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Abstract

This paper describes the submission of the Ni-
uTrans end-to-end speech translation system
for the IWSLT 2021 offline task, which trans-
lates from the English audio to German text di-
rectly without intermediate transcription. We
use the Transformer-based model architecture
and enhance it by Conformer, relative position
encoding, and stacked acoustic and textual en-
coding. To augment the training data, the En-
glish transcriptions are translated to German
translations. Finally, we employ ensemble de-
coding to integrate the predictions from sev-
eral models trained with the different datasets.
Combining these techniques, we achieve 33.84
BLEU points on the MuST-C En-De test set,
which shows the enormous potential of the
end-to-end model.

1 Introduction

Speech translation (ST) aims to learn models that
can predict, given some speech in the source lan-
guage, the translation into the target language. End-
to-end (E2E) approaches have become popular re-
cently for its ability to free designers from cascad-
ing different systems and shorten the pipeline of
translation (Duong et al., 2016; Berard et al., 2016;
Weiss et al., 2017). This paper describes the sub-
mission of the NiuTrans E2E ST system for the
IWSLT 2021 (Anastasopoulos et al., 2021) offline
task, which translates from the English audio to the
German text translation directly without intermedi-
ate transcription.

Our baseline model is based on the DLCL Trans-
former (Vaswani et al., 2017; Wang et al., 2019)
model with Connectionist Temporal Classification
(CTC) (Graves et al., 2006) loss on the encoders
(Bahar et al., 2019). We enhance it with the supe-
rior model architecture Conformer (Gulati et al.,
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2020), relative position encoding (RPE) (Shaw
et al., 2018), and stacked acoustic and textual en-
coding (SATE) (Xu et al., 2021). To augment the
training data, the English transcriptions of the auto-
matic speech recognition (ASR) and speech trans-
lation corpora are translated to the German trans-
lation. Finally, we employ the ensemble decoding
method to integrate the predictions from multiple
models (Wang et al., 2018) trained with the differ-
ent datasets.

This paper is structured as follows. The training
data is summarized in Section 2, then we describe
the model architecture in Section 3 and data aug-
mentation in Section 4. We present the ensemble
decoding method in Section 5. The experimental
settings and final results are shown in Section 6.

2 Training Data

Our system is built under the constraint condition.
The training data can be divided into three cate-
gories: ASR, MT, and ST corpora’.

ASR corpora. ASR corpora are used to gener-
ate synthetic speech translation data. We only use
the Common Voice (Ardila et al., 2020) and Lib-
riSpeech (Panayotov et al., 2015) corpora. Fur-
thermore, we filter the noisy training data in the
Common Voice corpus by force decoding and keep
1 million utterances.

MT corpora. Machine translation (MT) corpora
are used to translate the English transcription. We
use the allowed English-German translation data
from WMT 2020 (Barrault et al., 2020) and Open-
Subtitles2018 (Lison and Tiedemann, 2016). We
filter the training bilingual data followed Li et al.
(2019), which includes length ratio, language de-
tection, and so on.

"We only described the training data used in our system.
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ST corpora. The ST corpora we used include
MuST-C (Gangi et al., 2019) English-German?,
CoVoST (Wang et al., 2020), Speech-Translation
TED corpus®, and Europarl-ST (Iranzo-Sénchez
et al., 2020).

The statistics of the final training data are shown
in Table 1. We augment the quantity of the ST
training data by translating the English transcrip-
tion (the details are unveiled in Section 4).

Task ‘ Corpora ‘ Size ‘ Time
LibriSpeech 281241 | 960h

ASR | Common Voice | 1000000 | 1387h
| Total | 1281241 | 2347h
CommonCrawl 2014304 -
Europarl 1802849 -

MT Pa.ra'Cran 31528317 -
Wiki 5714363 -
OpenSubtitles 14449099 -

Total 55508932 -
MuST-C 249462 | 435h
CoVoST 289411 | 32%h

ST ST TED 170133 | 254h
Europarl 69537 | 155h

Total 778543 | 1173h

Table 1: Data statistics of the ASR, MT, and ST cor-
pora.

3 Model Architecture

In this section, we describe the baseline model
and the architecture improvements. Then, the ex-
perimental results are shown to demonstrate the
effectiveness.

3.1 Baseline Model

Our system is based on deep Transformer (Vaswani
et al., 2017) implemented on the fairseq toolkit (Ott
etal.,2019). Furthermore, dynamic linear combina-
tion of layers (DLCL) (Wang et al., 2019) method
is employed to train the deep model effectively (Li
et al., 2020a,b).

To reduce the computational cost, the input
speech features are processed by two convolutional
layers, which have a stride of 2. This downsamples

We use the latest MusST-C v2 dataset released by IWSLT
2021.
3http://i13pc106.ira.uka.de/ mmueller/ iwslt-corpus.zip
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Figure 1: The baseline model architecture.

the sequence by a factor of 4 (Weiss et al., 2017).
For strong systems, we use Connectionist Tempo-
ral Classification (CTC) (Graves et al., 2006) as
the auxiliary loss on the encoders(Watanabe et al.,
2017; Karita et al., 2019; Bahar et al., 2019). The
weight of CTC objective « is set to 0.3 for all ASR
and ST models. The model architecture is showed
in Figure 14,

3.2 Conformer

Conformer (Gulati et al., 2020) models both local
and global dependencies by combining the Convo-
lutional Neural Network and Transformers. It has
shown superiority and achieved promising results
in ASR tasks.

We replace the Transformer blocks in the en-
coder by the conformer blocks, which include
two macaron-like feed-forward networks, multi-
head self attention modules, and convolution mod-
ules. Note that we use the RPE proposed in Shaw
et al. (2018) rather than Transformer-XL (Dai et al.,
2019).

3.3 Relative Position Encoding

Due to the non-sequential modeling of the origi-
nal self attention modules, the vanilla Transformer
employs the position embedding by a deterministic
sinusoidal function to indicate the absolute posi-
tion of each input element (Vaswani et al., 2017).
However, this scheme is far from ideal for acoustic
modeling (Pham et al., 2020).

*https://github.com/NiuTrans/MTBook



Model tst-COMMON
Baseline 23.98
+ Conformer 24.43
+ RPE 24.69
+ SATE 25.35

Table 2: Effects of the architecture improvements.
We report SacreBLEU scores [%] on the MuST-C tst-
COMMON set.

The latest work (Pham et al., 2020; Gulati et al.,
2020) points out that the relative position encod-
ing enables the model to generalize better for the
unseen sequence lengths. It yields a significant im-
provement on the acoustic modeling tasks. We re-
implement the relative position encoding scheme
(Shaw et al., 2018). The maximum relative position
is set to 100 for the encoder and 20 for the decoder.
We use both absolute and relative positional repre-
sentations simultaneously.

3.4 Stacked Acoustic and Textual Encoding

The previous work (Bahar et al., 2019) employs the
CTC loss on the top layer of the encoder, which
forces the encoders to learn soft alignments be-
tween speech and transcription. However, the CTC
loss demonstrates strong preference for locally at-
tentive models, which is inconsistent with the ST
model (Xu et al., 2021).

In our systems, we use the stacked acoustic-and-
textual encoding (SATE) (Xu et al., 2021) method
to encode the speech features. It calculates the CTC
loss based on the hidden states of the intermediate
layer rather than the top layer. The layers below
CTC also extract the acoustic representation like an
ASR encoder, while the upper layers with no CTC
encode the global representation for translation. An
adaptor layer is introduced to bridge the acoustic
and textual encoding.

3.5 Experimental Results

We use the architecture described in Section 3.1
as the baseline model. The encoder consists of 12
layers and the decoder consists of 6 layers. Each
layer comprises 256 hidden units, 4 attention heads,
and 2048 feed-forward size. The encoder of SATE
includes an acoustic encoder of 8 layers and a tex-
tual encoder of 4 layers. The model is trained with
MuST-C English-German dataset and we test the
results on the tst-COMMON set based on the Sacre-
BLEU. The other experimental details are shown
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Data Corpora Size | Time
LibriSpeech 281241 | 960h

Common Voice | 1000000 | 1387h

Synthetic | MuST-C 249462 | 435h
ST TED 170133 | 254h

| Total | 1700836 | 3036h

Real | Total | 778543 | 1173h
Total | 2479379 | 4209h

Table 3: All available ST corpora.

in Section 6.

We report the experimental results after applying
each architecture improvement in Table 2. Ben-
efitting the power of the deep Transformer, our
baseline model achieves 23.98 BLEU points. The
Conformer and RPE methods strengthen the encod-
ing and achieve an improvement of 0.45 and 0.26
BLEU points. SATE achieves a remarkable im-
provement by encoding the acoustic representation
and textual representation respectively. We will
explore better architecture designs in the future.

4 Data Augmentation

A large amount of the training data is necessary for
a strong neural model. However, unlike the ASR
and MT tasks, annotated speech-to-translation data
is scarce, which prevents well-trained ST models.
This is the main reason why cascaded systems are
the dominant approach in the industrial scenarios.
In this section, we describe our data augmentation
method.

We train a deep DLCL Transformer (Wang et al.,
2019) with the 25 encoder layers on all available
MT data. To keep the domain consistency with the
original ST data, we finetune the MT model on the
MuST-C dataset. The model achieves the Sacre-
BLEU of 35.89 of the MuST-C tst-=COMMON test
set. For the case-insensitive LibriSpeech dataset,
we train a similar MT model except for lower-
casing the source text without punctuation during
training.

Then, we generate the German translation from
English transcription in the LibriSpeech and Com-
mon Voice ASR datasets. Furthermore, sequence-
level knowledge distillation (Kim and Rush, 2016)
is applied to augment the training data. We gen-
erate the translation of the MuST-C and Speech-
Translation TED ST datasets which are more re-



lated to the target domain.

Corrupting the acoustic feature is another data
augmentation method, including SpecAugment,
speed perturbation, and so on. SpecAugment (Park
et al., 2019) is a simple data augmentation applied
on the input acoustic features. The time masking
and the frequency masking are applied in our sys-
tems. Speed perturbation transforms the audio by
a speed rate, which changes the duration of the au-
dio signal. Limited by the size of GPU resources,
we do not use this method. Compared with the
perturbed data, we think the synthetic samples im-
prove the robustness more effectively. All available
ST corpora are shown in Table 3.

5 Ensemble Decoding

Ensemble decoding is an effective method to im-
prove performance by integrating the predictions
from multiple models. It has been proved in the
WMT competitions (Wang et al., 2018; Li et al.,
2019). In our systems, we train multiple ST models
with different training data for diverse ensemble
decoding. The models are chosen based on the per-
formance of the development set. This leads to a
significant improvement over a single model.

6 Experiments

6.1 Preprocessing

We remove the utterances with more than 3000
frames or less than 5 frames. The 80-channel log-
mel filterbank features are extracted from the au-
dio file by torchaudio’ library. We use the lower-
cased transcriptions without punctuations for CTC
loss computation. We learn SentencePiece® sub-
word segmentation with a size of 10,000 based on a
shared source and target vocabulary for all datasets.

6.2 Model Settings

All experiments are implemented based on the
fairseq toolkit’. We use Adam optimizer and adopt
the default learning schedule in fairseq. We ap-
ply dropout with a rate of 0.1 and label smoothing
€;s = 0.1 for regularization. We also set the acti-
vate function dropout to 0.1 and attention dropout
to 0.1, which improves the regularization and over-
comes the overfitting.

We use the best model architecture that com-
bines all the improvements described in Section

Shttps://github.com/pytorch/audio
Shttps://github.com/google/sentencepiece
"https://github.com/pytorch/fairseq
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3. The encoder includes an acoustic encoder of 12
conformer layers and a textual encoder of 6 trans-
former layers. The decoder consists of 6 Trans-
former layers. Each layer comprises 512 hidden
units, 8 attention heads, and 2048 feed-forward
size. Pre-norm is applied for training a deep model.
The weight of CTC objective « for multitask learn-
ing is set to 0.3 for all models. All the models
are trained for 50 epochs on one machine with 8
NVIDIA 2080Ti GPUs.

During inference, we average the model param-
eters on the final 10 checkpoints. We use beam
search with a beam size of 5 for all models. The co-
efficient of length normalization is tuned on the de-
velopment set. We report the case-sensitive Sacre-
BLEU (Post, 2018) on the MuST-C tst-COMMON
set, IWSLT tst2019 and tst2020 test set.

The organizers provide the segmentation of the
test sets and allow the participants to use the own
segmentation. We simply use the segmentation
provided by the WerRTCVAD? toolkit.

6.3 Experimental Results

Firstly, We train the model on all training corpora,
including real and synthetic speech-to-translation
paired data. As shown in Table 4, we achieve a
high BLEU on the tst-COMMON test set, but a low
performance on the tst2019 test set compared with
the previous work (Gaido et al., 2020). A possible
reason is that the data distribution between IWSLT
test sets and the synthetic data is different.

tst-: COMMON | tst2019
3265 | 14.16

Table 4: Performance of the model trained on all train-
ing corpora.

To verify this assumption, we pick some sub-
sets from the available datasets for training, includ-
ing MuST-C and ST TED from the real corpora
and MuST-C and LibriSpeech from the synthetic
corpora. We present the results in Table 5. Al-
though the performance on the tst-COMMON test
set drops by 0.8 BLEU points, the model achieves
a reasonable performance on the tst2019 test set.
Furthermore, we finetune the model on the MuST-
C dataset with a small learning rate. This yields a
slight improvement.

8https://github.com/wiseman/py-webrtcvad



Model | tst:COMMON | tst2019
Base 31.85 20.64
+ finetune 3231 20.73

Table 5: Performance of the model trained with the sub-
sets of all available corpora.

Test sets ‘ Given ‘ Own
tst-COMMON | 33.84 -
tst2019 22.68 | 23.76
tst2020 21.8 22.8
tst2021F 19.0 19.6
tst2021% 20.7 20.6
tst2021x 30.7 30.3

Table 6: Final results with ensemble decoding. We
report the results with given and own segmentation.
There are two references on the tst2021 test set: TED
reference (t) and IWSLT reference (I). The final results
are based on both references (%) together.

We train multiple models with different training
data for diverse ensemble decoding. We select a
part of the synthetic corpora randomly, then mix
them with the whole real training data. Finally, we
use the ensemble decoding with 6 models for the
final results and achieve a substantial improvement
over a single model. As shown in Table 6, we
achieve an excellent performance of 33.84 BLEU
points on the MuST-C En-De tst-COMMON set.

The best end-to-end system of last year achieves
20.1 BLEU points on the tst2019 test set and 21.49
BLEU points on the tst2020 test set with the given
segmentation. We achieve remarkable improve-
ments of 2.58 and 0.31 BLEU points, which demon-
strates the superiority of our systems.

There are two references available for tst2021
test set. The TED reference is the original one from
the TED website. Since new regulations for the of-
ficial regulation lead to translations that are much
shorter, they created a second reference translation,
called the IWSLT reference. The final results are
based on both references. We achieve better per-
formance with the own segmentation on the TED
reference, which is consistent with the results on
the previous test sets. However, the results with the
own segmentation are worse on the IWSLT refer-
ence. A possible reason is that we do not optimize
the segmentation tool for IWSLT test sets. We will
explore better segmentation methods in the future.
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7 Conclusion

This paper describes the submission of the Niu-
Trans E2E ST systems for the IWSLT 2021 offline
task, which translates the English audio to German
translation directly without intermediate transcrip-
tion. We build our final submissions considering
two mainstreams:

e Model architecture improvements for the
speech translation task.

» Data augmentation by translating the English
transcription to German translation.

We also find that the distribution of the training
data has a great impact on the performance and alle-
viate it by ensemble decoding. Using the given seg-
mentation, we achieve remarkable improvements
over the best end-to-end system of last year.
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