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Abstract
Complex natural language applications such
as speech translation or pivot translation tra-
ditionally rely on cascaded models. However,
cascaded models are known to be prone to er-
ror propagation and model discrepancy prob-
lems. Furthermore, there is no possibility of
using end-to-end training data in conventional
cascaded systems, meaning that the training
data most suited for the task cannot be used.
Previous studies suggested several approaches
for integrated end-to-end training to overcome
those problems, however they mostly rely on
(synthetic or natural) three-way data. We
propose a cascaded model based on the non-
autoregressive Transformer that enables end-
to-end training without the need for an ex-
plicit intermediate representation. This new
architecture (i) avoids unnecessary early de-
cisions that can cause errors which are then
propagated throughout the cascaded models
and (ii) utilizes the end-to-end training data
directly. We conduct an evaluation on two
pivot-based machine translation tasks, namely
French→German and German→Czech. Our
experimental results show that the proposed
architecture yields an improvement of more
than 2 BLEU for French→German over the
cascaded baseline.

1 Introduction

Many complex natural language applications such
as speech translation (Sperber and Paulik, 2020)
or pivot translation (Utiyama and Isahara, 2007;
De Gispert and Marino, 2006) traditionally rely on
cascaded models. The technique of model cascad-
ing is commonly used to solve problems that can
be divided into a sequence of sub-problems where
the solution to the first problem is used as an input
to the second and so on. Typically cascaded sys-
tems include several consecutive and independently
trained models, each of which aims to solve a par-
ticular sub-task. For example in a cascaded speech

translation system an automatic speech recogni-
tion model receives the audio signal as an input
and generates a transcription as an output of the
first sub-task. This output could be passed to a
system that adds punctuation and capitalization to
the sequence, before, as a final step, a machine
translation system is applied.

Cascaded models are appealing if there is more
training data for each of the sub-tasks than for the
full task. Examples for such scenarios include auto-
matic speech translation (AST), image captioning
in non-English languages, and non-English ma-
chine translation. However, cascaded models are
prone to error propagation, meaning that decision
errors in the first model are forwarded to and possi-
bly amplified by the second model. Usually, there
is also a loss of information when passing informa-
tion between models since the interface between
models traditionally requires each model to output
a discrete decision. This means that the deeper
knowledge that the model may encode in its rep-
resentation of the output is reduced to a ‘surface
form’ of a particular prediction, which is passed on
to the following model. Lastly, in conventional cas-
caded system there is no possibility to make use of
end-to-end training data, meaning that the training
data most suited for the task cannot be used.

To tackle these problems, several approaches for
integrated end-to-end training of cascaded models
have been proposed and applied to different NLP
tasks (Bahar et al., 2021; Sperber et al., 2019; Sung
et al., 2019). Integrated end-to-end training is usu-
ally achieved by merging the consecutive models
and fine-tuning the resulting system on the end-
to-end training data. Although the idea of this
approach is simple, it remains an open challenge
how to choose the interface between the models
in such a way that they can be trained, e.g. by
gradient propagation. Furthermore, most of these
approaches rely on synthetic or natural multi-way
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training data, i.e. data that does not only provide an
(input, output) pair but also the correct label for all
sub-tasks involved. For a detailed discussion of the
literature, we refer to Section 2. In this work we fo-
cus on the task of pivot-based machine translation,
i.e. the translation from a source (src) language
via a pivot (piv) language to the desired target (trg)
language, as an example for a two-stage task that
is traditionally solved by model cascading.

We propose a cascaded model based on the non-
autoregressive Transformer (NAT) that enables end-
to-end training without the need for an explicit
intermediate representation, that is inevitable in
autoregressive models. This new architecture (i)
avoids unnecessary early decisions that can cause
errors which are then propagated throughout the
cascaded models (ii) utilizes the src→trg, src→piv
and piv→trg training data and (iii) communicates
the full information from the src→piv model down-
stream by providing a natural interface between the
src→piv and piv→trg models.

2 Related Work

Several approaches were proposed in recent years
to address the weaknesses of the traditional cas-
caded models. Early works investigated the appli-
cations of the N-best list decoding both in speech
translation and pivot-based translation (Woszczyna
et al., 1993; Lavie et al., 1996; Och and Ney, 2004;
Utiyama and Isahara, 2007). The N-best list decod-
ing allows to pass multiple intermediate hypotheses
and avoid unnecessary early decisions. An efficient
alternative to the n-best list is lattices, which re-
placed the n-best list for the speech translation
models (Zhang et al., 2005; Schultz et al., 2004;
Matusov et al., 2008). However, the usage of the
discrete decisions does not allow to train cascaded
model jointly on src→trg data.

Most recent works are focusing instead on
the joint or integrated training for sequence-to-
sequence cascaded models. Thus, (Cheng et al.,
2017) suggested a joint training approach for the
pivot-based neural machine translation. In their
work, two attention-based RNN models (Bahdanau
et al., 2015) are trained jointly with different con-
nection terms in the objective function and the
src→trg as a bridging corpus. Another approach is
to apply the transfer-learning technique for pivot-
based NMT (Kim et al., 2019), meaning that the
direct src→trg model is initialized with the re-
spective weights from the pre-trained models, and

fine-tuned on src→trg corpus through the train-
able adapter. Pivot-based NMT is typically used
in a low-resource src→trg setup, and multilingual
NMT systems proved to be successful in this sce-
nario (Johnson et al., 2017; Aharoni et al., 2019;
Zhang et al., 2020). To tackle a low-resource NMT
problem, (Kim et al., 2019) also explore differ-
ent ways to extend the back-translation idea (Sen-
nrich et al., 2016a) for src→piv→trg scenarios.
However, since this work aims to provide the gen-
eral framework for the integrated training of cas-
caded sequence-to-sequence models, we do not aim
for comprehensive comparisons with multilingual
NMT systems and various data augmentation strate-
gies. We refer to (Kim et al., 2019) for in-depth
comparison studies.

In speech translation, the tight model integration
for the cascaded models also attracted attention
from the community. (Anastasopoulos and Chi-
ang, 2018; Wang et al., 2019; Sperber et al., 2019)
discussed either use of attention or hidden state vec-
tors as a connection interface for the tight model
integration in cascaded systems. Recently, (Bahar
et al., 2021) proposed to use posterior distribution
as an input to the encoder of the second model.

3 Background

3.1 Sequence-to-Sequence modeling

The modeling of the sequence-to-sequence prob-
lems, namely converting the source sequence fJ1
in one domain to the target sequence eI1 in another
domain, is nowadays usually done using encoder-
decoder deep neural networks (Sutskever et al.,
2014; Bahdanau et al., 2015; Vaswani et al., 2017).
The purpose of the encoder is to map the input
sequence fJ1 to a continuous, hidden vector repre-
sentation h, from which the decoder decodes the
target sequence.

In applications such as machine translation, the
Transformer (Vaswani et al., 2017), an attention-
based sequence-to-sequence model, is considered
state of the art (Barrault et al., 2020).

Commonly the probability distribution over the
target sequences in sequence-to-sequence models
is expressed by a left-to-right factorization:

p(eI1|fJ1 ) =
I∏

i=1

p(ei|ei−11 , fJ1 ). (1)

These models are also called autoregressive, mean-
ing that each consecutive token in the target se-
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quence depends on the left context of the same
sequence.

3.2 Non-Autoregressive NMT

In contrast to the autoregressive modelling ap-
proach, the non-autoregressive Transformer (Gu
et al., 2018) assumes that all tokens in the target se-
quence are generated independently of each other.
This means in particular that there is no need for
a search procedure at inference time since target
tokens can be generated and optimized in parallel.
However, current approaches also need an explicit
length model as additional input to the decoder. Gu
et al. (2018) utilize the standard Transformer archi-
tecture and provide several modifications in order
to obtain a non-autoregessive machine translation
system.

Recent works proposed to relax the indepen-
dence constraints during training and use iterative
decoding for the NAT, meaning that instead of only
one decoding pass, the model relies on the multi-
ple passes, and conditional dependence might be
used on the consecutive passes to achieve better
performance (Ghazvininejad et al., 2019; Gu et al.,
2019; Lee et al., 2018; Stern et al., 2019). Such
decoding procedure allows shrinking the gap be-
tween the performance of the autoregressive and
non-autoregressive models.

3.3 Pivot-based Machine Translation

A cascading system ps2t for pivot-based machine
translation consists of a src→piv model ps2p and
a piv→trg model pp2t, which typically have a dis-
joint parameter set. While both models are trained
independently, they work in cooperation when pro-
ducing the translation, i.e., the most likely target
sequence êÎ1 for the given source sequence fJ1 . The
pivot sequence zK1 can be viewed as a latent vari-
able, and the target sequence probability can be
expressed by summing over all pivot sequences:

ps2t(e
I
1|fJ1 ) =

∑
zK1

pp2t(e
I
1|zK1 , fJ1 )ps2p(z

K
1 |fJ1 )

=
∑
zK1

pp2t(e
I
1|zK1 )ps2p(z

K
1 |fJ1 ).

Since the sum over all possible pivot hypothesis zK1
is intractable in practice, instead two-pass decoding
is used as an approximation to obtain the target

hypotheses:

ẑK̂1 = argmax
K,zK1

K∏
k=1

ps2p(zk|zk−11 , fJ1 ) (2)

êÎ1 = argmax
I,eI1

I∏
i=1

pp2t(ei|ei−11 , ẑK̂1 ). (3)

We investigate the stability and potential for im-
provement of this interface in the Section 6.1.

4 Model Integration

Starting from the conventional cascaded model, as
described in Section 3.3, we propose to connect the
two consecutive encoder-decoder models through
an end-to-end trainable interface. The src→piv
model consists of both Encoders2p and Decoders2p,
similarly the piv→trg model consists of Encoderp2t
and Decoderp2t. We introduce an interface which
connects Decoders2p to the Encoderp2t. The main
requirement for this connection interface is to be
differentiable to make the gradient propagation pos-
sible. In order to fulfill this requirement, we fol-
low the previous work (see more in Section 2) and
choose to focus on two possible interfaces:

• Decoder States Interface: Pass the final se-
quence of hidden states vectors of the last
src→piv Decoders2p layer as an input to the
Encoderp2t. The input embedding layer and
positional encoding layer are omitted in the
Encoderp2t, and the hidden states vector is
then used directly as an input to the next self-
attention block (see Figure 1a).

• Decoder Posteriors Interface: Pass the
probability distribution ps2p(zK1 |i, fJ1 ) of the
Decoders2p. The embedding matrix E from
Encoderp2t is used to calculate a ‘soft embed-
ding’ ∑

v∈V
Evps2p(zk = v|fJ1 ).

Hence, the Decoders2p and Encoderp2t are
connected through the softmax layer, as
shown shown in Figure 1b.

Note that the decoder posteriors interface requires
the src→piv and piv→trg model to share a common
vocabulary V .

Two autoregressive encoder-decoder models can
be connected through these interfaces as shown
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(a) Decoder States Interface. (b) Decoder Posteriors Interface.

Figure 1: Two proposed connection interfaces between src→piv and piv→trg models for integrated training. The
blocks in gray represents are omitted layers of the original cascaded Transformer architecture. For simplicity we
do not show the Encoders2p and Decoderp2t.
*Note that the input embedding is now a full fledged matrix multiplication, not a multiplication with a one-hot
vector which is equivalent to a column selection.

in Figure 2a. However, at training time the
Decoders2p requires a pivot sequence as an input.
If there is no access to the three-way src→piv→trg
data, the pivot sequence has to be obtained by doing
a search in training, which is computationally very
prohibitive in a real world task, or via forward or
backward translation beforehand (synthetic data).
The disadvantage of using synthetic data is that the
pivot sequences remain static throughout the train-
ing, this means that the cascaded src→piv→trg
model is trained on pivot sequences which be-
come less relevant the more training updates the
src→piv models receives. To avoid a sub-optimal,
discrete intermediate representation while still ben-
efit from the model integration, we propose to re-
place src→piv autoregressive Transformer with a
non-autoregressive one as shown in Figure 2b. The
usage of NAT allows to replace the pivot sequence
with a sequence of unknowns during the training
on src→trg data. Since the decoder states interface
do not use the embeddings of the Encoderp2t, sim-
ilar to other works, the Encoderp2t can be safely
omitted in the integrated model (Figure 2c).

Training such a cascaded model can be done
with the following steps:

• Pre-training:

– Train src→piv model on src→piv cor-

pora
– Train piv→trg model on piv→trg cor-

pora

• Concatenation: Concatenate the models in the
cascade through the interface and initialize
respective components with the pre-trained
weights.

• Fine-tuning: fine-tune the resulting integrated
model on the src→trg data.

This yields a src→trg architecture in which all pa-
rameters are pre-trained and which makes use of
all parameters from the pre-trained models, with
the exception of one linear layer and an embed-
ding matrix in the decoder states interface. Please
note that although we are focusing on pivot-based
NMT as our target task, we argue that the proposed
integration method can be easily adapted to any
Transformer-based cascaded model.

5 Experimental Results

To test and verify the proposed cascaded model,
we conduct experiments on French→German and
German→Czech data from the WMT 2019 news
translation task1.

1http://www.statmt.org/wmt19/

http://www.statmt.org/wmt19/
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(a) AR-based integrated model.

(b) NAT-based integrated model.

(c) Three-components NAT-based integrated model.

Figure 2: Different variants of the encoder-decoder model integration through the connection interface.

5.1 Data

Training data for French→German includes Eu-
roparl corpus version 7 (Koehn, 2005), Common-
Crawl2 corpus and the newstest2008-2010. The
total number of parallel sentences is 2.3M.

The original German→Czech task was con-
strained to unsupervised translation, but we utilized
the available parallel data to relax these constraints.
The corpus consists of NewsCommentary version
14 (Tiedemann, 2012) and we extended it by in-
cluding newssyscomb20093 and the concatenation
of previous years test sets newstest2008-2010 from
the news translation task. The total amount of par-
allel sentences is 230K.

For both tasks we use newstest2011 as the de-
velopment set and newstest2012 as the test sets.
The data statistics, including pre-training data, are
collected in Table 1.

Sentences Words (target)
direct data French→German 2.3M 53M
pre-train French→English 35M 905M

English→German 9.7M 221M
direct data German→Czech 230K 4.5M
pre-train German→English 9.1M 180M

English→Czech 49M 486M

Table 1: Training data overview.

2https://commoncrawl.org/
3http://www.statmt.org/wmt09/

system-combination-task.html

5.2 Preprocessing

For each parallel corpus, we apply a standard pre-
processing procedure: First, we tokenize each cor-
pus using the Moses4 tokenizer. Then a true-casing
model is trained on all training data and applied
to both training and test data. In the final step,
we train byte-pair encoding (BPE) (Sennrich et al.,
2016b) with 32000 merge operations. In order to
enable model integration, we train BPE jointly on
all available data for the respective language.

5.3 Model and Training

We implement the models described in Sec-
tion 4 using the fairseq (Ott et al., 2019)
sequence-to-sequence extendable framework.
As non-autoregressive src→piv model, we
choose the Conditional Masked Language Model
(CMLM) (Ghazvininejad et al., 2019) with 6 layers
for both encoder and decoder, and a standard
6 layer ‘base’ Transformer for the piv→trg
system (Vaswani et al., 2017). For each interface,
the length of the pivot sequence is set to the length
of the source sequence by default. More on the
length modeling is discussed in the Section 6.4.
For the decoder states interface, the last decoder is
used for all the experiments.

For model fine-tuning, the Adam op-
timizer (Kingma and Ba, 2015) with
β = {(0.9, 0.98)} and the learning rate
0.5 × 10−5 is used for all the models. The

4http://www.statmt.org/moses/

https://commoncrawl.org/
http://www.statmt.org/wmt09/system-combination-task.html
http://www.statmt.org/wmt09/system-combination-task.html
http://www.statmt.org/moses/


281

learning rate is reduced during training based
on the inverse square root of the update. Ad-
ditionally, 10,000 and 4,000 warm-up updates
have been used for French→German and
German→Czech accordingly. The dropout
is set to 0.1 for French→German and 0.3 for
German→Czech. We set the effective batch size
to 65,536 following the fairseq recommendations
for the non-autoregressive models. Although
CMLM provides the Mask-Predict decoding
algorithm (Ghazvininejad et al., 2019), in our work
we only use one iteration and obtain probability
distribution and hidden states from the fully
masked sequence, which means that each token is
only conditioned on the source tokens. Results are
reported using the sacreBLEU5 implementation of
BLEU (Papineni et al., 2002).

We compare our models against three baselines:

• direct baseline: The direct baseline is the
Transformer base model, which is trained only
on src→trg (direct) parallel data.

• AR pivot baseline: A baseline system com-
posed of cascading a src→piv and a piv→trg
autoregressive (AR) models. These two mod-
els are autoregressive Transformer ‘base’ mod-
els with six layers of encoder and decoder, re-
spectively. The individual models are trained
on either src→piv or piv→trg data. There is
no fine-tuning on the src→trg data, and results
are reported based on the inference only.

• NA pivot baseline: Similarly to the AR base-
line, we provide the results for the non-
autoregressive (NA) pivot baseline. The
main difference is that the non-autoregressive
CMLM model is selected as the src→piv
model. We follow standard training procedure
for the CMLM as described in (Ghazvinine-
jad et al., 2019), and as for hyperparameters,
we rely on the fairseq guidelines6. While
pre-training, a random mask is applied to the
decoder input, meaning that the number of
observed and masked tokens varies for each
batch. During decoding, we employ five
decoding iterations to achieve better perfor-
mance on the src→piv model. The Trans-
former base piv→trg model is trained in the

5https://github.com/mjpost/sacrebleu
6https://github.com/pytorch/fairseq/

blob/master/examples/nonautoregressive_
translation/scripts.md

same way as for the AR pivot baseline.

Additionally, we compare our NA integrated
model with the AR integrated model (2a) based
on the synthetic data generation (Hilmes, 2020).
Synthetic data is generated by the forward pass of
the src→piv model offline before fine-tuning on the
src→trg data, meaning that the pivot hypotheses
stay the same during fine-tuning.

We report the best results for the proposed cas-
caded model with the different interfaces in Ta-
ble 2. The best checkpoint is selected based on
BLEU score of the development set. The results
show up to 2.1% BLEU improvements for the de-
coder states and decoder posteriors interfaces on
French→German compare to the pivot baseline.
On the other hand, there is a 2.0% BLEU degrada-
tion of the performance while using decoder pos-
teriors interface on German→Czech compare to
the pivot baseline and up to 2.3% BLEU degrada-
tion using decoder states interface. We suppose
that such degradation can be based on the training
data size since the German→Czech is ten times
smaller than French→German. To check on our
assumption, we perform additional analysis with
the different training data partitions in Section 6.2.
Moreover, according to the decoder states interface
results, the usage of the additional encoder showed
its usefulness compared to the three-components
architecture.

6 Analysis

6.1 Error Propagation

Error propagation is a well-known problem of
cascaded models. In the following we investi-
gate how significantly errors in one model in-
fluence the following models. To this end, we
monitor both the individual model performance
and the end-to-end cascaded performance by run-
ning experiments on a three-way test set that
consists of (source, pivot, target) triples. For
that purpose, we extract 3000 overlapping sen-
tences from NewsCommentary v14 for WMT
French→English and WMT English→German to
create a new test set that is disjoint with the train-
ing data. We train a 6-layer ‘base’ Transformer
for French→English (src→piv) and another for
English→German (piv→trg). In order to analyse
the impact of disturbances and simulate errors in
the French→English system, we generate a weaker
hypothesis by:

https://github.com/mjpost/sacrebleu
https://github.com/pytorch/fairseq/blob/master/examples/nonautoregressive_translation/scripts.md
https://github.com/pytorch/fairseq/blob/master/examples/nonautoregressive_translation/scripts.md
https://github.com/pytorch/fairseq/blob/master/examples/nonautoregressive_translation/scripts.md


282

French→German German→Czech
BLEU[%] BLEU[%]

dev test dev test

A
R direct baseline 20.0 20.4 13.5 14.0

pivot baseline 19.5 20.7 18.8 18.1
N

A
In

t.

Pivot hypothesis (NA pivot baseline) 17.1 18.1 17.3 16.6
Decoder States w/o Encoderp2t 20.9 21.8 15.5 15.5

w Encoderp2t 21.5 22.8 16.5 16.7
Decoder Posteriors 21.6 22.7 16.8 17.0

A
R

In
t. Decoder States† 20.6 21.2 16.6 16.8

Decoder Posteriors† 20.5 21.1 17.9 17.1

Table 2: Results for integrated training with different non-autoregressive (NA) interfaces on src→trg data in com-
parison to autoregressive (AR) baseline model. All pivot/cascaded models are pre-trained on the respective data.
We use newstest{2011,2012} as dev and test respectively. Results marked with † are taken from (Hilmes,
2020).

• Applying artificial character-level noise: With
a probability of pnoise each character in the
decoded pivot hypothesis is replaced with a
random character from the character set of the
sentence

• Using a weaker checkpoint than the baseline

• Reducing the beam size to 1 (greedy search)

By applying these procedures, we control the per-
formance of the src→piv model while maintaining
a stable performance for the piv→trg model. As is
shown in Figure 3, the errors in the src→piv model
are actually deflated by the piv→trg system, since
a loss of 1.0 BLEU in the src→piv system results in
only a drop of around 0.5 BLEU for the cascaded
src→trg system.

Similarly, we conduct experiments in the other
direction. By improving the quality of the predic-
tion from the src→piv model, we study the poten-
tial gain for the src→trg task. For that purpose, we
translate each source sentence to a 10-best list of
pivot sentences. Using the pivot reference from
the three-way test set we can select the single best
hypothesis based on the sentence-level BLEU

The sentence with the best BLEU score among
ten candidates is then passed to the piv→trg model.
This cheating experiment results in an improve-
ment of 6.2% absolute BLEU on the src→piv
model, which in turn however only results in
1.4% absolute BLEU improvement on the cascaded
src→trg model. We conclude that (i) the piv→trg
models weakens both improvements and errors of

Figure 3: Impact of errors in the src→piv model on the
performance of the cascaded src→trg system.

the src→piv model and (ii) the ambiguities in an
src→piv 10-best list hold room for an improvement
of over 1.0 BLEU.

6.2 Effect of Training Data Size

To investigate how much the NAT-based inte-
grated model quality depends on the training
data size, we train our model on randomly sam-
pled 50%, 30%, and 10% selections of the orig-
inal French→German training corpus. To pre-
vent overfitting on a small corpus, we increase
the dropout rate to 0.3 compared to 0.1 on full
French→German corpus. The Table 3 shows that
when training on 10% of the original data, the
discrepancy between the best model performance
is around 2.4% BLEU. This setup simulates the
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data conditions of German→Czech since the total
amount of training sentences in German→Czech
corpus is around 10% of the French→German cor-
pus. Based on our experimental results, we suppose
that the integrated model needs some minimum
amount of parallel src→trg data to achieve the ac-
ceptable performance.

data percentage BLEU[%]

100% 21.5
50% 21.0
30% 20.6
10% 19.1

Table 3: French→German dev set results using differ-
ent training data partitions. The data percentage refers
to the relative size of the training corpus comparing
to the full French→German training set. All experi-
ments use the decoder states interface for NAT-based
integrated training.

6.3 Effect of Model Pre-training

In our experiments for the NAT-based integrated
model, we solely rely on the models’ pre-training,
which means that instead of random initialization
for the NAT-based integrated model components,
we utilize the weights from the respective pre-
trained models. In this section, we study the im-
portance of model pre-training and its impact on
the final model performance. For that purpose, we
train the NAT-based integrated model with various
initialization options.

Figure 4: German→Czech dev set results for different
parameter pre-training schemes. src→piv indicates that
both Encoders2p and Decoders2p are pre-trained and all
other parameters are randomly initialized. We use a
similar notation for the other pre-training schemes. All
experiments use the decoder states interface for NAT-
based integrated training.

Figure 5: French→German dev set results for different
parameter pre-training schemes. All experiments use
the decoder states interface for NAT-based integrated
training.

Figure 4 and Figure 5 show that initialization of
scr→piv encoder and decoder is crucial for the final
model performance. Without initialization or with
pre-training only piv→trg encoder and decoder, it
is impossible to train the end-to-end system. We
see a similar trend while using the decoder posteri-
ors interface.

6.4 Length Modeling

Length modeling for the non-autoregressive de-
coder is one of the bottlenecks for our proposed
NAT-based integrated model. The pivot sequence
length has to be set in advance, and it can not be
refined. In most of our experiments, we set the
length of the intermediate sequence to be equal to
the source sequence length both in training and test
time. As a result, we do not fine-tune the length
model using the src→trg data. Moreover, the as-
sumption that source length should match the pivot
length does not hold for every language pair. In
Table 4 we experiment with using different length
estimates and report how it affects the end-to-end
translation quality.

The results show that better length modeling
can lead to more than 2% BLEU improvements.
However, for our experiments, we have not tried
any sophisticated length prediction methods. We
suppose that further exploration will be beneficial
for the integrated model performance.

6.5 Decoder Iterations

The iterative refinement of the hypotheses by a non-
autoregressive decoder plays an essential role in
achieving better performance (Ghazvininejad et al.,
2019; Gu et al., 2019). We observe that, the NA
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length source
French→German German→Czech

BLEU[%] BLEU[%]

random 19.2 14.6
source 21.6 16.8
target 18.9 16.5
predicted 21.3 17.2

Table 4: Results for the different pivot length estimates
on the dev set. Length source random refers to the
length choice based on uniform distribution in the in-
terval [2, 100). predicted refers to the usage of
the CMLM length prediction component for length as-
signment. source and target indicate the length
choice based on the source sequence or target sequence
lengths. All experiments use the decoder posteriors in-
terface for NAT-based integrated training.

baseline with one decoder iteration of the src→piv
model results in 8.2 BLEU on the French→German
development set, while five iterations of the same
decoder yield 17.1 BLEU. However, simply in-
creasing the number of iterations during decoding
with the integrated model does not lead to simi-
lar improvements. Note that the output of the NA
decoder is handed to an encoder, which a) more
expressive than a softmax layer and b) is trained on
the single-iteration output. This mismatch between
training and decoding could be the reason why de-
coder iterations are not beneficial for the integrated
model. Additionally, we experimented with de-
coder iterations during training of the integrated
model, but it breaks the gradient propagation. Al-
though our initial experiments with the iterations
have been unsuccessful, we think that they can
be applied for training using such approaches as
Gumbel-Softmax (Jang et al., 2017).

6.6 Knowledge Distillation

Sequence-level knowledge distillation (KD) (Kim
and Rush, 2016) proved to be useful for the training
of non-autoregressive models (Zhou et al., 2020).
Although it improves the src→piv model perfor-
mance, our initial experiments show that KD results
in a 0.1-0.3 BLEU degradation on the integrated
model.

7 Conclusion

In this work, we propose a novel architecture for
the integrated training of cascaded models based
on a non-autoregressive Transformer. We train
the model on src→piv, piv→trg, and src→trg data
overcoming a drawback of conventional cascaded
models. Moreover, it provides a natural inter-

face between two Transformer-based models and
avoids unnecessary early decisions for intermedi-
ate representations. Our experimental results on
the task of pivot-based machine translations show
that the NAT-based integrated model outperforms
the pivot baseline by up to 2.1% BLEU on WMT
French→German.

We analyze the integrated model and conclude
that the src→piv system is crucial for the final trans-
lation performance. Further work is required to
apply established NAT improvements to this new
architecture, such as iterative decoding in the cas-
caded training and further experiments on knowl-
edge distillation in the src→piv pre-training, both
of which show significant improvements in stan-
dalone systems (Ghazvininejad et al., 2019; Gu
et al., 2018, 2019; Zhou et al., 2020). Additionally,
more sophisticated techniques for length modeling,
such as an external length model or multiple length
candidates, can be applied in the future to improve
the quality of the pivot hypotheses.

Even though we test our cascaded architecture
on the task for pivot-based machine translation, we
can use the architecture in any application, where a
combination of sequential models is beneficial.
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