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Abstract

Preprocessing is essential for creating more ef-
fective features and reducing noise in classifi-
cation, especially in user-generated data (e.g.
Twitter). How each individual preprocessing
decision changes an individual classifier’s be-
havior is not universal. We perform a series
of ablation experiments in which we examine
how classifiers behave based on individual pre-
processing steps when detecting offensive lan-
guage in German. While preprocessing deci-
sions for traditional classifier approaches are
not as varied, we note that pre-trained BERT
models are far more sensitive to each decision
and do not behave identically to each other.
We find that the cause of much variation be-
tween classifiers has to do with the interactions
specific preprocessing steps have on the over-
all vocabulary distributions, and, in the case
of BERT models, how this interacts with the
WordPiece tokenization.

1 Introduction

The task of abusive language detection has be-
come increasingly popular for a variety of lan-
guages (Zampieri et al., 2019; Basile et al., 2019;
Al-Khalifa et al., 2020). German specifically has
had two shared tasks on the topic, one in 2018
(Wiegand et al., 2018) and a second in 2019 (Struß
et al., 2019).

Not only is offensive language detection some-
what subjective in nature, particularly in the need
for contextual requirements, but is often examined
through user generated mediums, creating another
layer of complexity to successfully identify possi-
ble abusive language. Often, in order to create more
useful features out of the text for the classifier, we
must first treat the text to reduce the noise. While
for standard feature generation via count vectors
the impact is far more obvious (e.g. reduction of
feature space), even when we feed a dense vector

representations to a classifier (e.g. a sentence em-
bedding), that embedding still represents the textual
representation, simply in an alternative way. Thus,
it too is influenced by individual alterations to the
text. With languages that show large variation in di-
alect preferences and orthographic representations,
this has been shown to be particularly important
(Husain, 2020).

Twitter has proven to be a typical source for not
only research on offensive language, but also neces-
sitating additional preprocessing approaches given
its different style of communication and lexicon.
In this work we look to perform a set of ablation
experiments in which we evaluate how different
preprocessing techniques impact classifier behav-
ior over three different approaches to classification
when detecting offensive language in German Twit-
ter. We seek to answer the following questions:

1. How do different preprocessing techniques
influence performance across different classi-
fiers?

2. Can we identify features within different pre-
proccesing techniques that can help explain
specific classifier behaviors?

2 Related Work

2.1 Data

Ross et al. (2016) introduced a Twitter corpus of
offensive language detection, examining the 2015
refugee crisis. They predominantly focused on
user’s perceptions of hate speech and the reliability
of annotations. They found that agreement among
annotators was relatively low and that also the opin-
ions of users asked in a survey diverge greatly
and thus stress the necessity of specific guidelines.
However, even with such guidelines, annotators can
still show large differences (Nobata et al., 2016).



Task 2 of the GermEval 2018 shared task (Wie-
gand et al., 2018) focused on detecting offensive
and non-offensive Tweets and was further exam-
ined in GermEval 2019 (Struß et al., 2019).

A different approach was taken by Zufall et al.
(2019) who instead label offensive Tweets based on
whether they may be punishable by law or not. This
decision is based on two criteria: the type of target
and the type of offense. A Tweet may be punishable
if it is targeted at either a living individual or a
specific group of people, and if it expresses either
a wrong factual claim, abusive insults, or abusive
criticism.

2.2 Classifiers
Abusive language detection in German has shown a
great deal of variation across classifiers and feature
thresholds (Steimel et al., 2019). In the 2018 shared
tasks, SVMs were a popular choice (Wiegand et al.,
2018), achieving effective results. Popular features
include pre-trained word embeddings, mostly ei-
ther fastText (Bojanowski et al., 2017) or word2vec
(Mikolov et al., 2013), and lexical features based
on polarity lexicons or lexicons on offensive lan-
guage and effective results were achieved with only
a few hundred features (De Smedt and Jaki, 2018).
Other classifiers included standard Decision Trees
or Boosted Classifiers, but tended to yield slightly
worse performance (Scheffler et al., 2018).

The most effective approaches tended to use en-
semble classifiers: CNNs with logit averaging (von
Grünigen et al., 2018), a combination of RNNs and
CNNs (Stammbach et al., 2018), or combination of
Random Forest classifiers (Montani and Schüller,
2018).

With the introduction of BERT (Devlin et al.,
2019), the 2019 shared task saw a different trend,
with many participants submitting fine-tuned mod-
els (Struß et al., 2019). Paraschiv and Cercel (2019)
pre-trained a BERT model on German Twitter data,
obtaining the best reported macro F-score of 76.95.
Other approaches included fine-tuning an ensem-
ble of BERT models trained on different German
textual sources (Risch et al., 2019).

SVMs continued to be a popular choice however,
with some systems achieving results almost equal
to BERT-based approaches by using word embed-
dings pre-trained on German Tweets and lexical
features (Schmid et al., 2019).

2.3 Preprocessing
Angiani et al. (2016) experimented with the pre-

processing methods of replacement of emoticons
with a text representation, replacing negation con-
tractions such as don’t with do not, detection of
spelling errors, stemming, and removal of stop-
words for general sentiment analysis on Twitter
data. Using a Naive Bayes classifier to classify
whether the sentiment was positive, neutral or neg-
ative, most techniques yielded slight improvements
over the baseline with little preprocessing.

While Risch et al. (2019) had a minimalistic ap-
proach to preprocessing and only normalized user
names, Paraschiv and Cercel (2019), whose contri-
bution performed best in the GermEval 2019 shared
task, made use of a wide range of preprocessing
methods when fine-tuning BERT. They replaced
emojis with spelled-out representations; removed
the #-character at the beginning of hashtags and
split hashtags into words; transformed usernames,
weblinks, newline markers, numbers, dates and
timestamps to standard tokens; and manually cor-
rected spelling errors. They however do not explic-
itly state how much this contributed to achieving a
higher performance.

Schmid et al. (2019) lowercased and lemmatized
words, while also removing the #-character of the
hashtag and stop words when creating features for
their SVM. Sentiment scores were also obtained
for emojis through the sentiment ranking for emo-
jis by Kralj Novak et al. (2015) and added to the
sentiment scores obtained trough SentiWS (Remus
et al., 2010) for all words in the sentence. Both
scores were treated as separate features and ranged
range from -1 to 1. Scheffler et al. (2018) also
lemmatized and removed stop words, but did not
explicitly state their treatment of hashtags and cap-
italization for their experiments involving SVMs,
decision tree, and boosted classifiers. Moreover,
they did not include emojis when modeling a senti-
ment score as one of their features.

3 Methodology

3.1 Data

For all experiments, we use the the dataset from the
GermEval 2019 Task 2 (Struß et al., 2019). Tweets
were sampled from a range of political spectrums
and labeled as either OFFENSE or OTHER for
the binary classification task (see Table 1 for data
splits).



OFFENSE OTHER Total
Train 1287 2709 3996
Test 970 2061 3031

Table 1: Train and Test Data Splits

3.2 Preprocessing

Base Methods Lemmatization is a relatively
common preprocessing step applied in the shared
task of Wiegand et al. (2018), examples include
Scheffler et al. (2018) and Schmid et al. (2019),
on which we base our experimental setup for our
SVM and AdaBoost classifiers. Consequently, we
lemmatize all words1 for our AdaBoost and SVM
experiments. A second base step, carried out in
all experiments, including those when fine-tuning
BERT for classification, is replacing user names
with the token USER.

Emojis We try the approaches in the contribu-
tions to the GermEval 2019 shared task by both
Paraschiv and Cercel (2019), who replaced emojis
with textual representations, and Risch et al. (2019),
who did not adress emojis in preprocessing, respec-
tively. Additionally, we calculate for the non-neural
classifiers an emoji sentiment score, also through
the ranking of Kralj Novak et al. (2015), together
with sentiment scores for words, through SentiWS
(Remus et al., 2010). Unlike Paraschiv and Cercel
(2019) however, who use English descriptions of
emojis, we translate the descriptions into German.2

Hashtags We remove the #-character at the be-
ginning of each hashtag. Additionally, we try split-
ting camel-cased hashtags as done by Paraschiv
and Cercel (2019).

Capitalization We perform three strategies: re-
taining the original capitalization, lowercasing the
entire text, and truecasing. Truecasing is “the pro-
cess of restoring case information to raw text” (Lita
et al., 2003). For German, this is beneficial since it
keeps orthographic characteristics (e.g. all nouns
are capitalized) but removes situational one (e.g.
words capitalized only because they begin a sen-
tence). Additionally, Risch et al. (2019) point out
that in their experiments, for words written in Caps
Lock, each letter is frequently recognized as a sepa-
rate token. Additionally, truecasing has been shown
to be useful for NLP on noisy data (Lita et al.,

1We use spaCy.
2Translations are done using Google Translate.

2003).
Truecasing the test and training data is per-

formed by using the truecasing scripts from the
Moses system (Koehn et al., 2007), which are nor-
mally used for statistical machine translation. We
create a truecasing model by training on a large,
cleaned, preprocessed German Wikipedia Text Cor-
pus.3 We use the SoMaJo tokenizer for German
social media data (Proisl and Uhrig, 2016) to tok-
enize the Twitter data.

3.3 Classifiers

All hyperparameter optimization is performed us-
ing a 5-fold cross validation and results for all
experiments are reported using macro-averaged F
scores since the dataset is imbalanced and we wish
to give equal weight to both the minority and ma-
jority classes.

SVM The features for the SVM (Boser et al.,
1992) are similar to the ones used in the second
system of Schmid et al. (2019), where pre-trained
fastText vectors (Bojanowski et al., 2017) were
used to create Tweet level vector representations.
We initially experimented with a set of fastText vec-
tors pre-trained on a smaller set of Twitter data as
well as with different dimensions, but results were
poor relative to other pre-trained fastText embed-
dings. We ultimately settled on on the default 300
dimensional fastText German embeddings (Grave
et al., 2018), trained on the German CommonCrawl
and Wikpedia, as they yielded the most stable per-
formance.

We also add a binary feature which signals if
a Tweet contains one or more German slurs from
the slur dictionary of Hyperhero,4 similar to that
of Scheffler et al. (2018) and Schmid et al. (2019),
although we do not manually create a lexicon of
offensive terms as performed by the latter. The
vectors plus the binary feature and the sentiment
scores are concatenated and fed to the SVM.

We use a linear kernel and in order to reduce
attributes with greater numerical ranges from dom-
inating, we perform feature scaling (Hsu et al.,
2008), and only hyperparameterize for the regu-
larization parameter C.5

3https://github.com/
t-systems-on-site-services-gmbh/
german-wikipedia-text-corpus

4http://www.hyperhero.com/de/insults.
htm

5We only optimize C for 0.1, 1. 10 and 100

https://github.com/t-systems-on-site-services-gmbh/german-wikipedia-text-corpus
https://github.com/t-systems-on-site-services-gmbh/german-wikipedia-text-corpus
https://github.com/t-systems-on-site-services-gmbh/german-wikipedia-text-corpus
http://www.hyperhero.com/de/insults.htm
http://www.hyperhero.com/de/insults.htm


Iterators 10 50 100 500
Learning Rate 0.0001 0.001 0.01 0.1 1

Table 2: Values for the grid search for hyperparameter
tuning for the AdaBoost experiments

Epochs 2
Batch Size 32
Maximum Length 150
Learning Rate 2e-5
Optimizer Adam
Loss Function Cross-Entropy Loss

Table 3: Hyperparameters for fine-tuning BERT

AdaBoost Additionally, we experiment with Ad-
aBoost (Freund and Schapire, 1996) as it was used
by Scheffler et al. (2018). AdaBoost is a boosting
technique that will combine multiple weak clas-
sifiers (in our cases tree stumps) by giving more
weight to incorrectly classified training instances,
importantly without large weight reduction to the
correctly classified instances. We also hyperparam-
eterize using grid search following values taken
from Brownlee (2020).

BERT We use both the bert-base-german-cased6

and the dbmdz/bert-base-german-cased7, referring
to them as DeepAI and dbmdz respectively here-
after. The DeepAI model was pre-trained on a
German Wikipedia dump, the OpenLegal dump, a
large data collection involving German court deci-
sions, and 3.6 GB of news articles. This data was
cleaned and segmented into sentences by the spaCy
library. The dbmdz model was pre-trained on a
collection of Wikipedia, the EU Bookshop corpus,
Open Subtitles, CommonCrawl, ParaCrawl, and
NewsCrawl. Both models make use of a Word-
Piece vocabulary which was created through the
WordPiece tokenizer (Wu et al., 2016). As neither
are pre-trained on any particular social media text,
we assume that they are not well equipped to handle
more common social media orthographic standards,
such as hashtags and emojis. Following Risch et al.
(2019) we fine-tune for two epochs using a batch
size of 32 (see Table 3 for all hyperparameters).

4 Results

First we must note that we ran some BERT models
with different initial seeds and noted instabilities

6https://deepset.ai/german-bert
7https://github.com/dbmdz/berts

in performance. Given this, results should not be
viewed as entirely explained by the different pre-
processing choices, rather and indication of the
volatility of the models in interaction with prepro-
cessing. We are more interested in highlighting the
interaction and variation across BERT models and
preprocessing than determining an optimal solu-
tion. For this reason, we only report scores using
the default seed in order to allow a better analy-
sis (see Section 5) in terms of linking observed
differences to specific preprocessing choices, and
interaction with both the WordPiece tokenization
and the vocabulary distribution.

We first begin by establishing baselines for each
classifier, in which minimal preprocessing is per-
formed. For BERT, we only replaced user names
with a USER token (baseline BERT in Table 4).
For the SVM and AdaBoost we perform the former,
but since we experiment with two different ways
of treating emojis (replacement vs. inclusion in
sentiment scores) and want to compare the results
against an experiment where emojis are not taken
into account at all, we additionally remove emo-
jis in our baseline here and lemmatize all words
(baseline SVM/AdaBoost in Table 4).

In Table 4 we present F-scores for our ablation
experiments. We can see that AdaBoost tends to
exhibit a degradation in performance in respect
to performing only base preprocessing operations
when any additional preprocessing techniques are
applied. The only exception tends to be in experi-
ments that have a combination of splitting hashtags
and truecasing. This may simply be due a reduc-
tion of overall features, but it is not inherently clear
what is causing the degradation.

The SVM tends to outperform AdaBoost overall,
which is in line with Scheffler et al. (2018) though
only in a couple of instances, shows any notice-
able improvements. Lowercasing, as performed
in Schmid et al. (2019), leads here to the biggest
drop in performance. Surprisingly, the classifica-
tion overall does not profit from the information of-
fered by emojis, as both the experiment with emoji
replacement as well as the experiment with only ba-
sic preprocessing and without emoji removal do not
perform above the baseline. This also holds true
for emoji replacement in combination with split-
ting hashtags since the performance here is slightly
worse than for only splitting hashtags. Interestingly,
we see that only truecasing the data yields the best
performing model, and that, similar to AdaBoost, a

https://deepset.ai/german-bert
https://github.com/dbmdz/berts


Experiment AdaBoost SVM DeepAI dbmdz
emojis removed (baseline SVM/AdaBoost) 66.74 66.81 72.74 69.04

only basic methods (baseline BERT) 66.90 66.78 71.31 71.93
replacing emojis 66.39 66.23 71.34 72.60
splitting hashtags 66.20 66.90 68.62 74.49
only truecasing 66.09 67.64 73.25 69.13

replacing emojis + splitting hashtags + lowercasing 64.62 64.33 70.04 73.32
splitting hashtags + truecasing 67.65 66.74 73.62 71.85

replacing emojis + splitting hashtags 66.62 66.78 73.10 70.88
replacing emojis + splitting hashtags + truecasing 67.31 67.23 72.68 71.33

Table 4: F1-macro Scores for All Classifiers

combination of truecasing with emoji replacement
and splitting hashtags led to improvments over the
baseline as well, although here, splitting hashtags
and truecasing without emoji replacement led to a
slight decrease.

One striking difference is the performance of
DeepAI vs dbmdz and their behaviors not only in
respect to the preprocessing techniques, but also
to each other. Firstly, we see that the baselines
are slightly different and all applied preprocess-
ing techniques benefit dbmdz, even if minimally,
compared to DeepAI, where we some techniques
result in worse performance relative to the baseline.
Additionally, we can see that in some cases, the
models actually have opposite behaviors. For ex-
ample, simply splitting hashtags resulted in the best
performance for dbmdz, yet was the worst perfor-
mance for DeepAI. A counter example is only true-
casing which yielded minimal performance gains
for dbmdz but produced the second best results for
DeepAI.

5 Analysis

While results for AdaBoost and the SVM do show
some variation, the DeepAI and dbmdz exhibit
much more noticeable changes. For this reason,
we choose to examine only these two model in
terms of how the minority and majority classes are
behaving in order to try and glean insight into the
underlying causes. Table 5 shows the precision
and recall of classes for the these models. We can
clearly see a great deal of volatility on the minor-
ity (OFFENSE) class, particularly on recall. This
could again be because of a general instability but
it may also suggest that, querying Tweets deemed
offensive is far more sensitive to the preprocess-
ing methods than labeling them correctly when the
models are being fine-tuned. We perform a more

in-depth analysis into possible reasons behind the
variations between all classifiers and present the
findings below.

5.1 Emojis

Without emoji replacement, the WordPiece tok-
enization used by the BERT models splits the uni-
code representations into single letters or chunks
of two or three numbers. It can be assumed that
these models cannot effectively make use of such
representations. Replacing emojis with text on the
other hand presents a way to retain the meaning of
the emoji in the text, which seems to have helped
DeepAI in particular in finding offensive tweets as
all experiments with emoji replacement constantly
outperform its baseline with respect to recall for
the OFFENSE class.

One example is the case of the middle finger
emoji, for which emoji replacement helps detect
offensive Tweets. It occurs in 37 Tweets, 35 of
which have the gold label OFFENSE. The DeepAI
model trained on truecased data with emoji replace-
ment managed to correctly label 13 of these with-
out wrongly classifying posts that were labeled
as OTHER. Table 6 shows how many of these 13
instances were detected DeepAI when different pre-
processing methods were applied. This suggests
that replacing emojis improves detecting offensive
Tweets when the middle finger emoji is present. In
the experiment with emoji replacement + hashtag
splitting + lowercasing however, one of the two
non-offensive Tweets was wrongly classified as
offensive.

Replacing emojis also present some pitfalls. One
such case for the DeepAI BERT classifier is related
to the winking face emoji, which is not inherently
associated with offensive behavior. However, the
models trained on data where emojis were replaced



DeepAI dbmdz
OFFENSE OTHER OFFENSE OTHER

Experiment Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.
emojis removed (baseline SVM/AdaBoost) 66.27 57.94 81.31 83.65 84.09 38.14 76.84 96.60
only basic methods (baseline BERT) 78.62 44.74 78.38 94.27 80.15 45.36 78.65 94.71
replacing emojis 58.51 66.60 83.19 77.78 73.36 50.82 79.78 91.31
splitting hashtags 75.78 40.31 76.98 93.93 72.27 56.70 81.50 89.76
only truecasing 69.49 55.88 80.99 88.45 82.31 38.87 76.95 96.07
replacing emojis + splitting hashtags + lowercasing 67.67 48.56 78.63 89.08 73.73 52.37 80.27 91.22
splitting hashtags + truecasing 77.24 50.72 80.03 92.96 77.49 46.49 78.81 93.64
replacing emojis + splitting hashtags 67.55 57.53 81.32 87.00 75.91 45.15 78.32 93.26
replacing emojis + splitting hashtags + truecasing 62.36 63.71 82.75 81.90 77.23 45.46 78.50 93.69

Table 5: Class Results for BERT DeepAI and dbmdz

Preprocessing # of Tweets
emoji + splitting hashtags + lowercasing 10

truecasing 5
splitting hashtags + truecasing 3

baseline 2

Table 6: Number of Tweets classified as offensive by
DeepAI BERT, out of the 13 Tweets with the middle
finger emoji that were classified correctly in the exper-
iment involving emoji replacement, hashtag splitting
and truecasing

had a surprisingly high tendency to misclassify
non-offensive Tweets containing this emoji with
9 (hashtag splitting + truecasing) and 15 (hash-
tag splitting + lowercasing) instances respectively
wrongly considered to be offensive language. This
suggests that they may have learned to associate
the emoji in an unintended manner, especially as,
in most cases, the emoji occurs in contexts with-
out other elements that may potentially cause the
classification as offensive.

Emoji replacing also helps the SVM classifier in
detecting offensive Tweets that contain the middle
finger emoji as in both the experiment with emoji
replacement only and emoji replacement in com-
bination with hashtag splitting and truecasing, 29
out of the 35 offensive Tweets with this emoji were
classified as offensive. This in contrast to the ex-
periment with only hashtag splitting and the exper-
iment with neither emoji replacement nor hashtag
splitting, in which 12 of these instances were not
classified correctly. This may however be traced
back to the fact that the middle finger emoji is
not in the ranking of Kralj Novak et al. (2015).
Their ranking of most frequent emojis was deter-
mined from Tweets collected between 2013 and
2015, while the middle finger emoji was only intro-
duced in 2014. Given this, it is not surprising that
the emoji was not in the top 750 most frequently
used. This demonstrates a limitation of even newer

external social media lexicons, as the medium of
communication is rapidly evolving and even emojis
can be time sensitive with the introduction of new
ones, the discontinuation of older ones, or simply a
decrease in usage.

Another interesting observation from the SVM
experiments that included emoji replacement is the
classification of Tweets containing the pig face
emoji. While 14 Tweets contain the pig face
emoji, only three have the gold label of OFFENSE.
However, the SVM strongly prefers classifying
Tweets with this emoji as offensive, as it does so
in 11 cases. The classifier trained and tested on
data where only hashtags were split but no emo-
jis were replaced recognized the majority of the
non-offensive instances correctly.

In the experiments with emoji replacement, this
emoji was replaced with the word Schweinegesicht
(“pig face”), which is included in Hyperhero’s dic-
tionary of German slurs. This results in Tweets
with this specific replacement being marked as con-
taining slurs, even if they are not labeled as OF-
FENSIVE. On the other hand, the sentiment score
of the pig face emoji according to the ranking of
Kralj Novak et al. (2015) was 0.375 and thus rel-
atively neutral, which gives credence to the idea
that emoji replacement was decisive for the wrong
classifications.

Moreover, in the training data the word Schwein
(“pig”) occurs quite often in offensive Tweets.
Given the use of character-level embeddings via
fastText, there may be similarity between com-
pound words that contain one or more subwords
that may deemed offensive on their own, but not
necessarily within the compound itself. Thus, it
may be that the representations of Schweinegesicht
and Schwein in the training data are inherently sim-
ilar enough in vector space and are thus influencing
their wrongly classified instances here.



Basic S-HT
Misclassified by Adaboost 95 80

Of which correct in Baseline 75 61
Misclassified by SVM 45 46

Of which correct in Baseline 4 5

Table 7: Tweets containing emoijs misclassified as of-
fensive in two experiments with the AdaBoost classifier
and the SVM classifier with Only Basic Methods (Ba-
sic) and Splitting Hashtags (S-HT)

For the AdaBoost classifier, similar patterns con-
cerning the pig face emoji and the middle finger
emoji are observed. Moreover, it seems that using
sentiment scores for emojis in the AdaBoost exper-
iments led to a general increase in the amount of
Tweets with emojis being misclassified as offen-
sive. Table 7 compared the misclassified examples
that contain emojis in experiments, where emojis
were turned to sentiment scores without hashtag
splitting and with emoji scores and hashtag split-
ting, for both SVM and AdaBoost. It also shows
how many of these wrongly classified instances
were classified correctly in the respective baseline
experiment. The numbers suggest that while the
problem occurs also for the SVM classifier, it is not
as pronounced and the differences between the two
experiments under observation and the baseline are
much less drastic.

5.2 Hashtags

For DeepAI, splitting hashtags and truecasing pro-
duced the best model. However, upon closer in-
spection, the impact of splitting hashtags does not
seem to be as pronounced, albeit still positive. In
the test set, only 147 Tweets require splitting of
camel-cased hashtags, of which only 66 instances
resulted in a different classification upon splitting
(43 correctly classified, 23 incorrectly).

Instead, hashtag splitting results in a more natu-
ral tokenization by the WordPiece tokenizer used
by each BERT model given its source data. For ex-
ample, #HambacherForst (name of a German forest
that was supposed to be cleared) is split correctly by
DeepAI into ##Ham ##bacher Forst whereas when
hashtag splitting is not performed, the tokenization
is ##Ham ##bacher ##For ##st. The method of
hashtag splitting however can produce errors. The
abbreviation of the German party AfD for exam-
ple is recognized as camel-cased and split into Af
and D as separate tokens. Additionally, hashtag
splitting is not always successful when one word

in the hashtag is not written with a capital letter,
such as #VerhöhnungderMaueropfer (“mockery of
the victims of the Berlin Wall”), which is split into
Verhöhnungder, the German word for mockery plus
the article (der), and Maueropfer.

Splitting hashtags leads in both cases to a lower
number of subword tokens in terms of both the
overall number of tokens produced as well as the
number of individual token types present after a
WordPiece tokenization is applied (see section 5.4
for more discussion on vocabulary distributions).
This suggests that the WordPiece tokenizer for both
models struggles in splitting hashtags into repre-
sentative subwords, if hashtag splitting is not per-
formed. This decrease in subword tokens is slightly
higher for the dbmdz model, suggesting that with-
out hashtag splitting, the the dbmdz WordPiece to-
kenizer creates more unwanted splits and thus, that
the necessity for hashtag splitting may be greater
for dbmdz than for the DeepAI.

Similarly, in the SVM experiments, hashtag split-
ting only had marginal effect. In most of the ex-
amples, the decision on whether the Tweet can be
considered offensive or not was the same, regard-
less of where the hashtag was split hashtags, as no
clear pattern emerged when examining Tweets that
were classified differently.

5.3 Capitalization

No obvious positive effects could be observed
when only changing the capitalization of the data
before lemmatizing it in the experiments with Ad-
aBoost, but a slightly positive effect is noted for
the SVM. Indeed, a comparsion between the exper-
iment involving base preprocessing and truecasing,
shows that there are 27 offensive examples where
truecasing changed the capitalization, and which
were detected in the former but not in the latter
setting. However, none of the truecased words in
these examples seemed to be obviously decisive for
the correct classification. Truecasing also seemed
to have had a positive effect on the performance of
DeepAI as seen in example (1):

(1) *seufz und bennent die WLAN SSID mal
wieder in “FICKT LEISER!üm*”

*sight and rename the WLAN SSID once
again to “FUCK QUIETER!*”

In experiments, where the original casing of the
data remained untouched, the tag OTHER was used,
whereas DeepAI trained on truecased text with



emojis replaced and camel-cased hashtags split cor-
rectly labeled it as offensive.

The tokenizer of the baseline model tokenized
it FI ##C ##K ##T L##E ##IS ##ER, thus treating
almost each capital letter as a different subword
unit. The crucial part that renders the sentence of-
fensive was tokenized wrongly here, and the logical
consequence is that it remained undetected. The
truecased sentence on the other hand was split into
f ##ickt lei ##ser. Even though, this tokenization is
not completely in line with the intuitively correct
one (fick##t leise##r), it seemingly made it easier
for the model to recognize the offensive language.

The fact that even the tokenization for the true-
cased text does not seem to be ideal is underlined
by the fact that, for example, the setting using only
truecased text without replacing emojis or splitting
camel-cased hashtags did not manage to classify
this sentence as offensive, a decision which can-
not be explained by the absence of the other two
preprocessing steps.

However, the truecasing approach sometimes
struggles with sentences that were entirely written
in Caps Lock, where it simply did not change any-
thing, as well as with English words since it was
trained entirely on German data.

While lowercasing helped in the case of example
(1) since it was also lowercased and the Tweet was
labeled correctly, this is not always the case and
at times, lowercasing is not helpful. In example
(2), Einzelheiten was turned to einzelheiten and
Veranstaltung to veranstaltung. A consequence
of lowercasing was that the DeepAI struggled to
recognize the nouns. Lowercased einzelheiten was
then split into einzel ##heiten and veranstaltung
resulted in veranst ##altung. For the truecased data,
where the original capitalization was retained, the
tokenizer recognized both nouns correctly.

(2) @dr0pr0w @kinzig9 Gibt es irgendwo
mehr Einzelheiten yu der Veranstaltung?

@dr0pr0w @kinzig9 are there more details
anywhere about the event?

Truecasing seemingly had a higher impact on the
performance for DeepAI than dbmdz. A reason for
this may lie in the way the respective WordPieces
tokenizers for each model splits up words into sub-
word units. In cases where non-capitalized words
are written with sentence initialized capitalization,
DeepAI splits these words up in an unnatural man-
ner. The interrogative pronoun Wozu (“for what”)

at the beginning of a sentence is split into Wo and
zu, the adverb Gestern (“yesterday”) is split into
Gest and ern and the verb Geht is split into Geh
and t. When they are converted into their original,
lowercased form, DeepAI does not split the words,
while dbmdz, on the other hand, manages to recog-
nize them correctly as one word without needing
extra truecasing.

5.4 Vocabulary Distributions

We perform a high-level analysis on both the
fastText and WordPiece coverage of the training
data. For fastText, coverage ranges between 88.01-
90.26% in terms of overall token coverage in
the training data, with token types ranging from
69.72-71.40%, with the exception being the prepro-
cessing setting of replacing emojis+splitting hash-
tags+lowercasing (which also had the lowest over-
all token coverage) yielding a type coverage of only
59.23%.

For DeepAI, a similar trend is seen with its Word-
Piece coverage. This specific setting shows over
3,000 fewer subtoken types after tokenization even
though it produces overall more subtokens. These
distributions may also explain the emojis+splitting
hashtags+lowercasing results seen in Table 4, as
this setting yields the worst performance for Ad-
aBoost, the SVM, and DeepAI. It is also clear that
while the other preprocessing distributions may
yield similar coverage, the individual token distri-
butions are not the same. These effects are evident
in Table 5 in the high volatility of reported recall
metrics for the OFFENSE class.

Similary however, the WordPiece tokenization
by dbmdz yields a far lower number of token types
in the emojis+splitting hashtags+lowercasing set-
ting, and produces over 16000 more tokens, but
does not show the same degradation in perfor-
mance. Interestingly, dbmdz contains anywhere
between 700-1000 more found token types in the
training than its DeepAI counterpart for each pre-
processing setting, and an average of 2-3% more
overall total token coverage (≈ 97% to 94% re-
spectively). This just further emphasizes that the
distributional coverage is not easily disentangled
from the individual impact the combined feature
sets (or even a single feature) have on classification,
since the subtoken representations and distributions
are not identical.



6 Conclusion

We have performed an in-depth analysis on the ef-
fects that preprocessing has on the performance
of different classifiers on the detection of abusive
language in German Tweets. While the fact that
fine-tuned BERT models outperform more tradi-
tional machine learning approaches is not surpris-
ing, they however appear to be extremely sensitive
to preprocessing decisions and different models
behave somewhat unexpectedly, particularly when
contrasted to each other. Standard preprocessing
techniques, such as hashtag splitting, yield two very
different behaviors from the the models, which, on
the surface, is not intuitive.

Our analysis shows that the underlying word rep-
resentations created by the various preprocessing
techniques interact with the vocabulary coverage
of fastText and the WordPiece tokenizer and plays
a crucial role. Each individual preprocessing step
is altering these distributions within the data which
then derives slightly different sentence representa-
tions when generating sentence level embedding
representations, the effects of which are not always
clearly understood on the surface level. This is
highlighted when some preprocessing steps, which
would seem intuitively helpful, ultimately yield a
degradation in performance.

Future areas of research include examining
model stability with respect to preprocessing, and
how preprocessing interacts with models that have
been pre-trained on Twitter data with an updated
WordPiece tokenizer. A deeper look at then identi-
fying specific (sub)tokens that carry more decision
making power through techniques, such as saliency
(Li et al., 2016), would be of valuable insight.
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