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Abstract

Using neural models to parse natural language
into dependency structures has improved the
state of the art considerably. These models
heavily rely on word embeddings as input rep­
resentations, which raises the question whether
the observed improvement is contributed by
the learning abilities of the network itself or by
the lexical information captured by means of
the word embeddings they use. To answer this
question, we conducted a series of experiments
on German data from three different genres
using artificial embeddings intentionally made
uninformative in different ways. We found that
without the context information provided by
the embeddings, parser performance drops to
that of conventional parsers, but not below. Ex­
periments with domain­specific embeddings,
however, did not yield additional improve­
ments in comparison to large­scale general­
purpose embeddings.

1 Introduction

In recent years, using neural models has notably
improved the accuracy of dependency parsing,
compared to non­neural or ‘conventional’ statist­
ical parsers. However, while typical non­neural
parsers normally have to extract all knowledge en­
coded in their models, including lexical inform­
ation, from the training data, i. e. a dependency
treebank, neural dependency parsers are usually
endowed with word embeddings in addition to
the treebank, not only at training, but also at test
time. Given that embeddings are highly informat­
ive about distributional properties of the embed­
ded entities (words in this case), which probably
correlate with the possibility or plausibility of syn­
tactic relationships, and that they are generally
trained on corpora orders of magnitude larger than
the dependency treebanks available for any lan­
guage, this can be seen as an additional external
source of information that conventional parsers do
not have at their disposal.
This raises the question of how much of the re­

ported difference, if any, is due to the neural model

being better at modelling syntax and how much is
just due to the information in the embeddings. On
the one hand, one could argue that this distinction
is irrelevant because the comparison reflects the
way the systems would be used in practice. On the
other hand, however, it is scientifically unsound to
derive claims about capability differences of mod­
els or formalisms from experiments where more
than just the model or formalism changes with re­
spect to a control setting.
Furthermore, insight into the individual influ­

ence of model parts on the overall output (or at
least its quality) can be seen as a step towards
(some kind of) interpretability. Understanding the
influence of embeddings is especially useful in lan­
guage processing, where most knowledge is sym­
bolic while neural networks necessarily operate on
continuous representations. As it is embeddings of
some kind that bridge this gap, systems should not
be too dependent on their quality.
To gain more insight into this dependence of de­

pendency parsing on embeddings, we have con­
ducted experiments with a neural dependency
parser provided with deterministically uninform­
ative as well as random word embeddings and we
report on the results.

2 Related Work

To our knowledge, the mechanisms leading to
neural parsers exhibiting better performance than
conventional ones have not yet been investigated.
It has been shown that recurrent neural networks
are able to capture syntactic structures such as nest­
ing in practice as long as the depth is bounded
(Bhattamishra et al., 2020), but this does not make
a statement about whether or why they are better at
it than conventional parsers, and it remains unclear
what influence the input embeddings have on this
capability.
The question how a model output changes when

trained and evaluated on different input embed­
dings, specifically word embeddings, has been ad­
dressed by Rios and Lwowski (2020). They train
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numerous word embeddings using Word2Vec,
GloVe or fastText, each with various different
initialization seeds and on different corpora, and
compare the performance of models when using
these different embeddings as input. We take a
similar approach, except that we use ‘artificial’
embeddings, and while their focus is on the con­
sequences of embedding differences due to al­
gorithm and initialization, we are interested in the
impact of the (distributional) semantics available
through the embedding in the first place.
For a short period in time there were even some

neural parsing architectures without (external) em­
beddings, such as the ISBN parser by Titov and
Henderson (2007). Its reported performance was
well belowwhat current parsers (with external em­
beddings) achieve, similar indeed to that of non­
neural parsers.
Within a more recent apporach, parsing per­

formance with and without external word em­
beddings has been compared by Kiperwasser and
Goldberg (2016), who mention a counter­intuitive
finding that external word embeddings degraded
the performance of one of their parsers. In the
small ablation study they report, however, the ad­
dition of external embeddings was accompanied
by a change in parsing strategy (from graph­based
to greedy transition­based), not allowing for con­
clusions about the impact of the embeddings alone.
More generally, there has been growing interest

in the relationship between embeddings and down­
stream tasks in recent years, usually with a fo­
cus on the knowledge possibly encoded in the em­
bedding, but also on how this knowledge and its
representation affect further processing to which
it is used as input. Much work on this topic has
been concerned with sentence embeddings; for ex­
ample, Miaschi et al. (2020) find a correlation
between the amount of linguistic knowledge rep­
resented in a sentence embedding and its ability
to solve a specific downstream task. They also
provide evidence that fine­tuning the embedding
makes it represent more task­specific knowledge
at the expense of general knowledge.
A popular method for assessing what linguistic

knowledge an embedding represents is probing
tasks (a term that seems to have been coined by
Conneau et al., 2018, based onAdi et al., 2017, and
Shi et al., 2016), classifiers trained to reconstruct
known explicit linguistic properties from embed­
dings. In one sense, dependency parsing can be

seen as a probing task where the linguistic prop­
erty to be extracted is the dependency structure of
a sentence, and has indeed been used as a probing
task (Miaschi et al., 2020; Kunz and Kuhlmann,
2020). However, ‘viewing probing results in isol­
ation can lead to overestimating the linguistic cap­
abilities of a model’ (Mosbach et al., 2020, p. 780),
and Kunz and Kuhlmann (2020) point out that in
such scenarios, it is generally unknown to what ex­
tent the output is indeed present in and extracted
from the embedding, as opposed to being learned
by the model (‘probe’) built on top of it. They con­
sider embeddings to most likely lie between two
extremes: no useful information being represen­
ted at all, or the information already being rep­
resented in a human­readable way. Apart from re­
stricting the probing classifier to limited express­
iveness, one possibility of distinguishing embed­
ding from classifier power is therefore the compar­
ison with the results of probing baseline embed­
dings lacking any linguistic information content,
a common choice being random ones. We too use
randomness as oneway to create such embeddings.
A study relating word­level probing tasks to

higher­level processing for several languages, in­
cluding dependency parsing for German, can be
found in Şahin et al. (2020). They report signific­
ant correlations between dependency parsing and
morphosyntactic probing performance, suggesting
that not only semantic, but also morphosyntactic
information encoded in a word embedding can be
influential. Note though that neural dependency
parsing based on word embeddings is different
from probing sentence embeddings for dependen­
cies of the encoded sentence. One could say that
the situation is the converse: In the probing scen­
ario, the embedding is the result of a procedure and
is probed to investigate its dependence on the ori­
ginal input. In our case, the embeddings are the
input, and we want to investigate the dependence
of the procedure on it. There are similar findings
to the above for word embeddings, due to Köhn
(2016), attesting the choice of embeddings a no­
ticeable impact on parser performance.

3 Experimental Setup

As we cannot directly inspect what the neural ar­
chitecture learns and whether it is indeed better
than ‘conventional’ (non­neural) architectures at
learning the syntactic knowledge needed for pars­
ing, we employ a proxy question instead and ask



how the output of a neural parser changes when
depriving it of the knowledge encoded in the in­
put word embeddings, as these embeddings are an
additional input that most conventional parsers do
not have at their disposal. If the neural parser per­
forms significantly better than conventional pars­
ers when provided with the same input, its neural
architecture is obviously a better learner of syntax
than the architectures of the conventional parsers.
On the other hand, if the neural parser needs more
input (i. e. the embeddings) than the conventional
parsers to outperform them, the comparison is in­
herently unfair as it is hardly surprising that a sys­
tem with more input can yield better predictions.
While this does not necessarily rule out the pos­
sibility that the neural architecture is superior, the
performance impact of eliminating a source of in­
formation sheds light on the dependence on that in­
formation. Such a dependence may be undesirable
in certain contexts, such as low­resource settings
where high­quality word embeddings are unavail­
able.
Another common scenario is that of domain ad­

aptation, where only a generic treebank of con­
siderable size is available for training, but spe­
cific embeddings can be obtained in an unsu­
pervised1 way from in­domain data (possibly the
same data one wishes to parse later), which may be
much smaller than the data employed for training
general­purpose embeddings. We complement our
experiments on the impact of uninformative em­
beddings by also providing the parser with embed­
dings trained on the corpora from which we draw
our test data.

3.1 Parser

The parser we experiment with is Sticker (de Kok
and Pütz, 2020), a recent neural dependency parser
treating parsing as a sequence labelling problem:
Every token is assigned a complex tag encoding
where to attach it. In the case of Sticker, the tags
indicate the attachment point as its relative posi­
tion among tokens with a part of speech (e. g. ‘the
second finite verb to the left’) and are computed
by a neural network. (From the different archi­
tectural options we chose the LSTM architecture,
which had turned out to work best on our data.)
The only information that the neural network is
provided with as input are embedding vectors of

1 Or ‘self­supervised’, referring to the fact that manual an­
notation effort is unnecessary.

the tokens (words) in the sentence and of their part­
of­speech (POS) tags. At training time, the parser
trains the network based on these inputs (and the
gold dependency structure and labels), but it does
not alter the embeddings provided nor save any
other lexical information about words in the train­
ing data; in particular, there is no attempt to ob­
tain semantic knowledge about words not covered
by the embedding.2 This implies a substantial de­
pendence on those embeddings.
As a conventional baseline we employ the five

non­neural parsers from Adelmann et al. (2018a),
excluding JWCDG, but only report the perform­
ance of the best parser per test text as reference. In
all cases this was either Malt3 (Nivre, 2003) with
the ‘Covington non­projective’ algorithm (Cov­
ington, 2001) or Mate4 (Bohnet, 2010).

3.2 Uninformative Embeddings

As Sticker cannot be runwithout word embeddings
as input, we cannot entirely turn off this input, but
we can substitute artificially created pseudo (or
‘dummy’) embeddings that are ‘uninformative’ in
the sense that they do not encode any properties of
the words beyond the word form identity (in par­
ticular, no semantics at all). We experiment with
such uninformative embeddings created in differ­
ent ways, two of them deterministic and four ran­
dom (sampled with respect to different distribu­
tions, thus having different properties):
empty: an embedding not containing any words

at all. This will make any word form encountered
by the parser out­of­vocabulary (just like rare word
forms simply not covered by a ‘normal’ embed­
ding).
zero: an embedding mapping every word to

the zero vector (the vector containing only zer­
oes). The out­of­vocabulary words are therefore
the same as for the informative control embedding
(see further below), but as all of them are assigned
the same vector, they are entirely indistinguishable
when processing them only bymeans of their word
vectors.
cube: an embedding mapping every word to

a vector with stochastically independent compon­
ents all uniformly distributed in the unit inter­
val [0, 1). In contrast to the previous embedding,
words now have different vectors and are therefore
2 Details given here that are not from the cited paper are from
personal communication with Daniël de Kok.

3 http://www.maltparser.org/
4 https://code.google.com/archive/p/mate­tools/
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distinguishable, but as the vectors are chosen at
random, they are highly unlikely to correlate with
any linguistic relation: They do not carry any se­
mantic information whatsoever.
ccube: like cube, but shifted into the origin,

i. e. with components drawn from [−0.5, 0.5).
gauss: an embedding mapping every word to a

standard normal random vector, i. e. a vector with
stochastically independent components all follow­
ing a standard normal (‘Gaussian’) distribution.
sphere: an embedding mapping every word to

a vector of length one (i. e. on the Euclidean unit
sphere, hence the name), with every such vector
having equal probability. In this embedding, any
word vector can be separated from every other
word vector by some hyperplane, so distinguish­
ing words should be especially easy.
As an informative control embedding we use

the German word embedding released with the
pre­trained Sticker models.5 Except for ‘empty’,
which does not contain any vectors at all, all arti­
ficially created embeddings share dimension (300)
and vocabulary with the control embedding.
For testing the influence of domain­specific em­

beddings, we train additional embeddings on texts
sampled from the test corpora (see Section 3.4).
As mentioned above, the parser also requires

an embedding of the part­of­speech (POS) tags
present in the input. The control embedding here
is based on one released with the pre­trained
Sticker models which embeds the STTS (Schiller
et al., 1999).6 Additionally we created uninform­
ative embeddings of the same six types as above,
again with vocabulary (tag inventory; except for
‘empty’) and dimension (50) the same as in the
control embedding.
However, we do not provide the parser with both

uninformative word and uninformative POS em­
bedding, as the only input that the parser receives
are embedded words and POS tags, so making
both embeddings uninformative would actually
decouple the parser from its input.7 We have not
5 German word embeddings, trained on TüBa­D/DP (de
Kok and Pütz, 2019), quantized using optimized product
quantization: https://github.com/stickeritis/sticker­models/
releases/tag/de­structgram­20190426­opq (September 16,
2019, last retrieved April 14, 2021)

6 With PAV instead of PROAV; source of the original
embedding: https://blob.danieldk.eu/sticker­models/
de­structgram­tags­20190426.fifu (last retrieved May 14,
2021)

7 As a sanity check we did try that, obtaining UAS values
between 17% and 22% and LAS values between 10% and
16%. Note that even in this scenario the parser still has ac­

tried combining the uninformative POS embed­
dings with the domain­specific word embeddings
either.
This leaves us with four types of neural parser

configuration: With control word and control
POS embedding (baseline), with uninformative
word and control POS embedding, with control
word and uninformative POS embedding, and with
domain­specific word and control POS embed­
ding.
For every artificial embedding we train one

model for the parser and the respective embedding
on the first 91,999 sentences of part A of theHam­
burg Dependency Treebank (Foth et al., 2014),
with the remaining 10,000 sentences (9.8%) as
validation set.

3.3 Test Data

To obtain test data, three annotators manually
annotated randomly drawn sentences from three
different corpora. The first one is a corpus of
636 modern dystopias written by German writers.
The second one is the d­Prose corpus (Gius et al.,
2020) containing 2,529 literary German prose texts
from between 1870 and 1920. The third one con­
sists of 8,788 documents downloaded from the
internet, selected by the appearance of German
keywords related to telemedicine (Franken and
Adelmann, 2021). The sentences sampled from
each corpus were combined with the annotated
sentences of the respective texts from Adelmann
et al. (2018b). The three test sets comprise around
7,500 tokens and 450 sentences each, with sim­
ilar sentence length distributions (for details see
Table 5; this, as well as some other tables, can be
found in the appendix).
These datasets can be expected to notably differ

both stylistically and thematically from the train­
ing data and between each other, without being in­
trinsically hard to annotate (and parse) like spoken
or Twitter data.
The three annotators annotated the texts with

dependency relations following the guidelines of
Foth (2006), obtaining an overall inter­annotator
reliability of Fleiss’ 𝜅 = 0.89 for unlabelled at­
tachment accuracy and Fleiss’ 𝜅 = 0.93 for la­
belled attachment accuracy on a balanced subset
of about 20% of the test data. The remaining data

cess to sentence lengths, and POS tags are available when
determining the attachment point based on the complex tag
being predicted by the neural network, which itself does not
have this information.

https://github.com/stickeritis/sticker-models/releases/tag/de-structgram-20190426-opq
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was distributed among the annotators (so that sen­
tences were annotated by only one annotator each)
and subsequently post­edited based on some heur­
istics for checking consistency.
The annotators only annotated dependencies.

POS tags (required by all parsers as input), lem­
mata and morphological features (required by the
non­neural parsers) were predicted by a tagger en­
semble.8 This is in contrast to training time, where
gold POS tags from the treebank were used.9

3.4 Domain­Specific Embeddings
To obtain domain­specific embeddings we trained
word embeddings on samples of similar total token
count as part A of the Hamburg Dependency Tree­
bank (approx. 1,872,622 tokens) from each of our
test corpora, a reasonable order of magnitude for
domain­specific data. The samples were chosen at
random from the test corpora, taking care that no
sentences used as test data were also selected as
training data for the embeddings. Additionally, we
sampled a collection of sentences, again of roughly
the same total token count, from the union of all
three test corpora.

4 Results

We assess performance differences by compar­
ing unlabelled and labelled attachment accuracy
(also known as unlabelled and labelled attachment
score, or UAS and LAS) with respect to our test
data between the best conventional (non­neural)
parser, the neural parser with the (‘informative’)
control embeddings, and the neural parser with
our manipulated (i. e. uninformative or domain­
specific) embeddings. For the webcrawling data,
the best­performing conventional parser was Malt;
for the other test sets, it was Mate.
Usually, such attachment accuracies are com­

puted excluding punctuation since punctuation at­
tachment and labelling is considered trivial. This,
however, may not be the case if uninformative em­
beddings make it hard for the parser to determ­
ine which tokens are in fact punctuation. For this
reason, we treat punctuation like any other tokens
and report attachment accuracies including punc­
tuation. Between 12% and 17% of the tokens in
our test data are punctuation (according to auto­
matic POS tagging), so they also increase the ef­
fective amount of test data, and when excluding
8 See https://github.com/benadelm/hermA­Pipeline (last re­
trieved August 7, 2021).

9 Again, with PAV instead of PROAV.

them, attachment accuracies are about 2 percent­
age points lower than those we report, for both the
neural and the conventional baseline.

4.1 Uninformative Word Embeddings
With the control embedding, the neural parser has
a UAS 3 to 4 percentage points higher than the best
conventional parser and an LAS 5 to 6 percentage
points higher; this is a considerable baseline differ­
ence. With uninformative word embeddings, this
margin decreases by 1 to 3 percentage points in
the case of UAS and by 1 to 7 percentage points
for LAS, depending on test set and the type of un­
informative embedding. For instance, on the mod­
ern dystopias data with the ‘cube’ embedding, the
UAS decreases from 0.93 to 0.90, and the LAS de­
creases from 0.91 to 0.84, the UAS reducing to and
the LAS even falling short of Mate’s performance
(cf. Table 1). The other uninformative embeddings
have less dramatic effects, giving values generally
still above the conventional baseline. For all test
sets, the embeddingwith the highest UAS and LAS
is ‘sphere’, and the ‘cube’ embedding is among
those with the smallest UAS and LAS. The other
embeddings do not differ much from each other,
their accuracies being mostly closer to those of
the conventional than those of the neural baseline.
Performance differences between test sets are sim­
ilar for the baseline models (both conventional and
neural) and the models with uninformative embed­
dings.
As the UAS and LAS differences are small,

we also tested for statistical significance, us­
ing the randomization test of Yeh (2000) (with
100,000 samples) because theoretical distributions
are not known. Except for the ‘sphere’ embed­
ding tested on webcrawling data or the combina­
tion of all three, the p­value for the hypothesis that
the model performs as well as the neural baseline
is below 5%; in the vast majority of cases, it is
even below the stricter significance threshold of
0.25% proposed by Søgaard et al. (2014), so we
can be confident that the models do indeed per­
form worse than the neural baseline. On the other
hand, the p­value for the hypothesis that the model
performs as well as the conventional baseline is
mostly not below the strict threshold, but below
5% in more than half of the cases (see Table 4).
The hypothesis cannot be rejected for the UAS of
the ‘cube’ embedding (i. e. this embedding makes
the neural parser perform no better than the best
conventional parser, at least not with respect to

https://github.com/benadelm/hermA-Pipeline


text traditional normal empty zero cube ccube gauss sphere
Parser UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

dystopias Mate 0.90 0.85 0.93 0.91 0.91 0.87 0.91 0.87 0.90 0.84 0.91 0.86 0.90 0.86 0.92 0.88
19th century Mate 0.88 0.83 0.91 0.88 0.89 0.84 0.89 0.84 0.88 0.83 0.89 0.84 0.88 0.84 0.90 0.85
webcrawling Malt 0.87 0.83 0.91 0.88 0.88 0.85 0.88 0.85 0.88 0.84 0.89 0.86 0.88 0.86 0.90 0.87
all three Mate 0.88 0.83 0.92 0.89 0.90 0.85 0.89 0.85 0.89 0.84 0.90 0.85 0.89 0.85 0.91 0.87

Table 1: Attachment accuracies for the uninformative word embeddings, including punctuation

text traditional normal empty zero cube ccube gauss sphere
Parser UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

dystopias Mate 0.90 0.85 0.93 0.91 0.91 0.87 0.91 0.87 0.92 0.89 0.93 0.90 0.93 0.90 0.93 0.90
19th century Mate 0.88 0.83 0.91 0.88 0.89 0.85 0.90 0.86 0.91 0.86 0.91 0.88 0.91 0.88 0.91 0.88
webcrawling Malt 0.87 0.83 0.91 0.88 0.89 0.87 0.89 0.87 0.91 0.88 0.91 0.88 0.91 0.88 0.91 0.88
all three Mate 0.88 0.83 0.92 0.89 0.90 0.87 0.90 0.87 0.91 0.88 0.92 0.89 0.92 0.89 0.92 0.89

Table 2: Attachment accuracies for the uninformative POS embeddings, including punctuation

text traditional normal dystopias 19th century webcrawling total
Parser UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

dystopias Mate 0.90 0.85 0.93 0.91 0.93 0.90 0.93 0.90 0.93 0.90 0.93 0.90
19th century Mate 0.88 0.83 0.91 0.88 0.90 0.87 0.91 0.88 0.91 0.87 0.91 0.87
webcrawling Malt 0.87 0.83 0.91 0.88 0.90 0.88 0.91 0.88 0.91 0.88 0.90 0.87
all three Mate 0.88 0.83 0.92 0.89 0.91 0.88 0.91 0.89 0.91 0.88 0.91 0.88

Table 3: Attachment accuracies for the domain­specific word embeddings, including punctuation

head attachments), but it can be rejected (evenwith
the stricter threshold) for the ‘sphere’ embedding
(i. e. this embedding makes the neural parser still
perform better than the best conventional parser).
For the other embeddings, the picture is mixed.
Evenwhere the p­value is below 5%, it is notmuch
lower, so one should be cautious about rejecting
the null hypothesis.

4.2 Uninformative POS Embeddings

For the uninformative POS embeddings, UAS and
LAS values are higher than for the uninformat­
ive word embeddings. The ‘ccube’, ‘gauss’, and
‘sphere’ embedding even result in the same UAS
as the control embedding (and so does the ‘cube’
embedding on the 19th century and web­crawling
data). This is not very surprising since there are
substantially fewer POS tags than words, and con­
sequently, uninformative POS embeddings mean
less information loss than uninformative word em­
beddings. Still, performance decreases with re­
spect to the baseline can be observed over all test
sets for the ‘empty’ and ‘zero’ embeddings, and for
the other uninformative embeddings, there seems
to be a tendency towards reductions in LAS (see
Table 2). The increase in UAS from uninformative
word to uninformative POS embeddings is smal­
ler (1.6 percentage points on average) than the in­
crease in LAS (2.6 percentage points on average),
suggesting that there are in comparison more label
errors when word embeddings are uninformative

than when only POS embeddings are. Addition­
ally, all values across the board are better now than
those of the conventional parsers.
Correspondingly, p­values (Table 9) do clearly

not permit rejection of the hypothesis that the unin­
formative ‘ccube’, ‘gauss’, or ‘sphere’ embedding
makes the neural parser perform worse than with
the control embedding, and the hypothesis that the
performance is only as good as that of the conven­
tional baseline can be rejected to the strict signi­
ficance level of 0.25%. The latter is even true for
the ‘cube’ embedding, while the p­value for the
test against the neural baseline LAS is also below
0.25% for the dystopias and still below 5% for the
19th century novels. The ‘empty’ and ‘zero’ em­
beddings exhibit mixed values. The p­values are
below 5%when testing against either baseline (but
mostly not below 0.25% for the neural baseline),
with values below the stricter threshold appear­
ing mostly for the LAS against the conventional
parsers. Hence, here the assertion that the neural
parser yields a better LAS than the conventional
ones even with uninformative POS embeddings is
more likely true than the corresponding one about
the UAS. Apparently uninformative word embed­
dings have a stronger negative impact on LAS than
uninformative POS embeddings.

4.3 Domain­Specific Word Embeddings

A difference between the neural parser’s perform­
ance with domain­specific word embeddings and



text empty zero cube ccube gauss sphere
UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

dystopias 0.0430 0.0010 0.0170 0.0010 0.0010 0.0010 0.1360 0.0010 0.0010 0.0010 3.0180 0.0190
19th century 0.0960 0.0010 0.1520 0.0010 0.0110 0.0010 0.7470 0.0010 0.0130 0.0010 3.1170 0.0910
webcrawling 0.0200 0.0080 0.0040 0.0010 0.0040 0.0010 0.4580 0.3800 0.0160 0.0840 7.0029 3.3850
all three 0.7350 0.0210 0.5000 0.0150 0.0570 0.0010 2.5480 0.0410 0.2090 0.0100 10.1369 1.8220

(a) p­values for the hypothesis that the results are not worse than Sticker’s performance

text empty zero cube ccube gauss sphere
UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

dystopias 4.5430 1.4080 8.9129 2.0470 26.1857 2.8720 2.4620 10.8949 44.2846 35.8266 0.1020 0.0020
19th century 4.8630 10.7799 3.7090 9.4529 17.6328 38.7696 1.3280 12.4229 14.2029 21.2568 0.3060 0.0840
webcrawling 1.5910 0.3840 3.4910 1.8410 6.4879 3.0440 0.1160 0.0120 1.8230 0.0450 0.0040 0.0020
all three 5.8059 3.7340 7.2999 4.9590 25.4797 41.4556 2.2270 3.7790 15.4428 8.3229 0.3610 0.0740

(b) p­values for the hypothesis that the results are not better than the performance of the respective best conventional parser
(see Table 1)

Table 4: p­values (in %) for Yeh’s randomized permutation test on performance differences between the uninform­
ative word embeddings and the two baselines. Values below the significance threshold of 5% are marked in italics;
values below the stricter threshold of 0.25% are additionally marked in bold. Values for the combination of all
three corpora were computed on a subset of 461 sentences so that p­values are comparable.

with the control embedding is almost nonexist­
ent, and the p­values are never below the signi­
ficance threshold either. Conversely, they are al­
ways below the strict threshold for the hypothesis
that the performance is not better than that of the
conventional parser. While it is notable that even
‘little’ data the size of a dependency treebank (em­
beddings are usually trained on much bigger cor­
pora) are sufficient to create an embedding suffi­
ciently informative for the parser,10 this does so
far not facilitate insight into the role the embed­
ding may play in domain adaptation. We did not
test for effects of the embeddings being used cross­
domain (e. g. the embedding trained on 19th cen­
tury novels being used for parsing web­crawling
data) as the performance differences among the
different embeddings for the same test set are
small where present at all, so we expect differences
between test sets to be largely due to other parser­
challenging aspects (such as general sentence com­
plexity).

4.4 Label­Specific Evaluation

Finally, we take a brief look at some individual de­
pendency labels. As pointed out in Adelmann et al.
(2018a), overall attachment accuracies are skewed
towards the performance on frequent phenomena
such as determiner attachment, obfuscating issues
with dependency relations that are of interest to
content analyses, but appear less often. This eval­
uation only refers to the combination of all three
test sets in the hope that as many labels as possible
10 We have not tested how well the domain­specific embed­
dings capture relationships between the embedded words.

will be frequent enough there to be meaningfully
evaluated.
For a number of labels, attachment precision

and recall changed by more than 10 percentage
points when parsed with uninformative embed­
dings, compared to parsing with the control em­
bedding. Out of those, eleven appear more than
100 times in our test data; Table 11 shows their at­
tachment precision and recall. Similarly great or
in some cases even greater differences can also
be observed for eleven other labels, but those are
less frequent, some of them indeed very infrequent
(e. g. there are only four occurrences of OBJG),
so their values are probably unreliable. Among the
frequent labels, heavy losses (up to 56 percentage
points) can be observed for OBJD (dative object)
and OBJP (prepositional object), mainly for the
‘empty’, ‘zero’ and ‘cube’ embeddings. OBJA (ac­
cusative object), PRED (predicative) and GMOD
(genitive modifier) show losses mainly for these
three embeddings, too, albeit not as big. With the
‘ccube’, ‘gauss’ and ‘sphere’ embeddings, losses
are generally smaller, and for KOM (comparison),
recall even rises with the ‘ccube’, ‘gauss’ and
‘sphere’ embedding.
There are also three labels where almost no dif­

ference in precision and recall can be observed for
the deterministically uninformative embeddings
(‘empty’ and ‘zero’), but for the other (the random)
embeddings: APP (apposition), ROOT and S. The
latter two are especially interesting as S denotes the
root node of sentences (in HDT, this is usually the
finite verb) and ROOT is the label used exclusively
for punctuation. While the precision of ROOT is



always 1.00 (when the parser assigns this label, it
is always correct), recall drops from almost 1.00 by
13 to 14 percentage points for the ‘cube’, ‘ccube’
and ‘gauss’ embeddings, that is, with those embed­
dings the parser fails to correctly identify about 13
to 14% of the punctuation tokens. This is strange
and remarkable given that punctuation is trivially
identified by its POS. The decrease does not occur
for the deterministic embeddings, nor for ‘sphere’.
S exhibits a similar phenomenon, but there it is
precision that drops while recall remains, meaning
that the parser mis­identifies something as a sen­
tence root.
Table 12 shows precision and recall when pars­

ing with uninformative POS embeddings, for the
same labels as above. As with UAS and LAS, dif­
ferences are less pronounced here, except for three
labels when parsing with the deterministic embed­
dings: KOM shows a considerable increase in re­
call and OBJI (object infinitive) in precision, while
ROOT decreases, again by 13 percentage points.
This is complementary to the situation with un­
informative word embeddings, where ROOT does
not decrease for these two embeddings.
For the sake of completeness we note that there

were no particularly interesting label performance
differences when parsing with the domain­specific
embeddings (Table 13).

5 Conclusion and Future Work

The main motivation for this paper was the ques­
tion of whether neural networks are better than
conventional, non­neural architectures at learn­
ing the syntactic knowledge needed for parsing,
as opposed to just having the advantage of be­
ing provided with extra information in the form
of word embeddings, and we approached this us­
ing the proxy question of how the output of a
neural parser changes when depriving it of this ex­
tra information. The answer to this question from
our results can be framed in two ways, depend­
ing on the perspective: Even without access to
the knowledge encoded in a word embedding, the
neural parser still performs (at least) as well as
the best non­neural parser, so this lack of know­
ledge does not impair it so much that a conven­
tional tool would be clearly preferable. Or altern­
atively: Without access to the knowledge encoded
in a word embedding, the neural parser performs
only about as well as the best non­neural parser,
implying that it may indeed very well be the know­

ledge in the embedding that enables superior per­
formance, not a superiority of the architecture.11

The results further suggest that a lack of word
embedding knowledge abets label errors, while a
lack of POS embeddings abets attachment errors,
with a general tendency towards an increase in
label errors in both cases. This could mean that
knowledge about the co­occurrence of POS tags
is more useful for predicting the correct head and
knowledge about the co­occurrence of words is
more useful for choosing the correct dependency
label, which would not be implausible from a lin­
guistic point of view. More dedicated experiments
are necessary, however, to corroborate this hypo­
thesis.
We also found that not all dependency labels

are affected equally, the losses being concentrated
mainly at ‘content­related’ labels such as OBJA
(accusative object), with the especially vexing
observation that uninformative word embeddings
hinder the correct labelling of punctuation even
though POS information should be sufficient to do
so. A qualitative analysis of the label errors could
be illuminative; possible reasons for this oddity
would have to be investigated in greater depth.
The experiment with domain­specific embed­

dings was inconclusive, at least with the lim­
ited amount of domain­specific data used; the
differences in vocabulary and in word semantics
between the corpora were possibly too small to
have a noticeable impact on parsing. We do ob­
serve, though, that even embeddings trained on
little data make the parser perform almost as well
as the control embeddings trained on big data.
Given this finding, subsequent research would

have to dig further into the relationship between
the size of the data used for training word embed­
dings and parser performance when using them.
We conducted our experiments with only one

single parser. To assess how well our results ap­
ply to neural dependency parsing in general, future
work would have to examine other parsers as well,
particularly ones built on other parsing paradigms
such as transition­based or graph­based parsing. It
could furthermore be insightful to draw a compar­
ison with conventional parsers able to use word
embeddings (e. g. RBGParser).

11 Of course, the mere ability to utilize word embeddings can
be seen as an architectural superiority. This is not restricted
to neural networks, though: RBGParser (Lei et al., 2014),
too, can use word embeddings (cf. Köhn, 2016).
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Appendix

overall sentences

tokens count token count
text avg m stddev
dystopias 7,474 470 15.90 13 11.23
19th century 7,662 459 16.69 14 12.11
webcrawling 7,082 454 15.60 12 14.53
total 22,218 1,383 16.065 13 12.684

Table 5: Total number of tokens as well as sentence count and average, median and standard deviation of the number
of tokens per sentence in our test sets

text traditional normal empty zero cube ccube gauss sphere
Parser UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

dystopias Mate 0.88 0.82 0.92 0.89 0.89 0.84 0.89 0.84 0.89 0.84 0.91 0.87 0.90 0.86 0.91 0.87
19th century Mate 0.85 0.80 0.89 0.86 0.87 0.81 0.87 0.81 0.87 0.82 0.88 0.84 0.88 0.83 0.88 0.83
webcrawling Malt 0.85 0.80 0.90 0.87 0.87 0.83 0.86 0.82 0.87 0.83 0.89 0.85 0.88 0.85 0.89 0.85
all three Mate 0.86 0.80 0.90 0.87 0.88 0.83 0.87 0.82 0.88 0.83 0.89 0.85 0.88 0.85 0.89 0.85

Table 6: attachment accuracies for the uninformative word embeddings (like Tab. 1), ignoring punctuation

text traditional normal empty zero cube ccube gauss sphere
Parser UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

dystopias Mate 0.88 0.82 0.92 0.89 0.91 0.88 0.91 0.88 0.91 0.88 0.91 0.89 0.91 0.88 0.91 0.88
19th century Mate 0.85 0.80 0.89 0.86 0.89 0.85 0.89 0.85 0.89 0.85 0.89 0.86 0.89 0.85 0.89 0.85
webcrawling Malt 0.85 0.80 0.90 0.87 0.89 0.86 0.88 0.86 0.90 0.87 0.90 0.87 0.90 0.86 0.90 0.87
all three Mate 0.86 0.80 0.90 0.87 0.89 0.87 0.89 0.87 0.90 0.87 0.90 0.87 0.90 0.86 0.90 0.87

Table 7: attachment accuracies for the uninformative POS embeddings (like Tab. 2), ignoring punctuation

text traditional normal dystopias 19th century webcrawling total
Parser UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

dystopias Mate 0.88 0.82 0.92 0.89 0.91 0.88 0.91 0.88 0.91 0.88 0.91 0.88
19th century Mate 0.85 0.80 0.89 0.86 0.89 0.85 0.89 0.85 0.89 0.85 0.89 0.85
webcrawling Malt 0.85 0.80 0.90 0.87 0.89 0.86 0.89 0.86 0.89 0.86 0.89 0.86
all three Mate 0.86 0.80 0.90 0.87 0.90 0.86 0.90 0.86 0.90 0.86 0.90 0.86

Table 8: attachment accuracies for the domain­specific word embeddings (like Tab. 3), ignoring punctuation



text empty zero cube ccube gauss sphere
UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

dystopias 0.0050 0.0010 0.0200 0.0010 6.5989 0.0670 27.6917 34.9537 20.3168 14.8269 25.7857 21.0308
19th century 0.9970 0.1160 2.4010 0.1450 29.1617 3.3620 49.0645 46.4145 43.1016 36.6626 47.5075 40.9466
webcrawling 0.3660 7.1739 0.3280 5.7079 26.5617 25.0447 44.1776 45.7915 42.6606 35.2796 45.0225 47.3175
all three 1.2110 0.7660 1.8830 0.7500 25.9947 8.0109 46.2675 48.6785 39.1796 33.5217 42.4446 39.6556

(a) p­values for the hypothesis that the results are not worse than Sticker’s performance

text empty zero cube ccube gauss sphere
UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

dystopias 20.1508 0.8100 8.9059 0.8490 0.0380 0.0010 0.0010 0.0010 0.0020 0.0010 0.0010 0.0010
19th century 1.0150 0.0550 0.4340 0.0460 0.0030 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
webcrawling 0.2430 0.0010 0.3280 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
all three 4.1960 0.1660 2.5450 0.1890 0.0330 0.0050 0.0080 0.0010 0.0090 0.0010 0.0080 0.0010

(b) p­values for the hypothesis that the results are not better than the performance of the respective best conventional parser
(see Table 2)

Table 9: p­values (in %) for Yeh’s randomized permutation test on performance differences between the uninform­
ative POS embeddings and the two baselines. Values below the significance threshold of 5% are marked in italics;
values below the stricter threshold of 0.25% are additionally marked in bold. Values for the combination of all
three corpora were computed on a subset of 461 sentences so that p­values are comparable.

text dystopias 19th century webcrawling total
UAS LAS UAS LAS UAS LAS UAS LAS

dystopias 15.4958 12.1299 19.7578 13.7949 18.7668 6.8609 22.4608 10.3269
19th century 26.1267 20.1548 36.5816 33.2397 34.4367 14.9089 45.3085 26.7537
webcrawling 15.7938 17.4818 27.3167 31.9647 23.1158 21.8738 11.2789 12.4249
all three 25.5267 22.8208 33.2327 31.5717 31.0637 20.3748 30.1267 21.8918

(a) p­values for the hypothesis that the results are not worse than Sticker’s performance

text dystopias 19th century webcrawling total
UAS LAS UAS LAS UAS LAS UAS LAS

dystopias 0.0050 0.0010 0.0050 0.0010 0.0040 0.0010 0.0020 0.0010
19th century 0.0090 0.0010 0.0020 0.0010 0.0020 0.0010 0.0010 0.0010
webcrawling 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
all three 0.0350 0.0010 0.0150 0.0010 0.0160 0.0010 0.0210 0.0010

(b) p­values for the hypothesis that the results are not better than the performance of the respective best conventional parser
(see Table 3)

Table 10: p­values (in %) for Yeh’s randomized permutation test on performance differences between the domain­
specific embeddings and the two baselines. Values below the significance threshold of 5% are marked in italics;
values below the stricter threshold of 0.25% are additionally marked in bold. Values for the combination of all
three corpora were computed on a subset of 461 sentences so that p­values are comparable.



label gold normal empty zero cube ccube gauss sphere
count P R P R P R P R P R P R

APP 704 0.75 0.88 0.73 0.86 0.72 0.85 0.62 0.87 0.65 0.87 0.62 0.87 0.71 0.87
GMOD 384 0.95 0.96 0.79 0.85 0.78 0.84 0.88 0.90 0.90 0.91 0.89 0.91 0.91 0.90
KOM 110 0.89 0.72 0.88 0.68 0.89 0.70 0.87 0.69 0.88 0.89 0.87 0.90 0.86 0.73
NEB 224 0.84 0.83 0.76 0.72 0.81 0.66 0.79 0.78 0.86 0.79 0.88 0.81 0.82 0.79
OBJA 928 0.88 0.90 0.70 0.77 0.69 0.76 0.73 0.82 0.80 0.85 0.78 0.85 0.84 0.85
OBJD 163 0.78 0.77 0.39 0.17 0.36 0.21 0.64 0.37 0.62 0.64 0.64 0.64 0.63 0.67
OBJI 109 0.72 0.82 0.70 0.78 0.71 0.80 0.68 0.75 0.70 0.80 0.71 0.77 0.74 0.81
OBJP 114 0.51 0.28 0.25 0.02 0.50 0.06 0.32 0.05 0.38 0.24 0.34 0.18 0.41 0.22
PRED 277 0.83 0.85 0.71 0.69 0.73 0.67 0.70 0.66 0.81 0.75 0.77 0.74 0.77 0.77
ROOT 3466 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.86 1.00 0.85 1.00 0.85 1.00 0.95
S 1726 0.91 0.86 0.90 0.86 0.90 0.86 0.78 0.84 0.76 0.85 0.79 0.85 0.86 0.85

Table 11: Precision and recall for selected labels when parsing with the uninformative word embeddings. The
‘gold count’ column gives the number of occurrences of the label in our test data. Values differing by more than
10 percentage points from the baseline are marked in bold.

label gold normal empty zero cube ccube gauss sphere
count P R P R P R P R P R P R

APP 704 0.75 0.88 0.69 0.93 0.70 0.92 0.75 0.88 0.76 0.86 0.76 0.88 0.74 0.88
GMOD 384 0.95 0.96 0.92 0.96 0.95 0.96 0.96 0.96 0.95 0.95 0.95 0.95 0.95 0.95
KOM 110 0.89 0.72 0.89 0.89 0.90 0.91 0.88 0.68 0.89 0.68 0.87 0.67 0.86 0.68
NEB 224 0.84 0.83 0.84 0.85 0.86 0.86 0.83 0.80 0.84 0.81 0.85 0.82 0.81 0.80
OBJA 928 0.88 0.90 0.86 0.92 0.86 0.91 0.86 0.90 0.89 0.90 0.86 0.89 0.89 0.90
OBJD 163 0.78 0.77 0.81 0.76 0.80 0.80 0.76 0.79 0.75 0.83 0.75 0.79 0.77 0.82
OBJI 109 0.72 0.82 0.90 0.85 0.91 0.86 0.69 0.80 0.73 0.79 0.74 0.81 0.72 0.80
OBJP 114 0.51 0.28 0.47 0.25 0.52 0.30 0.46 0.28 0.45 0.29 0.42 0.24 0.46 0.29
PRED 277 0.83 0.85 0.79 0.83 0.79 0.82 0.84 0.84 0.80 0.84 0.83 0.86 0.80 0.83
ROOT 3466 1.00 0.99 1.00 0.86 1.00 0.86 1.00 0.91 1.00 0.99 1.00 0.99 1.00 0.99
S 1726 0.91 0.86 0.83 0.87 0.80 0.87 0.83 0.85 0.90 0.86 0.90 0.86 0.90 0.86

Table 12: Precision and recall for selected labels when parsing with the uninformative POS embeddings. The ‘gold
count’ column gives the number of occurrences of the label in our test data. Values differing by more than 10 per­
centage points from the baseline are marked in bold.

label gold normal dystopias 19th century webcrawling total
count P R P R P R P R

APP 704 0.75 0.88 0.73 0.88 0.74 0.89 0.73 0.88 0.73 0.88
GMOD 384 0.95 0.96 0.94 0.93 0.94 0.94 0.93 0.94 0.94 0.92
KOM 110 0.89 0.72 0.88 0.69 0.90 0.71 0.88 0.71 0.88 0.71
NEB 224 0.84 0.83 0.86 0.82 0.88 0.80 0.88 0.82 0.81 0.81
OBJA 928 0.88 0.90 0.87 0.88 0.86 0.89 0.85 0.87 0.85 0.88
OBJD 163 0.78 0.77 0.70 0.79 0.75 0.74 0.67 0.72 0.72 0.78
OBJI 109 0.72 0.82 0.69 0.82 0.69 0.82 0.74 0.81 0.72 0.82
OBJP 114 0.51 0.28 0.46 0.25 0.46 0.28 0.49 0.29 0.41 0.27
PRED 277 0.83 0.85 0.81 0.81 0.82 0.83 0.81 0.81 0.81 0.79
ROOT 3466 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99
S 1726 0.91 0.86 0.91 0.86 0.91 0.86 0.91 0.86 0.91 0.85

Table 13: Precision and recall for selected labels when parsing with the domain­specific word embeddings. The
‘gold count’ column gives the number of occurrences of the label in our test data. Values differing by more than
10 percentage points from the baseline are marked in bold.


