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Abstract

This paper describes Maastricht University’s
participation in the IWSLT 2021 multilingual
speech translation track. The task of this track
is to build multilingual speech translation sys-
tems in supervised and zero-shot directions.
Our primary system is an end-to-end model
that performs both speech transcription and
translation. We observe that the joint training
for the two tasks is complementary especially
when the speech translation data is scarce. On
the source and target side, we use data augmen-
tation and pseudo-labels respectively to im-
prove the performance of our systems. We also
introduce an ensembling technique that con-
sistently improves the quality of transcriptions
and translations. The experiments show that
the end-to-end system is competitive with its
cascaded counterpart especially in zero-shot
conditions.

1 Introduction

In this paper, we describe our systems for the mul-
tilingual speech translation track of IWSLT 2021.
Speech translation (Bérard et al., 2016; Weiss et al.,
2017) is the task of converting speech utterances
to their translation in other languages. While “end-
to-end” modeling (Di Gangi et al., 2019; Sperber
et al., 2019) of the speech translation pipeline has
become the dominant approach, an open challenge
remains in terms of data scarcity. As the amount
of speech directly paired with translation is lower
compared to speech transcription or text-to-text
translation, it is especially crucial for models to be
data-efficient. In this context, multilingual speech
translation (Inaguma et al., 2019; Li et al., 2021)
presents itself as a promising direction to alleviate
data scarcity by leveraging commonalities across
languages.

In this multilingual translation track, we submit:
1) an end-to-end system (§5.2) that directly trans-
lates from speech and 2) a cascaded system (§5.1)
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that consists of a multilingual speech transcription
module (§3) followed by a multilingual text trans-
lation module (§4).

Our efforts to improve the speech translation sys-
tem can be categorized as follows. When training,
on the source side, we augment the speech data by
speed perturbation. On the target side, we apply
pseudo-labeling! by translating the ASR transcrip-
tions. Furthermore, we train multilingual systems
for both speech transcription and translation to al-
leviate the scarcity of training data. When testing,
we use different ensembling techniques to increase
the diversity of output distribution and improve
output quality.

The main findings from our experiments are:

e Multilingual training and jointly training
speech transcription and translation are benefi-
cial when data scarcity limits the performance
of mono- or bilingual systems.

The gain in the overall speech-to-text systems
also propagates to cascaded systems as a result
of stronger ASR performance.
Pseudo-labeling strongly improves speech
translation quality, especially in directions
that are originally zero-shot.

2 Setup

2.1 Corpus Statistics

Our systems are trained on the multilingual TEDx
(mTEDx) speech recognition and translation cor-
pus (Salesky et al., 2021). We do not use any data
outside this corpus. Table 1 outlines some statistics
about the training set of the mTEDx corpus.

2.2 Preprocessing

For the audio data, we downsample the original
audio files from 48kHz to 16kHz and mix the two
channels into one. We then extract 40-dimensional

'or forward-translation in analogy to back-translation
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Source | transcription Target (# utts.)
(hour, # utts.) | en es fr pt it
es 178, 102k 36k 4k 21k 6k
fr 176, 116k 30k 20k 13k —
pt 153, 90k 3k — — —

it 101, 50k — - - =

Table 1: Data amount of speech transcription and trans-
lation in the training set of mTEDx.

Mel Frequency Cepstral Coefficients (MFCC) with
3-dimensional pitch using Kaldi (Povey et al.,
2011). We concatenate adjacent 4 audio frames,
resulting in an input dimension of 172.

For the text data, we combine all transcriptions
and translations from the training set and learn a
joint byte pair encoding (BPE) (Sennrich et al.,
2016b) of size 16k using SentencePiece (Kudo and
Richardson, 2018). With this joint BPE, we can
translate from tokenized ASR transcriptions in our
cascaded system.

2.3 Training Details

We use the dev partition of mTEDXx as validation
set and average the model weights from last 5 best
checkpoints. When decoding, we use a beam size
of 8. The specific models for different tasks will be
described in the corresponding sections.

3 Automatic Speech Recognition (ASR)

The ASR performance is summarized in Table 2.
We report case-insensitive word error rates (WER)
after removing all punctuation marks.

3.1

Multilingual Baseline We start from a Trans-
former (Vaswani et al., 2017) with stochastic layer
dropout (Pham et al., 2019a) rate of 0.5. We use 36
encoder layers and 12 decoders layers, following
the original work (Pham et al., 2019a). The hidden
dimension is 512 and the inner dimension 2048.
We use dropout rate of 0.2 and label smoothing rate
of 0.1.

The model is jointly trained on all four lan-
guages. As the data volume for each individual
language is relatively low, after initially seeing
poor performance of monolingual ASR models,
we proceed with a multilingual system for all four
languages, with the intention of better utilizing
common acoustic features.

Model Description

Language Embedding While the multilingual
ASR system does not need to explicitly know the
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target language, we find it beneficial to provide the
decoder more guidance by feeding in target lan-
guage embeddings. Specifically, we achieve this by
language embeddings concatenated with decoder
input embeddings (Pham et al., 2019b). Meanwhile,
the decoder begin token is replaced by the target
language embedding. With this approach, we re-
duce the WER on average by 0.6% absolute (2.4%
relative; model A2 in Table 2). More importantly,
this approach allows us to easily extend the model
to speech translation, where the number of target
languages can be more than one.

Speed Perturbation We augment the training
data by speed perturbation with factor 0.9 and 1.1
(Ko et al., 2015) using the corresponding Kaldi
script?. After speed perturbation, we further ob-
serve a reduction of 2.4% absolute WER (9.3%
relative; model A3 in Table 2). Here we did not
use SpecAugument (Park et al., 2019), but would
expect further gains from this approach.

Ensembling By ensembling two independently
trained models on the output distributions, we fur-
ther reduce WER by 1% absolute (4.4% relative;
model A4 in Table 2).

Joint Training with Speech Translation We
can directly apply the same ASR model to speech
translation, as we control the output language by
the target language embedding. As described later
in §5.2, we train end-to-end systems using both
ASR and ST data. The strongest system from ASR
and ST training (model E5) achieves a large reduc-
tion of WER from 21.9% to 18.7% (14.7% relative)
on average.

ID Model es fr it pt

Al Multilingual baseline 243 245 259 287
A2 Al + language emb. 23.8 239 255 277
A3 A2 + speed perturb 21.0 221 23.1 253
A4 A3+ ensembling 204 210 220 24.1
E5 A3+ ST joint training 17.6 184 18.6 20.0

Table 2:  ASR performance in WER] (%) (lower-
cased, no punctuation) of the multilingual ASR system
on mTEDKX test set.

3.2 Main Findings

As summarized in Table 2, we reduce the WER of
our baseline multilingual Transformer from 25.8%
https://github.com/kaldi-asr/kaldi/

blob/master/egs/wsj/s5/utils/data/
perturb_data_dir_speed_3way.sh
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ID | Model es-en fr-en fr-es pt-en pt-es™ it-en™™ it-es”
M1 | Transformer (6-6 encoder-decocder layers) 32.3 38,0 41.3 37.1 42.3 23.0 32.5
M2 | M1 + residual drop 329 38.1 40.7 37.0 42.5 24.1 32.8
M3 | Ensemble M1 and M2 334 394 418 379 43.3 24.8 34.0
M4 | Ensemble M1x2 and M2x2 33.7 393 421 38.3 44.0 24.9 34.8

Table 3: Machine translation performance in BLEU1>of the multilingual MT system on mTEDX test set by directly
translating from ground-truth transcriptions. *: zero-shot directions for speech translation. **: zero-shot direction

for text translation.

| en e fr it pt

en - 36 30 0 30
es - 24 6 21
fr -0 13
it - 0
pt -

Table 4: Overview of MT parallel training data amount
(in 1k sentences) after including all directions with text-
to-text translation data.

to 18.7% by a combination of techniques. Among
these, the largest gain comes from joint training for
speech translation. This highlights the benefit of
multilingual training, especially when data scarcity
limits the performance of monolingual end-to-end
systems.

4 Machine Translation (MT)

When translating from speech, the MT module in-
gests ASR outputs. To assess the quality of the MT
component alone, we first report the performance
of directly translating from the ground truth tran-
scriptions in Table 3. The results of cascading the
ASR and MT systems are reported later in Table 5.

4.1 Data

For the MT component, we train our models on all
translation directions from {en, es, fr, it, pt} with
all text translation data in the training set, includ-
ing both directions of transcription < translation.
In doing so, we cover more directions than tested
in the evaluation campaign. A main advantage of
this is additional training data on the target side.
For instance, although the evaluation task does
not involve translating from English, incorporating
en—X directions provides around 30k sentences
with each of {es, fr, pt} on the target side. In-
cluding these data largely expands the data amount
when translating into the three target languages.
The data amount for our MT training is outlined in

3sacreBLEU: BLEU+case.mixed-+numrefs. | +smooth
.exp+tok.13a+version.1.4.12

Table 4. Note that while {pt—es, it—en, it—es}
are zero-shot directions for speech translation, only
it—en is zero-shot for MT.

4.2 Model Description

Multilingual Baseline We start with a
Transformer-base with 6 encoder and de-
coder layers respectively (model M1 from Table
3). We use dropout rate of 0.2 and label smoothing
rate of 0.1. The source and target embeddings are
shared. The output language is controlled by the
language embedding described in §3.1. As we
observe no performance gain by increasing the
number of encoder and decoder layers, we keep
the Transformer-base setup.

Residual Drop We additionally use the Trans-
former with residual connections removed from
the middle encoder layer (Liu et al., 2020) that
was shown to improve zero-shot performance un-
der English-centric scenarios. We see that the
model (M2 from Table 3) outperforms the vanilla
Transformer in the zero-shot direction (it-en) by
1.1 BLEU, while being on-par on other directions.

Ensembling We ensemble the two models above
by averaging the output distributions (model M3
in Table 3). This brings a gain of 0.9 BLEU on
average. By further incorporating another two inde-
pendently trained vanilla model and residual-drop
model (hence ensembling four models), we see
a further gain of 0.4 BLEU (model M4 in Table
3). This MT system and will be used in the later
cascaded speech translation system.

4.3 Main Findings

We build a multilingual translation model with re-
sults summarized in Table 3. We first confirm that
the residual drop approach (Liu et al., 2020) im-
proves zero-shot translation performance. Further-
more, ensembling different models brings gains up
to 1.5 BLEU.
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Type | ID | Model esen fr-en fr-es pt-en pt-es® it-en” it-es” | ASR (avg.)
2 |C1 Ad + M2 25.6  30.1 322 28.1 314 191 26.0 -
2 | C2 A4 + M4 26.1 30.6 333 290 320 195 26.8 -
5 C3 C2 + ASR multi-view ensemble 26.5 30.6 33.6 289 322 197 27.0 -
O |4 E5 + M4 273 31.6 342 310 346 205 278 -
- | El Transformer 170 20.1 212 175 11.7 5.8 6.6 -
$ E2** | E1 + ASR joint training 18.0 20.8 247 20.1 19.0 82 102 253
e E3 E2 + pseudo labels (zero-shot dir.) 219 253 29.1 249 33.3 19.2  28.2 204
2 |E4 E2 + pseudo labels (all dir.) 250 30.0 333 285 344 204 288 19.5
M E5 E4 + multi-view ensemble (3 speeds) 252 30.1 333 28.7 34.5 20.5  29.1 18.7

Table 5: Speech translation performance in BLEUT on mTEDx test set. We mark the cascaded systems with “ASR-
ID + MT-ID”. For e2e systems trained to jointly perform ST and ASR, we additionally report average WER/ over
the 4 source languages {es, fr, it, pt}. *: zero-shot directions. **: Due to computation constraints, we terminated
the training of model E2 early to combine with the other approaches.

5 Speech Translation (ST)

In Table 5, we report the performance of our cas-
caded (§5.1) and end-to-end (§5.2) speech transla-
tion systems.

5.1 Cascaded System

The performance of the cascaded systems is sum-
marized in the upper section of the Table 5. We
combine the stronger ASR system and MT system
and derive cascaded models C1 and C2. Com-
pared to the MT results in Table 3 that utilizes
ground-truth transcriptions, we observe a clear drop
in BLEU. This highlights the importance of high-
quality transcriptions for the cascaded system.

Multi-View Ensemble (Transcription) Since
at test time the ASR transcriptions are likely noisy,
we propose an ensembling approach that incor-
porates multiple variants (or views) of ASR tran-
scriptions. At test time, given an utterance, we
transcribe it with different ASR models. The MT
module then translates from these slightly differ-
ent transcriptions and ensembles by averaging the
output distribution. The results from this technique
are shown in C3 in Table 3. With this ensembling
technique, on average we see an improvement of
0.2 BLEU, with the all other modules unchanged
from the previous model C2.

5.2 End-to-End System

For the end-to-end ST system, we use the provided
ST training data augmented with three-way speed
perturbation (Ko et al., 2015). We initialize the
models with pre-trained encoder weights from our
trained ASR system.

ASR Joint Training Since our decoder utilizes
target language embeddings, we can conveniently

incorporate ASR data for jointly training the ST
system (Model E2 in Table 5). Upon seeing im-
provements over the setup without ASR data, we
terminated the training of E2 and continued by
combining with other approaches described next.
Therefore if trained till convergence, the final per-
formance of E2 would be better than reported here.

Pseudo-Labels Since the provided corpus con-
tains no Italian ST data, the BLEU scores when
translating from Italian are poor (8.2 and 10.2 for
it-en and it-es from model E2 in Table 5). To have
more training signals, we create pseudo-labels by
translating the ASR transcription using our MT sys-
tem. The model trained with the additional pseudo-
labeled data (pt-es, it-en, it-es) is E3 in Table 5.
As expected, incorporating pseudo-labels largely
improves the performance on the three zero-shot
directions (pt-es, it-en, it-es). It is worth noting that
on these zero-shot directions the end-to-end system
already surpassed the strongest cascaded system so
far (C3), achieving 33.3, 19.2, 28.2 compared to
32.2,19.7,27.0 BLEU points.

Observing the strength of the pseudo-labeling,
we take a step further and create pseudo-labels
also for the supervised directions (model E4 in
Table 5). This further improves the overall ST
and ASR performance by +2.6 BLEU and —4.4%
WER (relative) on average.

Multi-View Ensemble (Speech Speed) Similar
to the motivation for the ensembling approach in
§5.1, we utilize multiple views of the same input to
create an ensemble. Since the input here is audio,
we take the speed-perturbed variants with factors
0.9, 1.0, 1.1 (Ko et al., 2015) of the test utterances
and ensemble the output distributions (model E5
of Table 5). This simple technique slightly yet
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Type |ID |es-en fr-en fr-es pt-en pt-es™ it-en” it-es” | avg.
Cascaded | C3 | 34.5 219 243 243 293  21.7 268 | 26.1
End-to-end | E5 | 33.9 254 276 257 33.7 22.8 294|284

Table 6: Speech translation performance in BLEUT on the blind test set. We mark the cascaded systems with
“ASR-ID + MT-ID”. *: zero-shot directions for speech translation.

consistently improves ST and ASR quality, gaining
+0.2 BLEU and —4.1% WER (relative) on average.
It is worth noting that the model has already been
trained on speech data perturbed with the same
speed factors. This suggests that we can further
improve our model’s prediction consistency for
perturbed versions of the the same utterance, e.g.
by consistency regularization (Sohn et al., 2020).
Furthermore, although this ensembling approach
leads to improvements in the current offline setting,
we note that it could be difficult to apply under
real-time constraints due to the computation load
of generating 3 variants of speech utterances and
applying ensembling on top of that.

Feeding Back to Cascaded System Till now,
the series of improvements of the speech-to-text
model also lead to better ASR performance. We
therefore use the improved ASR transcriptions
from model E5 as the MT input for the cascaded
system. The resulting model is C4 in Table 5,
which brings a gain of 1.2 BLEU for the cascaded
system.

5.3

The results for cascaded and end-to-end ST systems
are summarized in Table 5. First, using a unified
end-to-end speech-to-text system for both ASR and
ST improves the output quality for both tasks. This
gain further propagates to the cascaded systems as
a result of higher ASR quality. Second, confirming
findings from the literature (Kahn et al., 2020; Pino
et al., 2020), training with pseudo-labels is a strong
method to improve end-to-end systems. Last but
not least, by ensembling from different views of the
same data, we can achieve further gains at inference
time.

Main Findings

6 Results on Blind Test Set

We submitted systems C3 and E5 for evaluation
on the blind test set. The results are summarized
in Table 6. In line with the results on the public
test set in Table 5, the end-to-end system outper-
forms the cascaded system on zero-shot directions.
Different from on the public test set, the end-to-
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end system also shows large gains when translating
from French speech. A potential reason is errors
propagated from the French ASR transcriptions
that led to weaker performance of the MT module
in the cascaded system.

7 Conclusion

This paper summarizes our participation in the
IWSLT 2021 multilingual speech translation track.
We improved our end-to-end speech-to-text sys-
tems from different angles. On the source side, we
augmented the input utterance. On the target side,
we created pseudo-labels from ASR transcriptions.
Furthermore, at test time we used different ensem-
bling approaches to improve the performance of
trained models. By experimenting under different
data scenarios, we showed the benefit of multilin-
gual training and the joint training speech transcrip-
tion and translation.

We note a few directions to further improve
our systems: First, we expect that utterances aug-
mented by SpecAugment (Park et al., 2019) could
improve the quality of the ASR and ST systems.
Second, our MT module can be improved by syn-
thetic data from back-translation (Sennrich et al.,
2016a), especially for the zero-shot directions. Re-
garding upcoming work, since the source languages
all belong to the same family, an interesting next
step is to investigate how to better utilize the relat-
edness between these languages.
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