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Abstract

We describe our submission to the IWSLT
2021 shared task1 on simultaneous text-to-text
English-German translation. Our system is
based on the re-translation approach where
the agent re-translates the whole source pre-
fix each time it receives a new source token.
This approach has the advantage of being able
to use a standard neural machine translation
(NMT) inference engine with beam search,
however, there is a risk that incompatibility be-
tween successive re-translations will degrade
the output. To improve the quality of the
translations, we experiment with various ap-
proaches: we use a fixed size wait at the begin-
ning of the sentence, we use a language model
score to detect translatable units, and we apply
dynamic masking to determine when the trans-
lation is unstable. We find that a combination
of dynamic masking and language model score
obtains the best latency-quality trade-off.

1 Introduction

In spoken language translation (SLT), there is often
a need to produce translations simultaneously, with-
out waiting for the speaker to finish. For example,
we may be targeting live events such as conferences
or meetings where excessive latency will disrupt
the user experience. In order to achieve low la-
tency SLT, however, translation systems must be
able to cope well with incomplete utterances, and
we find that we need to trade off latency for trans-
lation quality. In research on simultaneous SLT,
we would like to understand how to produce the
best possible trade-off between these two measures.
In the IWSLT 2021 shared task on simultaneous
translation, the aim was to build and evaluate si-
multaneous SLT systems at three different latency
regimes (low, medium and high), as measured us-
ing the Average Lagging (AL; Ma et al. (2019)).

1https://iwslt.org/2021/

There are two main approaches to simultaneous
translation: streaming (Cho and Esipova, 2016; Ma
et al., 2019) where the system appends the output
to a growing hypothesis as new inputs are avail-
able, and re-translation (Niehues et al., 2016, 2018;
Arivazhagan et al., 2020a,b), where, as the name
suggests, the system re-translates the whole prefix
on every update to a completely new output. Re-
translation approach has the advantage that we can
use an unmodified, general purpose, optimised MT
engine with beam-search, but we have to address
the problem of flicker. That is to say, the translation
of a prefix may be changed by the translation of
an extended prefix. Recent work by Arivazhagan
et al. (2020a) has shown that, if measures are taken
to mitigate flicker, then re-translation produces re-
sults comparable to streaming approach. Since the
shared task does not permit any revision of a com-
mitted hypothesis (i.e. flicker is not allowed) we
focus on adapting the re-translation approach for
our submission without introducing any flicker into
a growing hypothesis.

2 Overview of Our Submission

We participated in the English→German text-to-
text simultaneous task. Since we re-translate the
incomplete input (know as a prefix) each time it is
updated, our system will try to modify the trans-
lations produced from earlier prefixes. But as the
task is evaluated using SimulEval (Ma et al., 2020)
which does not permit the modification of com-
mitted output (also known as flickering), we use a
simple approach to generate incremental output at
each re-translation step.

Concretely, we apply a method inspired by the
wait-k streaming approach (Ma et al., 2019) in
our re-translation system in the following manner.
In the task, a simultaneous SLT system is imple-
mented as an agent which must choose between

https://iwslt.org/2021/
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READ (read more input) and WRITE (append to
the current translation hypothesis) operations. Our
overall approach is shown in Algorithm 1. The
agent first performs k consecutive READ opera-
tions and then alternatively READs and WRITEs
until the full input sentence is read. Once the input
is consumed, the agent keeps performing WRITE
operations until it reaches the end of the trans-
lated sentence. The WRITE operation involves
re-translating the prefix S and finding the next out-
put word w from output prefix T . If the output
prefix T has a length longer than the committed
hypothesis H , it picks the (i+1)th word of T , else
sends READ signal to the agent, i being the length
of the current hypothesis.

Algorithm 1 Our Re-translation Approach

Require: NMT system φ, k
1: Initialize: S ← {}, H ← {}, w ← ε
2: while w is not 〈eos〉 do
3: if |S| − |H| < k and not finished reading

then
4: READ next input s
5: S ← S ∪ {s}
6: else
7: T ← φ(S)
8: if |T | > |H| then
9: w ← T [|H|+ 1]

10: else
11: w ← ε
12: end if
13: if w is not ε or finished reading then
14: H ← H ∪ {w}
15: WRITE w
16: end if
17: end if
18: end while

However, there is a potential problem with this
approach. In each WRITE step, the output word
w is selected from the (|H|+ 1)th position of out-
put prefix T . Thus if any correction is made by a
re-translation in the initial |H| words, the WRITE
operation won’t be able to recover the mistake. In
other words, our approach is able to suppress the
flicker caused by re-translation, but could end up
gluing together incompatible fragments of the hy-
pothesis. This problem can be worse when the out-
put prefix T flickers too much. To improve trans-
lation quality, we employ two approaches which
aim at detecting meaningful units (MU) and allow-

ing extra READs when inside an MU. An MU is a
chunk of words that has a definite translation and
can be translated independently without having to
wait for more input words (Zhang et al., 2020).

Our first method of detecting MUs relies on the
language model (LM) score. The agent keeps track
of the language model (LM) score of the previous
token and compares it with the score of the current
token. If the LM score is higher than the previous
token, it keeps reading more tokens and does a
re-translation only when this condition is not met.
Here the LM score is the log probability of the
current token given the context. Though LM score
doesn’t guarantee to find meaningful unit every
time but this simple approach shows it is better than
the baseline approach in terms of BLEU score.

Our second method of stabilising the re-
translation approach is based on the idea of dy-
namic masking (Yao and Haddow, 2020). The
dynamic mask approach finds the stable part of the
target prefix by comparing the translation of the
current prefix, with the translation of an extension
of the current prefix. The longest common prefix
(LCP) of the two translations is taken as the sta-
ble part. Figure 1 shows how dynamic masking
works in general. Yao and Haddow (2020) showed
that using dynamic mask could give a better flicker-
latency trade-off than using a fixed mask, without
affecting the translation quality of full sentences.

For our IWSLT submission, we generate the ex-
tended prefixes for dynamic mask simply by ap-
pending UNK (i.e the unknown word symbol) to
the prefix. In Figure 2, we show an example of how
dynamic mask stabilises the translation, by mask-
ing the least stable part of the MT output. This
translation-with-dynamic-mask provides a drop-in
replacement for the MT system φ() in line 7 of
Algorithm 1, except when the agent has read the
full input sentence, when we do not need to apply
any mask.

3 Experimental Details

We use only the officially allowed IWSLT 2021
data sets. The training data include high quality
English-German parallel data from WMT 2020
(Barrault et al., 2020), English-German data from
MuST-C.v2 (Di Gangi et al., 2019), the TED corpus
(Cettolo et al., 2012) and OpenSubtitle (Lison and
Tiedemann, 2016). For development, we use the
concatenation of IWSLT test sets from 2014 and
2015. We test on IWSLT 2018 test set and tst-
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S = a bASR

S′ = a b c

T = p q r

T ′ = p q s t

T ∗ = p qextend

translate

translate

LCP

Figure 1: Dynamic Masking. The string a b is provided as input to the agent (in a full SLT system it would come
from ASR). The MT system then produces translations of the string and its extension, compares them, and outputs
the longest common prefix (LCP)

Source Translation MT Output
prefix Back in New York, Zurück in New York,

extension Back in New York, UNK Damals in New York, in
prefix Back in New York, I Damals in New York have ich

extension Back in New York, I UNK Damals in New York war I Damals in New York

Figure 2: An example of dynamic mask applied during translation. For the first prefix, the translation of the prefix
and its extension disagree, so no output is produced (i.e. all output is masked). For the second prefix, the translation
is more stable.

COMMON from MuST-C.v2. As the there is a
significant overlap between MuST-C.v2 and tst-
20{14,15,18}, we remove the overlaps from the
MuST-C.v2 training data before training.

For preprocessing we rely only on Sentence-
Piece tokenization (Kudo and Richardson, 2018);
no other preprocessing tools are applied. We use
a shared vocabulary size of 32k. Standard NMT
models perform well when translation is done on
a full sentence but as our approach is based on re-
translation, we use training data that is a 1:1 mix
of full sentences and prefix pairs (Niehues et al.,
2018; Arivazhagan et al., 2020a). This ensures that
our model can translate both full sentences and
prefixes. To create prefix pairs, we first randomly
choose a position in the source sentence and then
take the proportionate length of the target sentence.
Along with that we also add modified prefix pairs
in which the source side has a shorter target prefix
appended with the source prefix. The purpose of
these modified prefix pairs was to investigate an
alternative type of stabilisation, where the previous
target prefix is fed into the translation of the current
source prefix, but in early testing this method did
not work well, so we did not pursue it further. The
validation data is also pre-processed similarly to
the training set. Note that this preprocessed val-
idation set is used at training for early stopping
and not for reporting the validation scores in the
Table 2.

For training, we use the Marian toolkit (Junczys-
Dowmunt et al., 2018) with the ‘base’ transformer
architecture (Vaswani et al., 2017). First, we train
a model using the aforementioned pre-processed
training data and then fine-tune the model using
MuST-C.v2 training data which is more of a do-
main specific data for simultaneous translation task.
To train the language model for stabilisation, we
use KenLM (Heafield, 2011) to train a 6-gram lan-
guage model on the source-side training data. We
have shown the number of sentences in each corpus
in Table 1.

Corpus Sentence pairs
Europarl 1.79 M
Rapid 1.45 M
News Commentary 0.35 M
OpenSubtitle 22.51 M
TED corpus 206 K
MuST-C.v2 248 K

Table 1: Corpora used in training the systems

4 Result and Analysis

We evaluate the model’s performance on the full
sentence translation before doing actual simultane-
ous translation. For this evaluation we use Sacre-
BLEU (Post, 2018) on the MuST-C.v2 and TED
2018 test sets. The results on full sentence is shown
in the Table 2. We see there is a significant improve-
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(a) Beam size = 12, Normalization = 1.0
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(b) Beam size = 12, Normalization = 0.6

Figure 3: BLEU vs AL plots for English-German with different beam sizes and length normalization.
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(b) Beam size = 12, Normalization = 0.6

Figure 4: BLEU vs DAL plots for English-German with different beam sizes and length normalization.

ment after fine-tuning. For full sentence (or prefix
in case of re-translation) translation we set beam
size 12 and length normalization 1.0 in Marian.

Validation Test
TED 2014,15 TED 2018 MuST-C.v2

Baseline 30.8 27.5 32.7
Fine-tuned 31.9 29.4 33.6

Decoder settings: Beam size = 12; Normalization = 1.0

Table 2: BLEU scores on full sentence translation,
computed with SacreBLEU.a
a BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+version.1.5.1

For evaluating the simultaneous translation, we
use SimulEval (Ma et al., 2020) which calculates
SacreBLEU for quality and Average Lagging (AL)
(Ma et al., 2019), differential AL (DAL) (Cherry
and Foster, 2019), and average proportion (AP)
(Cho and Esipova, 2016) for latency. The official
evaluation uses a blind test set, however, for sub-
mission purpose, we evaluate it on the MuST.v2
test set (tst-COMMON) set. We have following
settings for re-translation:

Type k AL BLEU Approach
Full Sentence - - 33.60 -
High 20 14.73 33.09 lm
High 21 14.94 33.2 mask
High 20 14.8 33.3 lm+mask
Medium 6 5.98 30.58 lm
Medium 6 5.72 30.92 mask
Medium 5 5.49 31.55 lm+mask
Low 2 2.38 25.16 lm
Low 2 2.32 26.77 mask
Low 1 2.48 27.57 lm+mask

Table 3: AL vs BLEU scores for three regimes (Low,
Medium, High) on MuST-C.v2 test set using beam size
12 and normalization 1.0. Best scores are in bold.

• baseline: The agent waits for initial k to-
kens and then alternates between READ and
WRITE (using re-translation). This is similar
to the wait-k approach by Ma et al. (2019).

• lm: After the initial k tokens, the agent uses
the language model to determine the “mean-
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ingful unit” boundaries, and only WRITEs
when at a boundary.

• mask: This is similar to the baseline, except
that the agent applies dynamic masking to
produce a more stable translation.

• lm+mask: Combination of lm and mask. Thus
in this approach, the agent first uses the lm
score to decide whether to translate, and then
uses dynamic mask to obtain a more stable
translation.

The official evaluation has three regimes of latency:
low (AL≤ 3), medium (AL≤ 6) and high (AL≤
15). In Table 3, we show the AL and BLEU scores
for the three regimes with different approaches.
We find that LM score and Dynamic masking com-
bined achieve the best AL-BLEU trade-off.

To gain a fuller comparison of approaches, we
calculate AL vs. BLEU and DAL vs. BLEU for
a range of k values, and different stabilisation ap-
proaches and plot them as shown in Figures 3 and 4.
Whilst for any given k, the lm+mask approach has
higher AL (because it adds WAIT operations), we
can see from the trajectory of the plot in Figure 3
that the lm+mask approach has the best AL-BLEU
trade-off. While training the models, we set the
length normalization to 0.6 which is used for scor-
ing the development set for the purpose of early-
stopping. However, we find that a normalization
1.0 performs slightly better than normalization 0.6
when doing re-translation. We show the plots for
both normalization values in figures 3 and 4.

When the AL is 15, for many sentences it is a
full sentence translation and thus all the approaches
have similar BLEU scores. We also notice many
sentences have negative AL scores. As the corpus
AL scores is the average of the sentence level AL
scores, negative scores can reduce the actual AL
score. To address this shortcoming of AL, Cherry
and Foster (2019), propose Differentiable Average
Lagging (DAL) as an alternative. In Figure 4, we
show the DAL vs BLEU scores. In Figure 4, we
also observe that the proposed LM and masking
improve the baseline by a significant margin in
DAL-BLEU trade-off.

5 Conclusion

In this paper, we describe our submission to the
IWSLT 2021 shared task on simultaneous text-to-
text German-English translation. We work with

a re-translation approach, enabling use to use an
unmodified MT inference engine, together with an
adaptation of wait k to trade off quality and latency.
Additionally we proposed two techniques (dynamic
masking and LM score) to improve translation qual-
ity by reducing the potential for flicker. We find
that the combination of the proposed approaches
achieves the best AL-BLEU trade-off.
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