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Abstract

This paper describes the system submitted to
the IWSLT 2021 Multilingual Speech Transla-
tion (MultiST) task from Huawei Noah’s Ark
Lab. We use a unified transformer architec-
ture for our MultiST model, so that the data
from different modalities (i.e., speech and text)
and different tasks (i.e., Speech Recognition,
Machine Translation, and Speech Translation)
can be exploited to enhance the model’s abil-
ity. Specifically, speech and text inputs are
firstly fed to different feature extractors to ex-
tract acoustic and textual features, respectively.
Then, these features are processed by a shared
encoder–decoder architecture. We apply sev-
eral training techniques to improve the perfor-
mance, including multi-task learning, task-level
curriculum learning, data augmentation, etc.
Our final system achieves significantly better
results than bilingual baselines on supervised
language pairs and yields reasonable results on
zero-shot language pairs.

1 Introduction

Multilingual Speech Translation (MultiST) aims
to develop a single system that can directly trans-
late speech in different languages into text in
many other languages. Due to data scarcity of
Speech Translation (ST), multilingual and multi-
modal models are promising as they enable knowl-
edge transferred from other languages and related
tasks like Automatic Speech Recognition (ASR)
or Neural Machine Translation (NMT). They also
allow zero-shot translation in the settings of no di-
rect parallel data. The IWSLT 2021 MultiST task
is held for evaluating the performance under the
circumstances. This paper describes our system for
the task.

We build a unified model for both speech- and
text-related tasks, so that the knowledge from differ-
ent modalities (speech and text) and different tasks

(in this work, the tasks include ST, ASR, and NMT)
can be learned together to enhance ST. Specifi-
cally, our model consists of three parts – feature
extractor, semantic encoder and decoder. For all the
tasks, the semantic encoder and the decoder will be
shared to learn unified representations. It follows
the Transformer (Vaswani et al., 2017) encoder-
decoder framework to learn modality-independent
features and output text representations. We use the
Conv-Transformer (Huang et al., 2020) as feature
extractor for speech input, and the word embed-
ding for text input. The extracted features are then
fed to the semantic encoder regardless of the input
modality.

However, it is difficult for such a unified model
to directly digest knowledge from diverse tasks.
Therefore, we apply task-level curriculum learning
for our model. We presume the ST task is more
difficult than the other two tasks (ASR and NMT),
as it not only requires acoustic modeling to extract
speech representations, but also needs alignment
knowledge between different languages for transla-
tion. To this end, our training is divided into three
steps – ASR and NMT pre-training, joint multi-
task learning, and ST fine-tuning. What’s more,
to alleviate the data scarcity problem, we also ap-
ply CTC multi-task learning (Graves et al., 2006),
data augmentation techniques including SpecAug-
ment (Bahar et al., 2019) and Time Stretch (Nguyen
et al., 2020), and knowledge distillation (Liu et al.,
2019), etc.

We conduct experiments in the constrained set-
ting, i.e., only the Multilingual TEDx (Salesky
et al., 2021) dataset is used for training. It contains
speech and transcripts from four languages (Span-
ish, French, Portuguese, and Italian), and some
of them are translated into English and/or other
languages of the four mentioned above. Several
language pairs for ST are provided without parallel
training corpus and evaluated as zero-shot transla-



150

Feature Extractor

Conv-
Transformer

Text 
Embedding

Unified Semantic Encoder

Output Projection

Unified Decoder

Audio Text

Text

La
n

g 
ID

Figure 1: Overall structure of our unified model.

tion. The experimental results show that our unified
model can achieve competitive results on both su-
pervised settings and zero-shot settings.

2 Model Architecture

The architecture of our unified model, which is
based on Transformer (Vaswani et al., 2017), is
shown in Figure 1. The NMT part (both input and
output is text) follows the basic Transformer setting,
i.e. 6 layers for both the encoder and the decoder,
each with 8 attention heads, 512 hidden dimen-
sions, and 2048 hidden units in feed-forward lay-
ers. For the speech input, we replace the word em-
bedding layer with the Conv-Transformer (Huang
et al., 2020) encoder as acoustic modeling to ex-
tract audio features, and the rest are shared. The
Conv-Transformer encoder gradually downsamples
the speech input with interleaved convolution and
Transformer layers. We downsample the speech in-
put 8× times with three Conv-Transformer blocks,
each contains three convolution layers (the stride
number is 2 in the second convolution layer, and 1
in other layers) and two Transformer layers. The
Conv-Transformer is set following Huang et al.
(2020) and also consistent with the shared parts
(in terms of hidden dimensions, etc). Then, the
output is fed into the shared semantic encoder and
decoder to produce text representations.

For language encoding, we apply language pro-
jection (Luo et al., 2021) to learn language-specific
information. It replaces the language embedding
in conventional multilingual models with a projec-

tion matrix before the positional embedding layer.
With language IDs and input modality, our unified
model can recognize the task that needs to be com-
pleted. For example, our model will perform ASR
with speech input and the same language input and
output IDs.

3 Techniques

Our model is trained in an end-to-end manner with
all available data, including the ASR data (speech
and transcript) and the ST data (speech, transcript
and translation). From the ST data, we also extract
the speech-transcript pairs as ASR data, and the
transcript-translation pairs as NMT data. We apply
task-level curriculum learning to train our model.
At the same time, data augmentation, knowledge
distillation, and model ensemble are used to fur-
ther improve the performance. We describe the
techniques in details in the rest of this section.

3.1 Task-Level Curriculum Learning
As a cross-modal and cross-lingual task, ST is more
complicated than ASR or NMT. Therefore, we pre-
sume it is better for our unified model to learn in
a smoother way. We divide the training procedure
into three steps:

1. ASR and NMT pre-training: we use all the
ASR and NMT data together to pre-train our
unified model with a certain number of steps.

2. Joint multi-task learning: all the data includ-
ing the ST data are used to jointly train the
model in a multi-task manner.

3. ST fine-tuning: we fine-tune the model with
only ST data to further improve the perfor-
mance in specific language pairs1.

For all the three steps, we use an additional CTC
loss (Graves et al., 2006) on the output of the last
layer of Conv-Transformer encoder to assist with
the acoustic modeling. What’s more, to make the
model focus on the ST task, we assign less loss
weights to ASR and NMT tasks (both 0.5, while
1.0 for ST) in step 2.

3.2 Data Augmentation
We use SpecAugment (Park et al., 2019; Bahar
et al., 2019) and Time Stretch (Nguyen et al., 2020)
to augment the speech data during training.

1Note that fine-tuning can only be applied in non zero-shot
translation language pairs.
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SpecAugment. SpecAugment is a data augmen-
tation technique originally introduced for ASR, but
proven to be effective in ST as well. It operates
on the input filterbanks and consists of three kinds
of operations, time warping, time masking, and
frequency masking. We follow Bahar et al. (2019)
and only apply time masking and frequency mask-
ing. It means that a number of consecutive portions
of the speech input are masked in the time or the
frequency dimensions. We always apply SpecAug-
ment to both the ASR and ST tasks in the three
training steps. We set the parameter for time mask-
ing T to 40 and that for frequency masking F to 4.
The number of time and frequency masks applied
mT and mF are 2 and 1, repsectively.

Time Stretch. Time stretching is a kind of aug-
mentation method applied in extracted acoustic fea-
tures like filterbanks to simulate conventional speed
perturbation technique (Ko et al., 2015). Specifi-
cally, given a consecutive feature vectors of speech
input, it stretches every window of w feature vec-
tors by a factor of s obtained from an uniform dis-
tribution of range [low, high]. In this way, some
frames are dropped (if s > 1) or repeated (if s < 1)
to simulate audio speeding up or down. We only
apply Time Stretch in the first two training steps,
as we found it does not help much in fine-tuning.
We set w to∞, and low = 0.8, high = 1.25.

3.3 Knowledge Distillation

Teaching the ST model with a pre-trained NMT
model using knowledge distillation has been shown
effective (Liu et al., 2019). Hence we also use word-
level knowledge distillation to help with training.
Specifically, we minimize the KL divergence be-
tween the distribution produced by our model and
that produced by the pre-trained NMT model. The
tradeoff weight for the knowledge distillation part
is set to 0.7 (i.e. 0.3 for cross entropy based on
ground-truth targets). We use knowledge distilla-
tion only in the ST fine-tuning step.

3.4 Model Ensemble

Ensemble decoding is to average the word distribu-
tion output from diverse models at each decoding
step. It is an very effective approach to improve the
quality of NMT models. We select the top 2 or 3
models in terms of BLEU scores on development
set for each language pair to perform ensemble
decoding. The candidate models are trained with
different hyper-parameters.

Source Target Text
En Es Fr Pt It

Es 39k (69h) 107k (189h) 7k (11h) 24k (42h) 6k (11h)
Fr 33k (50h) 24k (38h) 119k (189h) 16k (25h) –
Pt 34k (59h) ? – 93k (164h) –
It ? ? – – 53k (107h)

Table 1: The number of sentences and the duration of
audios for the Multilingual TEDx dataset. Same source
and target languages mean the ASR data. Noted with ?
are the language pairs for zero-shot translation.

4 Experiments and Results

4.1 Experimental Setup

We only participate in the constrained setting task.
Therefore, only the data from the Multilingual
TEDx (Salesky et al., 2021) is available. It contains
speech and transcripts from four languages (Span-
ish, French, Portuguese, and Italian), and some of
them are translated into other languages of the five
(English and the four mentioned above). The data
statistics are shown in Table 1.

We use 80-dimensional log-mel filterbanks as
acoustic features, which are calculated with 25ms
window size and 10ms step size and normalized
by utterance-level Cepstral Mean and Variance
Normalization (CMVN). For transcriptions and
translations, SentencePiece2 (Kudo and Richard-
son, 2018) is used to generate a joint subword vo-
cabulary with the size of 10k. We share the weights
for input and output embeddings, as well as the
output projection in CTC module.

Our model is trained with 8 NVIDIA Tesla
V100 GPUs, each with a batch size of 32. We
use Adam optimizer (Kingma and Ba, 2015) dur-
ing model training with learning rates selected
in {2e−3, 1e−3, 8e−4, 5e−4, 3e−4} and warm-up
steps selected in {2000, 6000, 10000}, followed by
the inverse square root scheduler. Dropout rate is
selected in {0.1, 0.2, 0.3}. We save checkpoints
every epoch and average the last 10 checkpoints
for evaluation with a beam size of 5. Our code is
based on fairseq S2T3 (Wang et al., 2020).

4.2 Results

This section shows the results of our unified model
in Multilingual TEDx dataset. We display the re-
sults of our model for MultiST, as well as ASR and
NMT, to show the efficacy of our unified model.

2https://github.com/google/
sentencepiece

3https://github.com/pytorch/fairseq/
tree/master/examples/speech_to_text

https://github.com/google/sentencepiece
https://github.com/google/sentencepiece
https://github.com/pytorch/fairseq/tree/master/examples/speech_to_text
https://github.com/pytorch/fairseq/tree/master/examples/speech_to_text
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Model Es-En Es-Fr Es-Pt Es-It Fr-En Fr-Es Fr-Pt Pt-En Pt-Es? It-En? It-Es?

Bilingual 16.60 0.70 16.16 0.50 17.49 13.74 1.26 16.83 – – –
+ASR data 19.17 9.55 29.59 14.19 24.56 25.13 23.38 21.95 – – –

Joint learn 23.97 21.76 33.52 22.04 27.65 30.08 30.62 26.36 24.50 14.99 12.34
Curriculum learn 25.13 22.72 35.54 24.51 29.75 31.88 31.91 28.07 26.14 15.82 14.98

+FT 25.01 22.72 35.04 24.12 29.91 31.87 31.81 27.83 – – –
+FT with KD 25.25 23.06 35.83 24.68 30.66 32.69 32.96 28.61 – – –

Ensemble 26.47 23.94 36.59 25.25 31.60 33.86 34.07 29.02 27.12 16.14 16.82

Table 2: BLEU scores of our unified model for Multilingual TEDx test sets. Those marked with ? are the results for
zero-shot translation. For each setting, we display the results with highest scores among different hyper-parameters.
The ensemble results come from ensembling top 2 or 3 models based on the development sets.

MultiST. Table 2 shows the results of our model
on MultiST. The first two rows display the results
with only bilingual data. As can be seen, it is diffi-
cult for an end-to-end model to produce reasonable
results with extremely low resources (less than 30
hours, including language pairs Es-Fr, Es-It and
Fr-Pt as in Table 1). With sufficient additional ASR
data, all language pairs are improved in a large
scale, especially for those low-resource language-
pairs (e.g. from 1.26 to 23.38 on Fr-Pt).

The rest rows are the results in multilingual set-
tings, where we use all the available data. “Joint
learn” means that we directly train the multilingual
model from scratch. “Curriculum learn” displays
the results after the first two training steps in Sec-
tion 3.1, while “+FT” means adding the third fine-
tuning step. “KD” refers to knowledge distillation.
We can find that ASR and NMT pre-training helps
the model learn better representations to perform
translation. Then, fine-tuning with knowledge dis-
tillation further improve the results. This indicates
the efficacy of our task-level curriculum learning
for MultiST. However, we find that fine-tuning only
with ground-truth targets would not improve the
performance. This might be attributed to the lim-
ited ST training data, as all of them are less than
100 hours, which introduces difficulty to learn effi-
ciently. By incorporating knowledge distillation, it
enables our model to learn extra meaningful knowl-
edge from NMT, so that it can further improve the
results.

It can also be found that our unified model can
perform reasonable zero-shot speech translation, as
all the zero-shot language pairs achieve higher than
10 BLEU scores. Specifically, results for Pt-Es
even achieve similar scores compared with other
supervised language pairs. This is mostly because
Portuguese and Spanish are similar languages so
that it is easier for the model to transfer knowledge
from other data.

Model Es Fr Pt It

Monolingual 19.93 22.49 24.86 22.94
Multilingual-ASR 13.75 16.79 17.67 16.22
Joint learn 15.69 17.46 19.85 19.12
Curriculum learn 14.99 16.97 18.06 18.42

+FT 12.53 14.56 15.75 15.38

Table 3: WER of our unified model for ASR test sets.

Model Es-En Es-Fr Es-Pt Es-It

Multilingual-NMT 30.41 22.35 41.99 25.62
Joint learn 31.11 28.25 44.12 27.88
Curriculum learn 30.82 27.87 43.36 27.46

+FT 31.43 27.81 43.53 27.46

Model Fr-En Fr-Es Fr-Pt Pt-En

Multilingual-NMT 35.44 36.89 37.46 33.83
Joint learn 37.17 39.78 40.66 35.54
Curriculum learn 36.15 38.83 39.38 34.40

+FT 36.42 38.99 39.43 34.78

Table 4: BLEU of our unified model for NMT test sets.

ASR and NMT. We also test our unified model
on the ASR and NMT tasks. Table 3 and Table 4
display the results for ASR and NMT, respectively.
“Multilingual-ASR (NMT)” is the model trained
only with multilingual ASR (NMT) data. From the
results, we can find that ASR also benefits from the
task-level curriculum learning procedure. However,
it only improves slightly compared to the model
only with ASR data, probably because the speech
in ST data is sampled from the ASR data (Salesky
et al., 2021). It surprises us that NMT can also
benefit from extra data from different modality (i.e.
speech), although curriculum learning does not im-
prove the performance (probably because we assign
less loss weight to NMT task in step 2 as introduced
in Section 3.1). This demonstrates the potential of
leveraging data from different modalities to train a
powerful unified model. Due to the time and data
constraint, we leave the exploration into a more
powerful unified model with multiple kinds of data
as future work.
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Submissions. We submit our results on ST eval-
uation sets with the ensemble model in Table 2,
scoring BLEU scores 35.4 on Es-En, 27.0 on Es-
Fr, 43.2 on Es-Pt, 30.8 on Es-It, 26.7 on Fr-En,
27.0 on Fr-Es, 26.9 on Fr-Pt, 26.7 on Pt-En, 27.0
on Pt-Es, 17.6 on It-En, and 15.4 on It-Es. We also
submit our ASR results on evaluation sets with our
fine-tuned model (i.e. “+FT” model in Table 3),
scoring 11.1 WER on Es ASR, 22.2 on Fr ASR,
16.2 on It ASR, and 23.8 on Pt ASR.

5 Conclusions

We present our system submitted to IWSLT 2021
for multilingual speech translation task. In our sys-
tem, we build a unified transformer-based model to
learn the knowledge from different kinds of data.
We introduce a task-level curriculum learning pro-
cedure to enable our unified model to be trained
efficiently. Our results show the efficacy of our
unified model to perform multilingual speech trans-
lation in both supervised settings and zero-shot
settings. Moreover, the results demonstrate the
potential of incorporating multilingual and even
multi-modal data into one powerful unified model.
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