar(ŷij) =
µij(1 − µij)/(1 + φ) (Cribari-Neto and Zeileis,

3Note that the usually employed assumption is that the
random effects are independent and identically distributed
according to a normal distribution (Fahrmeir et al., 2013).

4Thus, equation 2 is log(µij/(1− µij)) = β0 + θi + γj .

2010). This means that the variance of ŷij not only
depends on precision parameter φ but also depends
on µij , which implies that the model naturally ex-
hibits heteroscedasticity (Cribari-Neto and Zeileis,
2010). In the given data structure, documents that
express very positive (or very negative) sentiments
are likely to be easy cases for the classifiers and it
is likely that all classifiers will predict very high
(or very low) values. Documents that express less
extreme sentiments, in contrast, are likely to be
more difficult cases and the classifiers are likely to
differ more in their predicted probabilities. This is,
predicted probabilities are likely to exhibit a higher
variance for documents positioned in the middle of
the sentiment value range. To additionally account
for this effect, the beta mixed model described in
equations 1 to 4 can be extended with a dispersion
formula describing the precision parameter φ as a
function of document-specific fixed effects:5

h(φi) = δi (5)

To keep φi > 0, h(·) here is the log link (Brooks
et al., 2017).6 In the following, CBMM is imple-
mented with and without the dispersion formula in
equation 5. The variant of CBMM that includes
equation 5 is denoted CBMMd.

With or without a dispersion formula, the θi de-
scribe the document-specific deviations from the
fixed population mean β0. Hence, the θi —in linear
relation to β0—position the documents on the real
line and thus are taken as the CBMM and CBMMd
estimates for the continuous sentiment values.

4 Applications

4.1 Data
The effectiveness of CBMM in generating continu-
ous sentiments using binary training data is evalu-
ated on the basis of four data sets:

The Stanford Sentiment Treebank (SST) (Socher
et al., 2013) contains sentiment labels for 11,855
sentences [train: 9,645; test: 2,210] taken from
movie reviews. Each of the sentences was assigned
one out of 25 sentiment score values ranging from
highly negative (0) to highly positive (1) by three
independent human annotators.

5Note that the document-specific δi are fixed effects that
are not modeled to be sampled from a shared population distri-
bution. The reason is that current software implementations of
mixed models that use maximum likelihood estimation only
allow for inserting fixed effects but no random effects in the
dispersion model formula (Brooks et al., 2017).

6Thus, equation 5 here is log(φi) = δi.



The V-reg data set from the SemEval-2018 Task
1 on “Affect in Tweets” (Mohammad et al., 2018)
contains 2,567 tweets [train: 1,630; test: 937] that
are likely to be rich in emotion. The tweets’ real-
valued valence scores are in the range (0,1) and
were generated via BWS, whereby each 4-tuple
was ranked by four independent coders.

Furthermore, two data sets from the 2008 Ameri-
can National Election Studies (ANES) (The Amer-
ican National Election Studies, 2015) are used.
The feeling thermometer question, in which par-
ticipants have to rate on an integer scale ranging
from 0 to 100 in how far they feel favorable and
warm vs. unfavorable and cold toward parties, is
posed regularly in ANES surveys. In the 2008
pre-election survey, participants were additionally
asked in open-ended questions to specify what they
specifically like and dislike about the Democratic
and the Republican Party.7 Here, the aim is to
generate continuous estimates of the sentiments
expressed in the answers based on the binarized
feeling thermometer scores. For the Democrats
there are 1,646 answers [train: 1,097; test: 549].
This data set is named ANES-D. For the Repub-
licans there are 1,523 answers [train: 1,015; test:
508] that make up data set ANES-R. For compari-
son with the other applications, the true scores from
ANES are rescaled by min-max normalization from
range [0,100] to [0,1].

To create binary training labels for the CBMM
procedure, in all training data sets the fine-grained
sentiment values are dichotomized such that the
class label for a document is 1 if its score is ≥
0.5 and is 0 otherwise. CBMM’s continuous sen-
timent estimates for the test set documents then
are compared to the original fine-grained values.
Note that these four data sets are selected for eval-
uation precisely because they provide fine-grained
sentiment scores against which the CBMM esti-
mates can be compared to. In each of the four
data sets, the detailed training annotations are the
result of resourceful coding processes or—in the
case of ANES—lucky coincidences. For exam-
ple, around 50,000 annotations were made for the
V-reg data set that comprises 2,567 tweets (Moham-
mad et al., 2018). Such resources or coincidences,
however, are unlikely to be available for each po-
tentially interesting research question. Thus, whilst

7The survey contains one question asking what the partici-
pant likes and a separate question asking what the participant
dislikes about a party. For each respondent, the answers to
these two questions are concatenated into a single answer.

these data sets are selected because they come with
fine-grained labels that can be used for evaluating
CBMM, the settings in which CBMM will be espe-
cially valuable are those in which external informa-
tion that may serve as a granular training input is
unavailable and the available amounts of resources
are not sufficient for a granular coding of texts.

4.2 Generating Continuous Sentiment
Estimates via CBMM

Step 2 of the CBMM procedure consists in train-
ing an ensemble of classifiers on the binary train-
ing data to then obtain predicted probabilities for
the test set documents. Here, for all four applica-
tions, a set of 10 pretrained language representa-
tion models with the RoBERTa architecture (Liu
et al., 2019) are fine-tuned to the binary classifi-
cation task. The 10 models within one ensemble
merely differ regarding their seed value that ini-
tializes the optimization process and governs batch
allocation.8 As the seed values are randomly gen-
erated, this neatly fits with the assumption encoded
in the specified mixed models that classifiers are
randomly sampled from a larger population of clas-
sifiers. As a Transformer-based model for transfer
learning, RoBERTa is likely to yield relatively high
prediction performances in text-based supervised
learning tasks also if—as is the case for the selected
applications—training data sets are small.

In step 3 of CBMM, two different beta mixed
models as presented in equations 1 to 5—one
model with and the other without a dispersion
formula—are estimated. In each mixed model, the
estimate for θi is taken as the sentiment value pre-
dicted for document i.

Steps 1 and 3 of the CBMM procedure are
conducted in R (R Core Team, 2020). The beta
mixed models are estimated with the R package
glmmTMB (Brooks et al., 2017). In step 2, fine-
tuning is conducted in Python 3 (Van Rossum
and Drake, 2009) making use of PyTorch (Paszke
et al., 2019). Pretrained RoBERTa models are ac-
cessed via the open-source library provided by Hug-
gingFace’s Transformers (Wolf et al., 2020). The
source code to replicate the findings is available at
https://doi.org/10.6084/m9.figshare.14381825.v1.

8The 10 models applied for one application also have the
same hyperparameter settings. In all four applications, a grid
search across sets of different values for the batch size, the
learning rate and the number of epochs is conducted via a 5-
fold cross-validation. The hyperparameter setting that exhibits
the lowest mean loss across the validation folds and does not
suffer from too strong overfitting is selected.



4.3 Evaluation

4.3.1 Comparisons to Other Methods
The sentiment estimates from CBMM and CBMMd
are compared to the following methods.

Mean of Predicted Probabilities [Pred-Prob-
Mean]. For each document, this procedure simply
takes the mean of the predicted probabilities across
the ensemble of classifiers: θ̂i = 1

J

∑J
j=1 ŷij .

Lexicon-Based Approaches. Two lexicons are
made use of. First, the SST provides for each tex-
tual feature in the SST corpus a fine-grained hu-
man annotated sentiment value that indicates the
feature’s sentiment in the context of movie reviews.
Hence, the SST constitutes an all-encompassing
and perfectly tailored lexicon for the SST applica-
tion and is employed as a lexicon here. Second,
the SentiWords lexicon (Gatti et al., 2016), that
is based on SentiWordNet (Esuli and Sebastiani,
2006) and contains prior polarity sentiment values
for around 155,287 English lemmas, is used. For
the SST and the SentiWords lexicons, the sentiment
value estimates are generated by computing the
arithmetic mean of a document’s matched features’
values. The procedures here are named SST-Mean
and SentiWords-Mean.

Regression approaches, that make use of the
true fine-grained sentiment values rather than the
binary training data, are also applied. Note that
the evaluation results for the regression-based pro-
cedures signify the levels of performance that can
be achieved if one is in the ideal situation and pos-
sesses fine-grained training annotations. Hence, the
regression approaches constitute a reference point
against which the other approaches’ performances
can be related to.

Here, in all four applications, J = 10 RoBERTa
regression models are trained on the training set
and then make real-valued predictions for the doc-
uments in the test set such that there are J =
10 predictions for each test set document: ẑi =
[ẑi1 . . . ẑij . . . ẑiJ ]; whereby ẑij is the real-valued
prediction of regression model j for document i.
To have a fair comparison to CBMM, the same
procedures for aggregating the predicted values are
explored. Thus, there are three different aggrega-
tion methods. First, the mean of the 10 models’
predictions is taken such that the sentiment esti-
mate is: θ̂i = 1

J

∑J
j=1 ẑij [Regr-Mean]. Second

and third, a mixed model with and without a dis-
persion formula is estimated on the basis of the ẑij .
The estimates for the θi are extracted as the contin-

uous sentiment predictions. Yet, to account for the
data generating process of the ẑij , a linear mixed
model (LMM)—instead of a beta mixed model—is
estimated:

ẑij ∼ N(µij , σ
2) (6)

µij = β0 + θi + γj (7)

θi ∼ N(0, τ2θ ) (8)

γj ∼ N(0, τ2γ ) (9)

This approach is named Regr-LMM. The LMM
with a dispersion formula, Regr-LMMd, addition-
ally has: h(σ2i ) = δi; with h(·) being the log link.

4.3.2 Evaluation Metrics
The generated continuous sentiment estimates are
evaluated by comparing them to the original granu-
lar sentiment labels. Three evaluation metrics are
used: the mean absolute error (MAE), the Pearson
correlation coefficient r, and Spearman’s rank cor-
relation coefficient ρ. The evaluation metrics are
selected such that there is a measure of the average
absolute distance (MAE) as well as a measure of
the linear correlation (r) between the original true
sentiment values and the estimated values. Note
that Spearman’s ρ assesses the correlation between
the ranks of the true and the ranks of the estimated
values and thus evaluates in how far the order of
documents from negative to positive sentiment as
produced by the evaluated approaches reflects the
order of documents according to the true scores.

4.4 Results
Table 1 presents the evaluation results across all
applied data sets. Figure 2 visualizes distributions
of the true and estimated sentiment values for the
SST data. Across the four employed data sets (each
with a different shape of the to be approximated
distribution of the true sentiment values) the perfor-
mance levels vary for all approaches. Yet, the main
result remains consistent: the continuous sentiment
estimates generated by CBMM correlate similarly
with the truth and get only slightly less closer to
the truth as the predictions generated by regression
approaches that operate on fine-grained training
data. At times, CBMM estimates even slightly out-
perform regression predictions. Hence, researchers
that seek to get continuous sentiment estimates but
do not have the resources to produce highly de-
tailed training annotations can apply CBMM on
binary training labels and thereby obtain estimated
continuous sentiments whose performance is likely



SST
MAE r ρ

SST-Mean 0.190 0.554 0.574
SentiWords-Mean 0.201 0.428 0.429
Regr-Mean 0.099 0.892 0.876
Regr-LMM 0.099 0.892 0.876
Regr-LMMd 0.099 0.892 0.876
Pred-Prob-Mean 0.216 0.859 0.856
CBMM 0.161 0.874 0.856
CBMMd 0.137 0.877 0.856

V-reg
MAE r ρ

0.171 0.437 0.487
0.177 0.429 0.475
0.090 0.871 0.869
0.090 0.871 0.869
0.090 0.872 0.870
0.198 0.804 0.844
0.164 0.819 0.842
0.133 0.835 0.844

ANES-D
MAE r ρ

0.242 −0.013 −0.033
0.254 −0.067 −0.079
0.195 −0.655 −0.653
0.195 −0.655 −0.653
0.195 −0.655 −0.653
0.202 −0.646 −0.649
0.191 −0.667 −0.648
0.200 −0.668 −0.649

ANES-R
MAE r ρ

0.252 −0.059 0.058
0.289 −0.009 0.005
0.191 −0.618 0.627
0.191 −0.618 0.627
0.192 −0.618 0.627
0.218 −0.624 0.613
0.207 −0.621 0.613
0.205 −0.620 0.612

Table 1: Evaluation Results. For the SST, V-reg, ANES-D, and ANES-R test data sets, the mean absolute error
(MAE), the Pearson correlation coefficient r, and Spearman’s rank correlation coefficient ρ between the true and
the estimated sentiment values are presented. The shading of the cells is a linear function of the approaches’ level
of performance. The darker the shading, the higher the performance. For computing the MAE, the predicted
sentiment values are rescaled via min-max normalization to the range of the true sentiment values.
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Figure 2: True and Estimated Sentiment Values for the SST Data. First column: Histograms of the true sentiment
scores. Remaining columns, top row: Estimates from Regr-Mean, CBMMd, Pred-Prob-Mean, and SST-Mean
plotted against the true sentiment values. Remaining columns, bottom row: Histograms of the estimates from
Regr-Mean, CBMMd, Pred-Prob-Mean, and SST-Mean.

to be only slightly lower compared to predictions
from regression models. Beside this main finding,
the following aspects are revealed:

Lexicon-based approaches do not perform very
well. The predicted sentiments are centered in the
middle of the sentiment value range and changes in
a document’s sentiment are not strongly reflected
in changes in the sentiment values predicted by the
lexicons. (As an example see the most right column
of Figure 2.) Consequently, the lexicon generated
sentiment estimates exhibit relatively low levels of
correlation with the true sentiment values. Espe-
cially the case of the SST lexicon for the SST data
shows that it is not sufficient to have a lexicon that
has a coverage of 100% and is perfectly tailored
to the context it is applied to. In order to get valid
sentiment estimates, one requires an aggregation

procedure that accounts for the complex building
up of sentiment in texts.

Regression Approaches. The continuous sen-
timent predictions generated by regression ap-
proaches tend to have the smallest distances to and
the highest correlations with the true sentiment
scores. Hence, the results demonstrate that if one
has detailed training annotations available that can
be treated as if they were continuous, regression
approaches constitute an effective way to bring sen-
timent estimates as close as possible to the true
sentiment values.

Across applications, the estimates obtained from
Regr-Mean, Regr-LMM, and Regr-LMMd are
highly similar. The reason is that the variance
for the document-specific intercepts, τ2θ , is high
relative to the error variance σ2, and the classifier-



specific variance τ2γ .9 Thus, the LMM estimator
is close to a fully unpooled solution in which a
separate model for each document is estimated
(Fahrmeir et al., 2013, p. 355-356). The sentiment
predictions from Regr-LMM are therefore highly
correlated with Regr-Mean that computes a sepa-
rate mean for each document. Furthermore, adding
a dispersion formula does not strongly affect the
predictions from Regr-LMM.

Pred-Prob-Mean leads to acceptable results. Yet,
the estimates from Pred-Prob-Mean still strongly
mirror the binary coding structure (see the fourth
column of Figure 2). Moreover, MAE tends to
decrease and r tends to increase further if the pre-
dicted probabilities are aggregated via beta mixed
models in CBMM.

CBMM produces continuous sentiment estimates
that exhibit performance levels that are relatively
close to those of the regression-based procedures.
When considering the MAE and r, CBMMd tends
to slightly outperform CBMM. As the predicted
probabilities across all four data sets are character-
ized by a high degree of heteroskedasticity10 addi-
tionally accounting for heteroskedasticity via the
dispersion formula thus tends to further improve
the estimates.

Interestingly, across the three approaches
based on predicted probabilities (Pred-Prob-Mean,
CBMM, CBMMd) Spearman’s ρ nearly remains
unchanged. This implies that the predicted order
of documents on the latent sentiment variable is
largely determined by the predicted probabilities
from the ensemble of classifiers. Thus, whilst Pred-
Prob-Mean, CBMM and CBMMd operate on the
same order of documents,11 it is the aggregation of
the predicted probabilities by a beta mixed model—
and the accounting for heteroskedasticity—that en-
ables CBMM and CBMMd to alter the distances
between the documents’ positions on the sentiment
variable such that the distribution of true sentiment
values can be approximated more closely. (Com-
pare the histograms of the values predicted by CB-

9Yet, across all evaluated data sets, a Restricted Likelihood-
Ratio-Test (based on the approximation presented by Scheipl
et al. (2008) as implemented in the RLRsim R-package) testing
the null hypothesis that τ2γ = 0, reveals that this null hypothesis
can be rejected at a significance level of 0.01.

10To assess heteroskedasticity, Breusch-Pagan Tests
(Breusch and Pagan, 1979) are conducted. For all applications
and tested linear models, the Breusch-Pagan Test suggests that
the null hypothesis of homoskedasticity can be rejected at a
significance level of 0.01.

11Spearman’s ρ between the estimates from Pred-Prob-
Mean and CBMMd equals 0.999 across all applications.

MMd and Pred-Prob-Mean in Figure 2.)

5 Conclusion

This work introduced CBMM—a classifier-based
beta mixed modeling technique that generates con-
tinuous estimates for texts by estimating a beta
mixed model based on predicted probabilities from
a set of classifiers. CBMM’s central contribution
is that it produces continuous output based on bi-
nary training input, thereby dispensing the require-
ment of regression approaches to have (possibly
prohibitively costly to create) fine-grained training
data. Evaluation results demonstrate that CBMM’s
continuous estimates perform well and are not far
from regression predictions.

CBMM here is applied in the context of senti-
ment analysis. Yet, it can be applied to any context
in which the aim is to have continuous predictions
but the resources only allow for creating binary
training annotations.
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